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Abstract: In this paper we demonstrate a family of metrics for estimating the quality of a
text summary relative to one or more human-generated summaries. The improved metrics
are based on features automatically computed from the summaries to measure content
and linguistic quality. The features are combined using one of three methods—robust
regression, non-negative least squares, or canonical correlation, an eigenvalue method. The
new metrics significantly outperform the previous standard for automatic text summarization
evaluation, ROUGE.
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1. Background

Due to the now common explosion of information , we are often faced with too much to read. Search
engines have improved dramatically over the past several decades, so much so that they frequently return
too many relevant documents. Tools that enable us to sift through data to find relevant documents and,
more generally, information of the greatest interest to us, are much needed. One approach to deal with
this overload of information is to produce summaries of the documents. The problem of single document
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summarization was first introduced over 55 years ago by Luhn [1]. Since then, hundreds of papers on
text summarization have been published. In 1995 Kathleen McKeown and Dragomir Radev introduced
multi-document summarization [2] where information from a collection of documents on the same topic
is summarized. This approach naturally leads to a top-down navigation of documents to extract relevant
information. A series of evaluations of summarization methods has been conducted over the last dozen
years and the data from these will be described in Section 3. The most recent of these has been the
Text Analysis Conference (TAC) [3] which is sponsored by the National Institute of Standards and
Technology (NIST). Each year at TAC, several dozen summarization systems are evaluated by NIST
based on several criteria.

The two main types of summarization evaluation are extrinsic and intrinsic. In extrinsic evaluation,
summaries are evaluated according to how successfully an external task can be completed using only
the summary. In intrinsic evaluation, a summary’s score is derived from the summary itself, perhaps by
comparison with a human-written, gold standard summary. For the purposes of this work, we focus only
on intrinsic evaluation.

The ultimate intrinsic test of the quality of a summary is human judgment of its content, linguistic
quality, and overall responsiveness to the needs of the given information task. These human judgments
will be described in more detail in Section 3. Suffice it to say that such human-based evaluation,
while absolutely necessary to evaluate the task, is very time consuming. Because of this, we
seek to find automatic evaluation metrics which, as closely as possible, will correlate with human
judgments of text summaries. In recent years, automatic summarization systems have made great
gains in their performance. Today, top performing summarization systems outperform humans when
measured by traditional automatic metrics, despite the fact that the measured performance, as judged
by human evaluators, indicate that the automatic systems perform significantly worse than humans.
Mathematically, such a metric gap is a discontinuity in the function relating the automatic and manual
metrics and is illustrated in Figure 1. This metric gap will be discussed further in the next few paragraphs.

Measuring correlation between automatic metrics and human judgments is a natural way to measure
the performance of an automatic metric. When NIST recently evaluated automatic summarization
metrics, the three widely used correlation metrics—Pearson, Spearman, and Kendall tau—were used.
Of these three metrics we present only Pearson, primarily for space considerations, and we direct the
reader to [3] for results using Spearman and Kendall tau. Secondly, we favor Pearson as a metric since,
of the three, it penalizes metrics for discontinuities such as those illustrated in Figure 1.

The baseline summarization evaluation method to which many others are often compared is
Recall-Oriented Understudy for Gisting Evaluation (ROUGE) [4] and is a (word) n-gram-based approach
for comparing one summary to one or more human-generated summaries (note that to evaluate a human
summary, one simply compares it to the other human summaries). Generally, bigram-based versions of
ROUGE give the best correlation with human judgments of a summary.
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Figure 1. TAC 2008/2011 task results.

This plot shows ROUGE-2 and ROUGE-SU4, two of the standard baseline evaluation systems. The regression
line only goes as far as the lowest-scoring human summary. In the ideal picture, the cluster of human summarizers
at the top of each plot would be further to the right and directly along the prediction line that ROUGE fits with the
machine summarizers.
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To illustrate the strengths and weaknesses of ROUGE as a measure of a summarization system’s
performance, we give two scatter plots in Figure 1. In these plots, ordered pairs of each system’s
average ROUGE scores and average “overall responsiveness” scores are given for each automatic
summarization system as well as for 8 human summarizers. The plots illustrate two of the best
ROUGE scoring approaches, ROUGE-2 which measures the bigram similarity of a summary against
human-generated summaries and ROUGE-SU4 which measures bigram similarity but allows for a skip
distance of up to 4 words. Both plots show 2 major groups of data which, not surprisingly, correspond
to the machine-generated and human-generated summaries. In 2008, there was a wide gap in the
performance in average overall responsiveness (the human judgment) while the best systems scored in
the lower range of human performance for both ROUGE metrics. Three years later, we see that the best
machine-generated summaries have made improvement in both ROUGE and responsiveness, so much
so that some systems now exceed the performance of humans in the ROUGE metric. However, their
performance in responsiveness pales in comparison with that of humans.

This inability of ROUGE to adequately predict human judgments of summaries gave rise to a
“meta-evaluation”, an evaluation of evaluation methods. The task is called AESOP or Automatically
Evaluating Summaries of Peers and has been part of TAC for the last two years. In this paper, we
propose using both content-oriented features, similar in spirit to ROUGE, in conjunction with low-level
linguistic features to produce a metric that correlates well between human-generated summaries and
those produced by machine-generated summarization systems. The features were combined based on
training on previous years of TAC data using linear algebraic and statistical methods. They were then
used to predict scores for the 2011 data prior to their release. The resulting metrics more accurately
predicted the current performance gap between human and machine generated summaries than ROUGE.
In addition, we have applied our methods to the 2008 TAC data to further validate their ability to predict
the human-machine performance gap.

The rest of this paper is organized as follows: Section 2 covers related work in text summarization
evaluation. We discuss the origin of our data in Section 3. In Section 4, we define the linguistic and
content features that go into our supervised learning algorithms and in Section 5, we discuss how those
algorithms select subsets of the features. Section 6 describes our results and Section 7 contains our
conclusions and ideas for future work.

2. Related Work

Previous work has looked at extensions to (word) n-gram approaches for judging the quality of
a summary relative to one or more human-generated summaries. Conroy and Dang [5] analyzed
summarization evaluation data from the Document Understanding Conferences (DUC [6], the TAC
predecessor) for the years 2005–2007. They proposed using robust regression to find canonical
correlation coefficients to improve the correlation between the automatically-generated metric and
human-generated metrics. Their approach used several variants of the ROUGE (word) n-gram scoring
to produce a new metric, called ROUGE Optimal Summarization Evaluation (ROSE). ROSE was
successful in improving the correlation within a given year, which would be useful for researchers
producing new summarization methods to build an interpolation model to compare their new method



Algorithms 2012, 5 402

with methods that were evaluated by humans. However, the method was not successful in improving the
correlation when a model was built using one year’s data, say 2005, and then applying it to another year’s
data, say 2006. The authors did demonstrate that if the actual linguistic quality scores were known, then
such a cross-year improvement could be attained.

For “update summaries”, the base summary (or summaries), which encapsulates the readers’
knowledge of the topic so far, must be taken into account. An update summary is a text summary
that is generated on an “evolving topic” and summaries are generated for new documents with a focus
on what is novel in the new set of documents. Evaluation of such summaries can pose a challenge.
An approach that uses the ROUGE content metrics comparing the information in the update summary
to that of the previously generated summaries on the topic was proposed by Conroy, Schlesinger and
O’Leary [6]. Nouveau-ROUGE computes a linear combination of the similarity of the summary with
not only the current human-generated summaries on the topic but those corresponding to the previously
known information. Such an approach was shown to improve correlation with both pyramid and overall
responsiveness metrics, two important human-generated scores given to summaries.

Oliveira et al. [7] proposed a system called Valuation using Enhanced Rationale Technique (VERT-F).
VERT-F compares the (word) bigrams of summaries to be evaluated with human-generated summaries
by computing a statistic which is a combination of 4 others: the χ2 statistic, and the three metrics from
information retrieval—precision, recall, and the geometric mean of these (F−measure).

Giannakopoulos et al. [8] proposed a novel (character) n-gram approach, AutoSummENG
(AUTOmatic SUMMary Evaluation based on N-gram Graphs), which was designed to be language
independent. The approach builds graphs for a given summary based on n-gram counts. Graph similarity
metrics are then used to compare summaries. The resulting metrics were shown to be competitive with
ROUGE scoring. (Giannakopoulos et al. [9] turned the evaluation around and used it as a method to
generate summaries.)

The Merged Model Graph method (MeMoG) [10] is a variation on AutoSummENG where instead
of comparing summaries to summaries, a summary’s graph is compared to a merged graph of 3
human-generated summaries. We will compare the performance of our approach to AutoSummENG,
MeMoG, and VERT-F, as well as several variations of ROUGE in the Results section.

Pitler, Louis, and Nenkova [11] went in a different direction and sought to automatically evaluate
the linguistic quality of a summary. They tested numerous high-level and low-level features such as
cosine similarity between sentences, co-reference information, and number of syllables in a sentence’s
words in an attempt to separately predict several aspects of linguistic quality, including grammaticality,
non-redundancy, referential clarity, focus, and structure and coherence. Their best results were 90%
accuracy for pairwise comparisons of competing systems and 70% accuracy for ranking summaries.

A graph-based method is presented in [12], where the authors compute term weights to give more
credit to essential words in reference sentences (i.e., sentences from a human-generated summary) when
used to automatically measure the quality of a human generated summary. This competitive approach
uses centrality score as well as sentence clustering to weight co-occurring words in a sentence. The
modifications of their approach were developed after the TAC data were released and are a slight
variation of what the authors prepared for TAC 2011. The results of this approach are given in
Figures 2–4 and are labelled 10, 13, 20 and 24.
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Figure 2. Pearson correlation with pyramid top 14 AESOP metrics all peers and no models
(2011).

Systems 1–3 are the baseline evaluation systems (see Results section). Our systems are numbers 6, 8, 23 and 25.
Systems 12 (AutoSummENG) and 18 (MeMoG) are due to Giannakopoulos et al. [8]. System 4 is VERT-F, due
to Oliveira et al. The vertical bar shown for each system is a 95% confidence interval for its Pearson correlation
with the human metric listed at the top of the figure.
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Figure 3. Pearson correlation with readability top 14 AESOP metrics all peers and no models
(2011).

Systems 1–3 are the baseline evaluation systems (see Results section). Our systems are numbers 6, 8, 23 and 25.
Systems 12 (AutoSummENG) and 18 (MeMoG) are due to Giannakopoulos et al. [8]. System 4 is VERT-F, due
to Oliveira et al. The vertical bar shown for each system is a 95% confidence interval for its Pearson correlation
with the human metric listed at the top of the figure.
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Figure 4. Pearson correlation with responsiveness all peers and no models (2008).

Systems 1 and 2 are the baseline evaluation systems (ROUGE-2 and ROUGE-SU4, respectively). Our systems
are numbers 6, 8, 23 and 25. The vertical bar shown for each system is a 95% confidence interval for its Pearson
correlation with the human metric listed at the top of the figure.



Algorithms 2012, 5 406

The following two papers consider the challenge of evaluating machine-produced summaries without
model human-written summaries. Steinberger and Ježek [13] propose using Latent Semantic Analysis
(LSA) for summarization evaluation. The idea is that LSA can identify the most important topics in a
reference text (full document or abstract) and that a summary can be judged based on how similar its
topics are to those in the reference text. They produce similarity scores by computing angles between
singular vectors and combinations of singular vectors and achieve good results with model summaries
and separately with full text documents.

In [14], Saggion et al. expand on the work of Louis and Nenkova [15] by employing Jensen–Shannon
divergence to contrast the probability distribution of a summary with that of its reference text. They
show that substituting the full document for the model summary works almost as well in certain cases
(generic and topic-based multi-document summarization) but performs much worse in others
(summarization of biographical information and summarization of opinions in blogs).

We believe our work is the first to simultaneously combine the different components we used for the
scoring of text summaries. We used a novelty metric, content features and various linguistic features
to create a family of algorithms able to accurately predict the responsiveness and readability of a
text summary.

3. The Data

The data for this evaluation is taken from the 2008–2011 update tasks from TAC. The summarization
task consists of two sets of 10 documents in each of 40+ document sets. The first set of 10 is the
“base”; the second set occurs later in time and is called the “update”. Participants’ programs create two
summaries: One that summarizes the first ten documents and another that summarizes the second ten,
focusing only on novel information not contained in the first ten.

In 2010, and continuing to 2011, the notion of a “guided summary” was added. Five categories were
established and a set of “aspects”, specific information relevant to the category, was defined for each.
Every data set was linked to one category. Inclusion of information that addressed the various aspects
was a major focus of the evaluation for both the base and update summaries.

NIST has sponsored a summarization evaluation every year since 2001 (DUC through 2007; TAC
from 2008 on). Methods to evaluate the submitted summaries have been a major effort and have, of
course, evolved over the years. Beginning in 2004, ROUGE [4] became the automatic method used,
replacing a measure of precision and recall of the sentences in the generated summaries. Due to the
improved quality of generated summaries, ROUGE scores are no longer as good a predictor of summary
quality (when compared with human evaluation of summaries) as they once were. Hence the search for
new automatic tools to measure summary quality.

Human evaluation is an expensive undertaking. It, too, has evolved over the years. Various methods to
judge the content of the summaries as compared to those generated by humans have been used, beginning
with SEE [16,17] and moving to a pyramid score [18], which is the main content evaluation tool at this
point. Linguistic quality was first measured by using a set of questions to rate each summary. These
questions were modified, extended, and shrunk over the years and are now subsumed in two scores, one
which also includes content, called “overall responsiveness”, and one for linguistic quality only.
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3.1. Human/System Summary Comparison

We present here an example of a single data set from the TAC 2011 data. The set contains
10 documents; summaries were generated by 4 humans and 43 systems. There was 1 baseline. This
data set was chosen specifically because it strongly demonstrates the problems of correlation between
ROUGE and human evaluation. Certainly, not all data sets exhibit such wide discrepancies, but in general
there is a consistent lack of correlation between the two.

Table 1 shows the pyramid score, overall responsiveness score, linguistic score, and ROUGE-2 score
for the human summary with the highest pyramid score and the five system summaries with the highest
ROUGE scores. Note that the human’s ROUGE score ranges from almost half to just 40% of the system
ROUGE scores, while the system pyramid scores range from barely 14% to just 26% of the human
pyramid score. Clearly, in this case, ROUGE-2, which has been shown in the past to have the highest
correlation with human evaluation, is lacking.

Table 1. Contrast between human and system scores for data set D1113C.

Summary Pyramid Overall Linguistic
ROUGE-2

ID Score Responsiveness Quality

human C 0.905 5 5 0.0556
system 3 0.123 3 2 0.1370
system 26 0.238 3 3 0.1369
system 35 0.153 2 2 0.1191
system 13 0.182 3 2 0.1135
system 10 0.209 2 3 0.1059

Figure 5 shows the human generated summary and the summary for system 26 which had the best
pyramid score of the five systems with the highest ROUGE-2 scores. Note that the overall responsiveness
and linguistic scores are 5, the highest possible, for the human summary while system 26 has a score
of 3, the best of the five systems but clearly below the human scores. Both overall responsiveness and
linguistic quality include cohesiveness, coherence, readability, and redundancy, along with more obvious
grammatical issues such as run-on sentences, sentence fragments, bad punctuation and/or capitalization,
lack of noun or pronoun referents, etc. While the system summary reads grammatically correctly, it
suffers from poor ordering of the sentences that impacts the summary flow, a lack of specification for the
name “Wasser”, and the final sentence fragment.
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Figure 5. Human and system summaries for data set D1113C.

A. Human Generated Summary for Data Set D1113C
Four years ago, a ship seized in Singapore carried over 6 tons of elephant ivory, the
largest shipment of the contraband material since its international trade was banned
in 1989. DNA identified the source of the ivory as Zambia. Since then, ivory
smuggling has increased. Police seized the largest amount of ivory ever in Japan.
CITES, the UN agency regulating this trade, urged African countries to overcome
their divide over the ban. Positions range from requests to downgrade controls to
maintaining a complete ban for 20 years. Proper elephant management can keep
elephant populations stable and enable some ivory trading.

B. System 26 Summary for Data Set D1113C
Trading ivory was banned under the 1989 Convention of International Trade in
Endangered Species to curb the slaughter of elephants in Africa. Using DNA
analysis, the group led by Wasser determined that the tusks came from African
savannah elephants similar to those found in and around the nation of Zambia.
When a shipping container was seized in Singapore four years ago carrying more
than SIX tons of elephant ivory inside, conservation and law enforcement agencies
realized that they had intercepted the largest shipment of the contraband material
since its international trade was banned in 1989. Kenya and Mali are proposing

4. Features

The models we employ to measure the quality of a text summary combine several features computed
from the text of a summary. In this section we define these features and explain why they are included in
the models. In general, our features were selected to correlate well with summary content and linguistic
quality, since these are what are measured for the TAC summarization evaluation.

4.1. Linguistic Features

Linguistic features correspond to the grammaticality, readability, and flow, including any impact
of redundancy, of the summary. These features include the number of sentences, three measures of
redundancy, two measures of flow, and a measure of uniformity of sentence length . The current state
of the art in automatic summarization is to extract selected sentences from the relevant document(s) to
create a summary. Therefore, identifying sentences in the document is a critical early step.

We have developed a sentence splitter called FASST-E (very Fast, very Accurate Sentence Splitter for
Text–English) that relies on neither part-of-speech tagging nor parsing, enabling a processing speed of
1000+ sentences per second, yet is still able to execute with an error rate of less than 0.1%. FASST-E
is responsible for two major tasks that contribute to the final linguistic quality of the summary. The
first is, of course, the sentence splitting itself. The effort here is to ensure that all splits are made
where they belong (not as simple a task as it may seem) in order to avoid both run-on sentences and
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sentence fragments. Run-On sentences generally cause sentences that would never be selected for a
summary to be included, thereby weakening the content of the summary. Sentence fragments impact the
readability, grammaticality, and continuity of the summary. The second task is to eliminate boilerplate,
such as datelines, which can occur in sentences. A selected sentence which contains boilerplate has
an even more negative impact on the readability, grammaticality, and continuity of the summary than
sentence fragments.

The formal mathematical descriptions of our linguistic features are:

1. Number of Sentences: We use − log2(number of sentences). Since TAC summaries are
constrained by a word limit, it is unlikely there will be too many sentences, but we have seen
summaries comprised of just one long sentence.

2. Redundancy Score 1: Let σ1, . . . , σn denote the singular values of the term-overlap matrix X ,
where σi ≥ σi+1. The term-overlap matrix X is simply (A > 0)′ ∗ (A > 0), where A is the
term-sentence matrix and A > 0 denotes a logical matrix of zeros and ones. The (i, j)-entries
in the term-overlap matrix are the number of terms in common in sentence i and sentence j.
Redundancy score 1 is then defined as

∑n
i=2 σi

2, or the sum of the squares of all but the first
singular value.

3. Redundancy Score 2: This is similar to the previous score; this score is calculated as
∑n

i=3 σi
2.

These two redundancy scores were included to penalize summaries whose sentences overlapped
too much. In the extreme case where all sentences contain the same words (in possibly different
arrangements), the score would be 0.

4. Term Entropy (Redundancy Score 3): Term entropy is the sample entropy of the vector of counts
of term occurrences. This is calculated from the original term-sentence matrix (with zero columns
removed) by dividing the column sums by the sum of all the matrix entries. Call this vector p.
Then the term entropy is −

∑
i pi log2 pi.

5. Sentence Entropy (Sentence Length Uniformity): Sentence entropy is calculated the same way
as term entropy, using row sums instead of column sums. It is the sample entropy of the vector of
sentence lengths. The sentence length uniformity is designed to penalize systems whose sentence
lengths vary greatly. A simple example of non-uniformity of sentence length where the quality
of a summary is affected was studied in [5], where it was shown that systems that use truncated
sentences to end a summary have significantly lower scores than those that do not. In addition,
Conroy et al. [19] demonstrated that this feature was more generally a useful predictor of a
summary’s quality.

6. Term Overlap (Flow Score 1): Our first term overlap feature is computed from the term-overlap
matrix, defined above in the description of Redundancy Score 1. We define the term-overlap score
as the sum of the super-diagonal of this matrix, or the sum of the (i, i+1)-entries. The score is then
the logarithm of the sum of the number of terms overlapping in each pair of adjacent sentences
plus 1. We have observed that some term overlap between adjacent sentences improves readability.
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7. Normalized Term Overlap (Flow Score 2): The second term overlap feature is also the sum of
the entries along the super-diagonal, but this time the term-overlap matrix has been symmetrically
normalized first, i.e., each Xij has been replaced by

Xij

σ
(√

Xii

)
σ
(√

Xjj

)
where σ(0) = 1 and σ(x) = x for x 6= 0.

4.2. Content Features

Based on the outcome of AESOP 2010, it seemed that word bigrams produced the best results in
predicting the content measure of a summary. In particular, ROUGE-2 was most highly correlated with
the pyramid score. As such, we focused on variations of bigram scores for content measure. In all, we
investigated six variations of bigrams, the first two of which were ROUGE.

1. ROUGE-2, (R2) the consecutive bigram score.
Let Rn(X) be the ROUGE score for matching n-grams of a summary X with h human summaries
denoted M (j), j = 1, ..., h. Then

Rn(X) = max
j

∑
i∈Nn

min(Xn(i),M
(j)
n (i))∑

i∈Nn
M

(j)
n (i)

where Nn is the set of n−grams present in the summary being scored, Xn(i) is the frequency of
the n-gram i in the summary and M (j)

n (i) is its frequency in the j-th human-generated summary.
2. ROUGE-SU4, (SU4) the bigram score that allows for a skip distance of up to 4 words.
3. Bigram coverage score (Coverage). This score is similar to ROUGE-2 but does not account for the

frequency that the bigram occurs in either the human summaries or in the summary to be scored.
A credit of i

n
for a bigram is given if i out of n human summaries contain that bigram.

4. Unnormalized ROUGE-2 (Bigram). The score is essentially ROUGE-2 without the normalization
for the length of the summaries.

5. Bigram coverage, as measured by a point to point comparison (Coverage P2P). This score is similar
to the third score. However, it is computed by comparing the candidate summary to each human
summary individually, as opposed to comparing it with the collection of human summaries.

6. Unnormalized ROUGE-2 as measured by a point to point comparison (Bigram P2P). This score is
a point to point version of score 4.

5. Feature Selection and Regression Techniques

For the TAC AESOP task, we submitted four sets of predictions to each of the four different subtasks,
for a total of sixteen. Each submission was based on a supervised learning algorithm performed on its
own subset of features. We limited our focus here to two variations of linear regression (non-negative
least squares and robust regression), and also canonical correlation, an eigenvalue method, but would
like to explore other methods in the future. In particular, we chose to start with the current methods due
to their ease of of application and interpretability.
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In order to predict the quality of an individual summary, we took advantage of previous years’ data in
an interesting way. We had 13 predictors, arising from the seven linguistic features and six ROUGE-like
content features. For each submission, our goal was to create a model using some subset of these
features. We tested every possible combination of these 13 features. For each of the 213−1 combinations,
we fit three models to the data. Since our ultimate goal was to predict the quality of the 2011 summaries,
we trained each of these three models on the 2009 TAC data and predicted the quality of summaries
in the 2010 data. For each of the three different regression methods (described below), we used the
combination of features that was best able to predict the 2010 summary quality as our feature set for
predicting 2011. This gave us three sets of features, each one tailored to a particular regression method.
We then used each of the three combinations of features, together with its method, to train a model on
the TAC 2010 summaries. This gave us the coefficients to use for predicting the quality of the TAC 2011
summaries. The values of the coefficients are given in Tables 2 and 3 for each of our sixteen submissions.

Table 2. Features used when predicting scores of both human and machine summaries.

Pyramid(8) Responsiveness (25) Readability(23) Responsiveness(6)

canon canon canon canon robust robust nonneg nonneg
Feature A B A B A B A B

R2 4.8e + 1 2.4e + 1, 5.3e + 1 4.8e + 1 4.7e + 1, 8.5e + 1 4.5e + 1 6.5e + 0, -7.1e + 0
SU4 3.7e + 1 3.9e + 1, 5.4e + 1 3.7e + 1 4.0e + 1 -6.9e + 0, 2.0e + 1 2.3e + 1

Coverage 3.6e - 1 -3.9e - 1, -1.6e + 0 3.6e - 1 -2.4e - 1, -1.3e + 0 2.7e - 1 4.3e - 1, -2.0e - 1 1.2e - 1 7.4e - 2, 2.3e - 2
Bigrams -4.0e - 1 -4.0e - 1 -3.6e - 1 5.9e - 3, 3.5e - 3

Bigrams P2P 5.9e - 1 5.9e - 1 3.0e + 0
Coverage P2P -7.2e - 1 -7.2e - 1 -3.2e + 0

log2(1+Term Overlap) 8.9e - 2 1.9e - 1 8.9e - 2 9.3e - 2 2.9e - 2 0.0e + 0
Norm Term Overlap -6.6e - 1 -1.0e + 0 -6.6e - 1 7.6e - 2

Redundant 1 -2.2e - 4 -3.0e - 5
Redundant 2 -2.0e - 4 6.7e - 4
Term Entropy 1.0e - 1 -5.3e - 2 -5.3e - 2 2.2e - 1

-log2(sent length) 1.2e + 0 1.2e + 0 -2.2e - 3 4.4e - 1
Neg Sent Entropy -9.6e - 1 -9.6e - 1 1.6e - 1 -3.8e -1

For each subset of the covariates, we used three different methods of regression
(canonical correlation, robust least squares, and non-negative least squares) to fit a predictive model.
What follows are short descriptions of these methods. The input data in each case is an n × 13 matrix
A, consisting of columns of predictors, and an n × 3 matrix B, consisting of columns b1, b2 and b3 of
the three human scores given to the summaries (overall responsiveness, pyramid score, and linguistic
quality score). If we used standard linear regression (ordinary least squares), we would be looking to
find x such that ||Ax − bi|| is minimized (where bi is the particular column of human metrics we are
trying to predict). Each of the three methods uses a variation on this theme.

Robust Least Squares (robust): This method is finding x such that ||w(Ax − bi)|| is minimized,
wherew is a function that increases the weight of certain observations and decreases the weight of others.
Here the function w is applied component-wise to the vector Ax− bi. We used Matlab’s robustfit,
which follows an iterative re-weighting procedure. Its default weighting function, “bisquare”, and default
tuning constant, 4.685, were also used. “Bisquare” is defined as w = (|r| < 1)(1 − r2)2, where each
operation is done component-wise.
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Table 3. Features used when only predicting scores of machine summaries.

Pyramid(8) Responsiveness (25) Readability(23) Responsiveness(6)
robust robust robust canon robust robust nonneg nonneg

Feature A B A B A B A B

R2 1.2e + 1 2.1e + 1, 2.0e + 0 -8.9e + 1, -1.3e + 2 2.9e + 0, 0.0e + 0
SU4 3.4e + 1, 4.2e + 1 2.2e + 1 9.0e + 1, 1.0e + 2 2.2e + 1 2.0e + 1

Coverage
Bigrams 3.0e - 1, 4.0e - 1 9.6e - 3, 5.1e - 3

Bigrams P2P -5.7e - 1 8.7e + 0, -1.4e + 0 2.8e + 0, -5.1e - 1
Coverage P2P 7.3e - 1 -2.9e - 1, -5.1e - 1 -8.6e + 0, 6.8e - 1 -2.4e + 0, 4.8e - 1

log2(1+Term Overlap) 2.7e - 1 9.3e - 2 1.4e - 1 1.0e - 1
Norm Term Overlap -1.2e + 0 -7.4e - 1

Redundant 1 4.6e - 5 -1.5e - 4
Redundant 2 5.4e - 4 3.2e - 4 6.0e - 4
Term Entropy -1.5e - 2 -1.0e - 1 -1.9e - 1 8.7e - 2

-log2(sent length) 1.8e + 0 5.2e - 1 6.7e - 2 1.1e - 2
Neg Sent Entropy -2.0e + 0 -4.6e - 1 8.4e - 2

Each of the columns in Tables 2 and 3 describe one of our sixteen submitted sets of predictions. The numbers in the table are the coefficients used in the
model named at the top of the column. In the B columns, the first six rows have two values. The first value is the coefficient for that feature in the A set and
the second value is for the B set.

The value r in the weight functions is r = resid
tune·s

√
1−h

, where resid is the vector of residuals from the
previous iteration, tune is a tuning constant that is divided into the residual vector before computing
weights, h is the vector of leverage values from a least-squares fit, and s is an estimate of the standard
deviation of the error term given by s = MAD

0.6745
. Here MAD is the median absolute deviation of

the residuals from their median. The constant 0.6745 makes the estimate unbiased for the normal
distribution. If there are p columns inA, the smallest p absolute deviations are excluded when computing
the median.

Non-Negative Least Squares (nonneg): This is essentially ordinary least squares, since we are trying
to minimize ||Ax − bi||, but the variation here is that x is restricted to having non-negative entries. In
order to avoid having features ignored, we first multiply all feature columns by ±1 to ensure each is
positively correlated with the response vector. We used Matlab’s lsqnonneg, which also uses an
iterative procedure. The procedure starts with a set of possible basis vectors and computes the associated
dual vector λ. It then selects the basis vector corresponding to the maximum value in λ and swaps out
that vector in exchange for another possible candidate. This continues until λ ≤ 0, at which point a
solution is reached.

Canonical Correlation (canon): This method seeks a linear combination of the columns of A that
has maximum correlation with a linear combination of the columns of B. As in [20], we can form the
covariance matrix Σ of the matrix (A,B) and partition it as follows:

Σ =

(
ΣAA ΣAB

ΣBA ΣBB

)
where ΣAB = Σ′BA. Then, ρ2, the squared correlation between A and B, is defined to be the maximum
squared correlation between arbitrary linear combinations of the columns of A and B, say v′A and w′B.
This is given by:

ρ2 =
(cov[v′A,w′B])2

var[v′A] var[w′B]
=

(v′ΣABw)2

(v′ΣAAv)(w′ΣBBw)
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The maximum of ρ2 in this case is known to be ρ2
1, the largest eigenvalue of

Σ−1
AAΣABΣ−1

BBΣBA or Σ−1
BBΣBAΣ−1

AAΣAB

The maximum occurs when v is the eigenvector of

Σ−1
AAΣABΣ−1

BBΣBA

corresponding to ρ2
1, and w is the eigenvector of

Σ−1
BBΣBAΣ−1

AAΣAB

corresponding to ρ2
1. The positive square root

√
ρ2

1 is called the first canonical correlation between A
and B.

Once we determine which subset of features has the highest possible correlation with a linear
combination of the human metrics, we select that subset for evaluation on the test data.

6. Results

To understand the results from the Text Analysis Conference, one more task subdivision needs to
be mentioned. For both the update summaries and the initial summaries, participants submit up to
four sets of score predictions (for a total of eight). However, the number is actually sixteen, since
participants train each of the eight models twice. The first iteration of each is when participants are trying
to predict only the scores of machine-generated summaries (called the “no models” subtask). In the
second, participants train one model to simultaneously predict the scores of both human summaries and
machine summaries (called the “all peers” subtask). Figure 1, presented in Section 1, demonstrates why
this second iteration exists. When predicting only the machine summaries, the best-fit line for ROUGE-2
and ROUGE-SU4 goes through most of the data, but does not correctly fit the human summaries. This
situation improves significantly for several of our systems and is shown in Figure 6 with System 25
(our canonical correlation model aimed at predicting responsiveness). System 25 shrinks the gap for
initial summaries and almost eliminates it for update summaries.

Figures 2, 3 and 7 give the Pearson correlation against overall responsiveness, pyramid scoring, and
readability for the 2011 update summary tasks for the top 14 performing AESOP submissions (out of 25
total evaluation metrics). Our metrics are usually stronger for the update tasks, but in general, all of our
submissions were among the top performers. We note that as indicated by the error bars, many of the
best performing systems, including a number of our metrics, significantly outperformed the baselines of
the three ROUGE methods in the “all peers” task. On the other hand, while ROUGE is not the best for
the no models data, it is always within the 95% confidence interval of the best metric.
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Figure 6. The performance of our System 25 at TAC 2011.

The two left-hand plots are ROUGE-2 and ROUGE-SU4, two of the standard baseline evaluation systems. The
right-hand plots show our System 25, a canonical correlation model aimed at predicting overall responsiveness.
The regression line in each plot only goes as far as the lowest-scoring human summary. System 25 closes the gap
quite well for update summaries and is also a significant improvement for initial summaries.
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Figure 7. Pearson correlation with responsiveness top 14 AESOP metrics all peers and no
models (2011).

Systems 1–3 are the baseline evaluation systems (see Results section). Our systems are numbers 6, 8, 23 and 25.
Systems 12 (AutoSummENG) and 18 (MeMoG) are due to Giannakopoulos et al. [8]. System 4 is VERT-F, due
to Oliveira et al. The vertical bar shown for each system is a 95% confidence interval for its Pearson correlation
with the human metric listed at the top of the figure.
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For the update summaries (Figures 7, 2 and 3), there was no clear winner among our systems. Each
of our four submissions was at least once our best system. System 6 (non-negative least squares model
aimed at predicting responsiveness) seems to be our best for predicting the quality of machine summaries
alone, and was the overall best in predicting responsiveness and pyramid for that subset. However,
system 6 was twice our worst for evaluating the humans and machines together. Oliveira’s system
4 (VERT-F) was the best at predicting readability in the tasks with and without human summaries,
and Giannakopoulos’ system 18 did the best at predicting responsiveness when the humans were
included. Perhaps most impressively, all four of our systems (6, 8, 23 and 25) were among the top six
performers (out of 25) for predicting any of the three metrics with human summaries included (i.e., the
“all peers” task).

In order to further validate our results, we applied our sixteen tuned models to the TAC 2008
summarization data. Of our TAC 2008–2011 data, 2008 is the only other year (besides 2011) that our
models did not use for training. The limitation of the 2008 data is that AESOP was not run that year, so
the only systems we can compare to are the ROUGE variations. Figures 4, 8 and 9 show the results of
these comparisons. As with 2011, our methods always outperform ROUGE in the “all peers” task, and in
several cases, the differences are statistically significant. The results from the “no models” task are also
similar to 2011, with our methods generally performing better than ROUGE, but not significantly so.

Figure 8. Pearson correlation with pyramid all peers and no models (2008).
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Figure 8. Cont.

Systems 1 and 2 are the baseline evaluation systems (ROUGE-2 and ROUGE-SU4, respectively). Our systems are numbers
6, 8, 23 and 25. The vertical bar shown for each system is a 95% confidence interval for its Pearson correlation with the
human metric listed at the top of the figure.

Figure 9. Pearson correlation with readability all peers and no models (2008).
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Figure 9. Cont.

Systems 1 and 2 are the baseline evaluation systems (ROUGE-2 and ROUGE-SU4, respectively). Our systems
are numbers 6, 8, 23 and 25. The vertical bar shown for each system is a 95% confidence interval for its Pearson
correlation with the human metric listed at the top of the figure.

Baselines: Systems 1–3 are the baseline metrics and are all variants of ROUGE. In particular:

1. Baseline 1: ROUGE-2, with stemming and keeping stop words.
2. Baseline 2: ROUGE-SU4, with stemming and keeping stop words.
3. Baseline 3: Basic Elements (BE). Summaries were parsed with Minipar, and BEs were extracted

and matched using the Head-Modifier criterion.

7. Conclusions and Future Work

We have demonstrated a family of metrics for estimating the quality of a text summary. The metrics
are built from features which were chosen based on their correlation with human metrics. Our metrics
have consistently performed very well at the Text Analysis Conference, with all four ending up in the
top six or seven systems for several tasks. In particular, many of our metrics did significantly better than
ROUGE in each of the “all peers” tasks (in 2008 and 2011).

At the recent 2011 INEX workshop, Tavernier and Bellot [21] reported the use of linguistic measures
for the Tweet summarization task and found significant correlation with human judgment. In the future,
such measures should be investigated as possible features for AESOP evaluation of linguistic quality. In
addition, there are many other features we would like to consider for future use in AESOP, including the
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number of anaphora and other referential objects in a sentence. Also, many of our current features could
potentially be improved with normalization and other minor adjustments.

Another avenue for future work is to optimize our models for Spearman or Kendall correlation. One
way we have considered doing this is by employing a learning-to-rank method, possibly as a support
vector machine.
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