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Abstract:

 In this paper we present the PHOCS-2 algorithm, which extracts a “Predicted Hierarchy Of ClassifierS”. The extracted hierarchy helps us to enhance performance of flat classification. Nodes in the hierarchy contain classifiers. Each intermediate node corresponds to a set of classes and each leaf node corresponds to a single class. In the PHOCS-2 we make estimation for each node and achieve more precise computation of false positives, true positives and false negatives. Stopping criteria are based on the results of the flat classification. The proposed algorithm is validated against nine datasets.
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1. Introduction

The notion of classification is very general. It can be used in many applications, for example, text mining, multimedia processing, medical or biological sciences, etc. The goal of text classification is to assign an electronic document to one or more categories based on its contents.

The traditional single-label classification is concerned with a set of documents associated with a single label (class) from a set of disjoint labels. For multi-label classification, the problem arises as each document can have more than one label [1,2].

In some classification problems, labels are associated with a hierarchical structure, in which case the task belongs to hierarchical classification. If each document may correspond to more than one node of the hierarchy, then we deal with multi-label hierarchical classification. In this case, we can use both hierarchical and flat classification algorithms. In hierarchical classification, a hierarchy of classifiers can be built using a hierarchy of labels. If labels do not have a hierarchical structure, we can extract a hierarchy of labels from a dataset. It can help us to enhance classification performance.

However, there are some general issues in the area of hierarchical classification:


	In some cases classification performance cannot be enhanced using a hierarchy of labels. Some authors [3] showed that flat classification outperforms a hierarchical one in case of a large number of labels. So one should always compare a hierarchy with the flat case as a base line at each step of the hierarchy extraction.


	A hierarchy is built using some assumptions and estimations. One needs to make more accurate estimations in order not to let performance decrease due to rough computations. In hierarchical classification, a small mistake made by the top level of classifiers greatly affects the performance of the whole classification.


	Algorithms of extracting hierarchies require some external parameters. One needs to reach balance between the number of parameters and the effectiveness of an algorithm. Eventually, a smaller number of parameters leads to more simple usage.




In the previous work [4] we proposed and benchmarked the PHOCS algorithm that extracts a hierarchy of labels, and we showed that hierarchical classification could be better than a flat one. The main contribution of this work is enhancing the PHOCS algorithm.

We pursue the goal to increase performance of hierarchical classification using hierarchies built by the PHOCS algorithm. We want to reach this goal by solving the problems listed above. We make the estimation function more precise. We make estimation of false positives, true positives and false negatives and then calculate relative measures. We change stopping criteria as well. In the first version of the PHOCS, we used an external parameter that made the depth of our predicted hierarchy no more than five. We removed this parameter, and as stopping criteria, we now use a comparison of our estimated performance with the flat classification results.



2. State of the Art

In text classification, most of the studies deal with flat classification, when it is assumed that there are no relationships between the categories. There are two basic hierarchical classification methods, namely, the big-bang approach and the top-down level-based approach [5].

In the big-bang approach, a document is assigned to a class in one single step, whereas in the top-down level-based approach, classification is performed with the classifiers built at each level of a hierarchy.

In the top-down level-based approach, a classification problem is decomposed into a set of smaller problems corresponding to hierarchical splits in a tree. First, classes are distinguished at the top level, and then the lower level distinctions are determined only within the subclasses at the appropriate top-level class. Each of these sub-problems can be solved much more accurately as well [6,7]. Moreover, a greater accuracy is achievable because classifiers can identify and ignore commonalities between the subtopics of a specific class, and concentrate on those features that distinguish them [8]. This approach is used by most hierarchical classification methods due to its simplicity [5,6,9,10,11]. They utilize the known hierarchical (taxonomy) structure built by experts.

One of the obvious problems with the top-down approach is that misclassification at a higher level of a hierarchy may force a document to be wrongly routed before it gets classified at a lower level. Another problem is that sometimes there is no predefined hierarchy and one has first to build it. It is usually built from data or from data labels. We address the latter problem, which seems to us not that computationally complex, since the number of labels is usually less than the number of data attributes.

In our research, we follow the top-down level based approach utilizing a hierarchical topic structure to break down the problem of classification into a sequence of simpler problems.

There are approaches implying linear discriminant projection of categories to create hierarchies based on their similarities: [12,13]. They show that classification performance gets better as compared with a flat case. There is a range of methods aimed to reduce the complexity of training flat classifiers. Usually they partition data into two parts and create a two-level hierarchy, e.g., [14].

The HOMER method [15] constructs a Hierarchy Of Multi-label classifiERs, each one dealing with a much smaller set of labels with respect to [image: there is no content] and with a more balanced example distribution. This leads to an improved estimated performance along with linear training and logarithmic testing complexities with respect to [image: there is no content]. At the first step, the HOMER automatically organizes labels into a tree-shaped hierarchy. This is accomplished by recursively partitioning a set of labels into a number of nodes using the balance clustering algorithm. Then it builds one multi-label classifier at each node apart from the leaves.

In the PHOCS, we use the same concept of hierarchy and meta-labels. Tsoumakas et al. [16] also introduce the RAkEL classifier (RAndom k labELsets, k is a parameter specifying the size of labelsets) that outperforms some well-known multi-label classifiers.

In the recent work [17], the authors used datasets with predefined hierarchies and tried to guess them, but did not construct a hierarchy that could be good for classification. Generally, this is a more challenging task than a standard hierarchical multi-label classification, when classifiers are based on a known class hierarchy. In our research, we pursue a similar objective.

In 2011 the second Pascal challenge on large-scale classification was held. Wang et al. [3] got the first place in two of the three benchmarks. They enhanced the flat kNN method and outperformed hierarchical classification. They used an interesting method of building a hierarchy as well, which employs only existing labels without the use of any meta-labels. The performance was lower than in the flat case. There are two specific issues when building a taxonomy in a such way. For example, Reuters-21578 already has meta-labels that generalize other labels. They are not used in the classification. Some datasets do not have such meta-labels or any structure of labels. Another issue is that two very similar labels, associated with two contiguous categories, should be on one layer. However, in such way of building hierarchy the may be put in a parent-child relation. To solve the mentioned issues, we will build a hierarchy using meta-labels.



3. Multi-Label Hierarchical Classification


3.1. General Concept

The main idea is transformation of a multi-label classification task with a large set of labels L into a tree-shaped hierarchy of simpler multi-label classification tasks, each one dealing with a small number k of labels: [image: there is no content] (sometimes [image: there is no content]. Below follows the explanation of the general concept of the multi-label hierarchical classification [4].

Each node n of this tree contains a set of labels [image: there is no content]. Figure 1 shows 6 leaves and 3 internal nodes. There are [image: there is no content] leaves, each containing a singleton (a single element set) [image: there is no content] with a different label j of L. Each internal node n contains a union of labelsets of its children: [image: there is no content]=∪Lc,c∈children(n). The root accommodates all the labels: [image: there is no content].

Figure 1. Hierarchical multi-label classification work flow.
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Meta-label [image: there is no content] of node n is defined as conjunction of the labels associated with that node: [image: there is no content]=∪λj,λj∈[image: there is no content]. Meta-labels have the following semantics: a document is considered annotated with the meta-label [image: there is no content] if it is annotated with at least one of the labels in [image: there is no content]. Each internal node n of a hierarchy also accommodates a multi-label classifier [image: there is no content]. The task of [image: there is no content] is to predict one or more meta-labels of its children. Therefore, the set of labels for [image: there is no content] is Mn={[image: there is no content],c∈children(n)}.

Figure 1 shows a sample hierarchy produced for a multi-label classification task with 6 labels.



For multi-label classification of a new document, the classifier starts with [image: there is no content] and then forwards it to the multi-label classifier [image: there is no content] of the child node c only if [image: there is no content] is among the predictions of [image: there is no content]. The main issue in building hierarchies is how to distribute the labels of [image: there is no content] among the k children. One can distribute k subsets in such a way that the labels belonging to the same subset remain similar. In [15], the number k of labels is a set given for each [image: there is no content].



3.2. Building One Layer: Example

In this work, we solve the problem of distribution of labels [image: there is no content] among children nodes by choosing the best value of k at each node according to the estimation of the hierarchy performance. We use the divide-and-conquer paradigm for our algorithm design [15]. Our algorithm starts from the whole set of labels and its goal is to build a hierarchy of labels optimizing classification performance. In each step, we divide the current set of labels into groups that correspond to the child nodes of that set. Our algorithm is recursive and proceeds until the current set contains only one label. Such sets will be leaves of the hierarchy.

Illustration of one step of our algorithm can be found in Figure 2. It will proceed in the following way.

Figure 2. Example: building one layer.
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	We have 6 labels.


	We cluster labels with different k, which results in 3 different partitions ([image: there is no content]).


	We estimate which partition is the best for the classification using the performance estimation function (chapter 4). In this example we use partition number 2 (Figure 3).

Figure 3. Example of partitions.
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	We use the partition selected at the previous step and go to step 2 to process {[image: there is no content]} (Figure 4). There is no need to make clustering for {[image: there is no content]} and {[image: there is no content]} since their partitioning is obvious.

Figure 4. Different ways of splitting the labels.
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3.3. Algorithm For Building Hierarchies

Our algorithm is recursive (Algorithm 1). It takes a training dataset as an input, and the minimum and maximum numbers of clusters [image: there is no content] and [image: there is no content]. It starts from the whole set of labels, makes K-means clustering of them for a different number of clusters from [image: there is no content] to [image: there is no content] (line 4). We cluster labels using documents as binary features for clustering. If a label is associated with a document, then a corresponding feature value is 1, otherwise 0. Feature space size equals N, where N is the number of documents. We compose meta-labels from clusters for each partition (line 5) and measure their efficiency using a classification task (line 6).

All sets of clusters are candidates for the next layer of the hierarchy. We choose the best partition with the help of an estimation algorithm (line 8). Using the best-estimated partition, we build meta-labels (each meta-label consists of classes from one cluster, line 10). After that, we make this process recursive for the child meta-labels.



3.4. Algorithm Complexity

Let [image: there is no content] equals 2. Denote N as the number of documents. Denote M as the number of attributes. Denote [image: there is no content] as the number of labels. Consider the computational complexity of the first step of the algorithm. Each clustering has complexity [image: there is no content] (Algorithm 1). We will also train O([image: there is no content]) binary classifiers for one clustering (line 6 in Algorithm 1), the complexity of training one classifier is [image: there is no content]. So the complexity of cycle (lines 3–7 in Algorithm 1) has complexity O([image: there is no content]·M·N·|L|+kmax2·f(M,N)). The prediction function has the complexity O([image: there is no content]·|L|) for each cluster. For all the clusters it is [image: there is no content] (line 8 in Algorithm 1). So the running time in the root node can be defined as the sum of these quantities: O([image: there is no content]·M·N·|L|+kmax2·f(M,N)+kmax3·|L|).




	
Algorithm 1 The PHOCS algorithm for hierarchy building




	
1:

	
function Hierarchy([image: there is no content])




	
2:

	
 [image: there is no content]




	
3:

	
 for [image: there is no content]do




	
4:

	
  [image: there is no content]




	
5:

	
  [image: there is no content]




	
6:

	
  [image: there is no content]




	
7:

	
 end for




	
8:

	
 [image: there is no content]




	
9:

	
 if [image: there is no content]then




	
10:

	
  [image: there is no content]




	
11:

	
  for [image: there is no content]do




	
12:

	
   [image: there is no content]




	
13:

	
   [image: there is no content]




	
14:

	
  end for




	
15:

	
 end if




	
16:

	
end function




	
17:

	
function PerformanceMeasure([image: there is no content])




	
18:

	
 [image: there is no content]




	
19:

	
 return [image: there is no content]




	
20:

	
end function




	
21:

	
function PerfEstimate([image: there is no content])




	
22:

	
 //Described in Section 4




	
23:

	
end function






Let us consider the computational complexity of building one layer. Suppose each node at this level has N documents, although they are fewer. Since each label of L lies in a single cluster, the total complexity of all clusterings on the layer is O([image: there is no content]·M·N·|L|). Similarly, the complexity of the prediction function for all clusters in all nodes will not exceed [image: there is no content]. Denote the mean number of labels in the document as A, whereas in fact, the number of documents in all nodes at the same level does not exceed [image: there is no content]. If the classifier learning algorithm has linear complexity with respect to the number of documents, the complexity of building all classifiers will not exceed [image: there is no content]. So the running time of building a layer can be defined as the sum of these quantities: O([image: there is no content]·M·N·|L|+kmax3·|L|+kmax2·A·f(M,N)). In most cases it is less than O([image: there is no content]·|L|·f(M,N))=O([image: there is no content]·f(M,N,L)), where [image: there is no content] is complexity of building a multi-label classifier in binary transformation case.

We showed the complexity of building one layer. The number of layers in a good hierarchy does not exceed 5. In our paper we used the decision tree algorithm [image: there is no content] [18]. For [image: there is no content][image: there is no content].




4. Performance Estimation


4.1. General Idea

The goal of the performance estimation function is to estimate classification performance of each partition. With our estimation function, we want to determine which partition is better. We employ a training set for this function. At the same time we need a test set in order to decide which partition is better. We use a part of the training set for this, and the other part remains for training purposes.

We build a classifier for each partition. Each cluster represents one class. We classify the documents and get the performance measure that shows how good a particular partition is. Various measures can be used in our algorithm. The goal of our algorithm is to build a hierarchy with an optimum performance measure. For example, for partition into 2 clusters we get the classification performance measure [image: there is no content] (Figure 5). For partition into 3 clusters the measure is [image: there is no content] and for partition into 4 clusters it is [image: there is no content].

Figure 5. Example: filling in the table.
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We believe that on further layers of the hierarchy, the partition into k clusters will be the same as in the performance table (Figure 5). We also know various features of clusters, such as size, diversity, etc. Therefore, it is possible to explore all possible partitions as well as final hierarchies and to estimate their performance. For example, one may want to make estimation for partition into 3 clusters (Figure 3).

Cluster {[image: there is no content]} has only one class and we assume that its performance is 1. Cluster {[image: there is no content]} has 2 classes and its performance is believed to be similar to the performance from the table, which is [image: there is no content]. Cluster {[image: there is no content]} can be clustered further in 2 different ways (Figure 4). We calculate the number of labels at different levels for the sake of simplicity. So we do not distinguish which labels are in the cluster of size 2: {[image: there is no content]}, {[image: there is no content]} or {[image: there is no content]}. Finally, we have only two different partitions (Figure 4).

We make performance estimation for the first partition based on the table from Figure 5. It is [image: there is no content]. The performance of the second partition cannot be estimated using the referenced table since it contains a sub-hierarchy. We propose a certain approach for doing this.



4.2. Approach

In the previous version of our algorithm (we will refer to it as to PHOCS-1) we made estimation in the following way. We used [image: there is no content]-measure as a performance measure and assumed that the [image: there is no content]-measure becomes smaller layer by layer (as the hierarchy is growing), that is, the [image: there is no content]-measure on layer k is larger than on layer [image: there is no content]. We estimated it at [image: there is no content] level as F1[image: there is no content]*=∏i=1kF1i, where i is the layer number. This estimation is rather rough and it is possible to make it finer. We propose to use absolute values of errors and the structure of nodes as well as more information about clusters—their size and performance values.

We will denote:


	C – cluster size;


	[image: there is no content] – the number of documents in the cluster;


	K – the number of child clusters;


	[image: there is no content] – the average number of labels for documents in the cluster;


	S – the number of possible further partitions for the cluster;


	* index is used for estimated numbers and measures;


	*max index is used for the best estimation for the cluster (among all possible partitions of this cluster);


	*result index is used for estimation of the whole partition (split);


	q index denotes the number of partitions for a particular cluster;


	T index is used for the values of the performance measure in the table that we fill in (like in Figure 5). Each record in the table corresponds to a specific number of child clusters K.




Our goal is to estimate the absolute values of true positives ([image: there is no content]), false negatives ([image: there is no content]) and false positives ([image: there is no content]). Then we have to calculate relative performance measures that can be used for optimizing the hierarchy, such as [image: there is no content]-measure ([image: there is no content]), Precision ([image: there is no content]) or Recall ([image: there is no content]).



The example of estimation process is represented in Figure 6. Assume that we are currently on layer N. On this layer we have already made clustering (Figure 2, step 2) and filled in the performance table (Figure 5). Assume, we are estimating classification performance for one of the partitions {[image: there is no content]} (Figure 3 [image: there is no content] and Figure 6) with two ways of splitting (Figure 4, [image: there is no content]). [image: there is no content], [image: there is no content], and [image: there is no content] are computed in the following way:

Figure 6. Estimating performance for cluster {[image: there is no content]}.
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	[image: there is no content]. The number of true positives will decrease with each next level of the hierarchy. [image: there is no content] will depend on R and we will approximate it with the following function: [image: there is no content]. K equals 3 for [image: there is no content] and 2 for [image: there is no content] (Figure 6, layer [image: there is no content]).


	[image: there is no content]. We know [image: there is no content], [image: there is no content], [image: there is no content]. So, FN[image: there is no content]*=[image: there is no content]·[image: there is no content]−TP[image: there is no content]*.


	[image: there is no content]. The main problem is to estimate [image: there is no content]. Indeed the result of [image: there is no content] should be between [image: there is no content] and [image: there is no content]. We use a rather pessimistic estimation of it: FP[image: there is no content]*=FP·RKT+TP·(1−PKT).




We computed [image: there is no content], [image: there is no content], [image: there is no content] on different layers of our cluster. We believe that a hierarchy should be rather balanced with leaves on the last two layers only. Let us denote the last layer as M. Then there are two groups of leaves: leaves on the last layer ([image: there is no content]) and leaves on the previous layer ([image: there is no content]). [image: there is no content]+[image: there is no content]=C. For example, Figure 6 represents a cluster of size 3. All leaves are on layer [image: there is no content] for the first split. One leaf is on layer [image: there is no content] and two leaves are on layer [image: there is no content] for the second split.



TPq*=[image: there is no content]C·TPM*+[image: there is no content]C·TPM−1*










FNq*=[image: there is no content]C·FNM*+[image: there is no content]C·FNM−1*










FPq*=[image: there is no content]C·FPM*+[image: there is no content]C·FPM−1*








Then we are able to compute relative measures for our cluster:



[image: there is no content]










[image: there is no content]










[image: there is no content]








Therefore, we are able to find the best further partitioning of the cluster. If we maximize [image: there is no content], then the best partitioning of the cluster will be partitioning with the maximal [image: there is no content]. We will use *max with absolute estimations for the best estimated partitioning of our cluster. [image: there is no content].

We take into account the size of clusters in order to compute estimation for the whole partition (split). The more documents there are in a cluster the higher influence they have on the estimation. Estimation is made for each cluster separately. First, we find the best further partitioning of the cluster. Second, we summarize the absolute numbers:



[image: there is no content]










[image: there is no content]










[image: there is no content]








Now we are able to compute the relative measures [image: there is no content],[image: there is no content], and [image: there is no content].

The general idea is to minimize the number of external parameters in our algorithm. [image: there is no content] should always equal 2, and [image: there is no content] is the only external parameter and it should not be greater than the square root of [image: there is no content]. We have changed the stopping criteria of our algorithm. We make comparison with the flat classification result as stopping criteria. If our prediction is worse than the flat case, then we stop further building of the hierarchy (in the previous version we stopped building a hierarchy after several layers).



4.3. Performance Estimation Function

Let us summarize the proposed approach for performance estimation in a sequence of steps. We had completed the following steps before the call of the performance estimation function:


	A certain number of labels is given.


	The labels are clustered. As a result, we have different partitions.


	Classification is done using the clusters for different partitions.


	A table with the performance measures of classification for all clusters is filled in ([image: there is no content], [image: there is no content] and [image: there is no content]). [image: there is no content], [image: there is no content], [image: there is no content] for all clusters are saved.




The input for the performance estimation function is the following:


	Partitions configuration (the number of different partitions, their sizes).


	Clusters configuration ([image: there is no content], [image: there is no content], [image: there is no content] as the result of classification, C, [image: there is no content], [image: there is no content]).


	A table with the measures ([image: there is no content], [image: there is no content] and [image: there is no content]).




Finally, we are able to list all steps of the performance estimation function (denoted as function PerfEstimate in the Algorithm 1):


	For each possible further partitioning of each cluster in each partition:


	(a)

	count the number of leaves on different layers of the predicted taxonomy ([image: there is no content], [image: there is no content])



	(b)

	estimate the number of positives and negatives [image: there is no content], [image: there is no content], [image: there is no content].



	(c)

	estimate relative measures [image: there is no content], [image: there is no content], [image: there is no content].






	For each cluster, estimate the best further partitioning ([image: there is no content]).


	For each partition (for each k), estimate the absolute and relative parameters on the current layer: [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content].


	Choose the best partition based on max[image: there is no content]≤k≤[image: there is no content]F1k*result.




The estimation function returns the best partition and the estimated performance for it.




5. Experiments

All the experiments are performed on multi-label datasets available at [19]. Table 1 exhibits basic statistics, such as the number of examples and labels, along with the statistics that are relevant to the label sets [16].

Table 1. Multi-Label Datasets and Their Statistics.


	Name
	Docs
	Labels
	Bound of labelsets
	Actual labelsets





	Mediamill
	43907
	101
	43907
	6555



	Bibtex
	7395
	159
	7395
	2856



	Medical
	978
	45
	978
	94



	Enron
	1702
	53
	1702
	753



	Yeast
	2417
	14
	2417
	198



	Genbase
	662
	27
	662
	32



	Corel5k
	5000
	374
	5000
	3175



	CAL500
	502
	174
	502
	502



	Scene
	2407
	6
	64
	15








Multi-Label classification problem can be solved in different ways [2]. Problem transformation methods allow converting a multi-label problem to a single-label one. Below is the list of the most frequently used approaches:


	Binary Relevance. One builds a classifier for each label, which will make a decision about this label.


	Label Power-set transformation. One builds a multiclass classifier, where each class corresponds to a set of labels associated with a document.


	One vs. one. One trains a classifier for each pair of labels. The decision is made by voting.






We use Binary Relevance transformation because of the nature of the data (Table 1). The last column shows the number of classes in case of Label Power-set transformation. This transformation can work on Scene, Genbase and Medical. In other datasets, the number of classes will be rather large so the number of training examples for each class will be low and classification performance will be poor as well.

It is also rather hard to build one versus one flat classifier. There will be [image: there is no content] classifiers for Corel5k. It is much easier to use it in a hierarchy, and we plan to do it in our future work.

Each dataset is divided into the training and test parts in the proportion 2 to 1, respectively. There are no any other transformations of the datasets. In particular, there is no attribute selection. The first four datasets are used in all experiments and the last five are used only with the PHOCS-2.

The decision tree algorithm [image: there is no content] [18] is chosen as the basic multi-label classifier. The K-means algorithm is used for clustering and building hierarchies. The micro and macro measures of classification accuracy (precision (P), recall (R) and [image: there is no content]-measure) are used [20].

The parameter values for the PHOCS are chosen as [image: there is no content]=2 and [image: there is no content]=10. Such [image: there is no content] is chosen since the number of labels in our experiments has the order of 100, so the hierarchy contains at least 2 layers.

The experiment results are represented in Table 2.


Table 2. PHOCS experiment results.



	
Dataset name

	
Classifier topology

	
MICRO

	
MACRO




	
F1

	
P

	
R

	
F1

	
P

	
R






	
Mediamill

	
Flat

	
0.54

	
0.66

	
0.45

	
0.10

	
0.24

	
0.08




	
PHOCS v1

	
0.53

	
0.58

	
0.52

	
0.13

	
0.24

	
0.14




	
PHOCS v2

	
0.53

	
0.55

	
0.52

	
0.11

	
0.22

	
0.10




	
Bibtex

	
Flat

	
0.31

	
0.81

	
0.19

	
0.14

	
0.40

	
0.11




	
PHOCS v1

	
0.37

	
0.61

	
0.21

	
0.22

	
0.38

	
0.18




	
PHOCS v2

	
0.39

	
0.65

	
0.28

	
0.22

	
0.44

	
0.18




	
Medical

	
Flat

	
0.80

	
0.85

	
0.75

	
0.26

	
0.32

	
0.25




	
PHOCS v1

	
0.82

	
0.84

	
0.81

	
0.30

	
0.34

	
0.30




	
PHOCS v2

	
0.83

	
0.86

	
0.79

	
0.30

	
0.34

	
0.30




	
Enron

	
Flat

	
0.46

	
0.66

	
0.35

	
0.09

	
0.13

	
0.08




	
PHOCS v1

	
0.50

	
0.62

	
0.42

	
0.10

	
0.15

	
0.09




	
PHOCS v2

	
0.50

	
0.55

	
0.46

	
0.11

	
0.15

	
0.11




	
Yeast

	
Flat

	
0.59

	
0.61

	
0.58

	
0.38

	
0.41

	
0.38




	
PHOCS v2

	
0.59

	
0.59

	
0.60

	
0.39

	
0.39

	
0.39




	
Genbase

	
Flat

	
0.97

	
1.00

	
0.95

	
0.67

	
0.70

	
0.65




	
PHOCS v2

	
0.98

	
1.00

	
0.96

	
0.68

	
0.70

	
0.67




	
Corel5k

	
Flat

	
0.04

	
0.24

	
0.02

	
0.00

	
0.01

	
0.00




	
PHOCS v2

	
0.09

	
0.18

	
0.06

	
0.01

	
0.01

	
0.00




	
CAL500

	
Flat

	
0.37

	
0.50

	
0.30

	
0.10

	
0.13

	
0.10




	
PHOCS v2

	
0.40

	
0.37

	
0.43

	
0.16

	
0.16

	
0.20




	
Scene

	
Flat

	
0.61

	
0.67

	
0.57

	
0.52

	
0.61

	
0.50




	
PHOCS v2

	
0.63

	
0.66

	
0.59

	
0.54

	
0.61

	
0.54









We removed the external parameter, so the PHOCS-2 has only two parameters: [image: there is no content], which should always equal 2, and [image: there is no content], which can be the only external parameter in the ideal case. We got a better [image: there is no content]-measure in comparison with the results from [4] for all four datasets that we used there. In all cases the current version of the algorithm demonstrated the best performance ([image: there is no content]-measure).

The experimental study of the PHOCS-2 performance on nine multi-label datasets justifies its effectiveness. We got significantly better results in five of them compared with the flat case. It was difficult to improve the result of the Genbase, because its performance is already [image: there is no content], and we have not improved the performance in the Mediamill and the Yeast. HOMER [15] was tested only on two datasets. One of them is Mediamill and we can compare results. There is no baseline in [15]. PHOCSv2 outperforms HOMER by [image: there is no content] in [image: there is no content]-measure on Mediamill dataset.



In most cases, our algorithm provides better F1 due to better Recall. We are able to optimize other measures as well. It is useful when one has specific requirements to a classifiers performance.



6. Results and Conclusion

We proposed several enhancements for the PHOCS algorithm that builds hierarchies from flat clusterings in order to enhance classification accuracy. To build a better hierarchy we used absolute values of errors, employed the number and structure of nodes, cluster sizes and individual performance values for each cluster. We changed the stopping criteria as well to compare our hierarchy with a flat one.

The experimental study shows effectiveness of the enhancements. We have removed one of the parameters as well. As a result, it has become easier to use the PHOCS.

Our future work will be related to improving the performance estimation function and adding a possibility to return to a previous layer in case of false prediction. We would like to use or create a classifier that can take advantage of a hierarchy. Another goal is to compare our algorithm with EkNN [3] that has won the second Pascal challenge.
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