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Abstract:

 Image reconstruction is a key component in many medical imaging modalities. The problem of image reconstruction can be viewed as a special inverse problem where the unknown image pixel intensities are estimated from the observed measurements. Since the measurements are usually noise contaminated, statistical reconstruction methods are preferred. In this paper we review some non-negatively constrained simultaneous iterative algorithms for maximum penalized likelihood reconstructions, where all measurements are used to estimate all pixel intensities in each iteration.
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1. Introduction

Image reconstruction in medical imaging, in general, considers estimating pixel intensities or attenuations from measurements obtained from an imaging system. For example, for positron emission tomography (PET), the measurements are obtained according to the procedure summarized below; see [1,2] for more details. A type of radioactive isotope is introduced into the body of a patient and, due to the decay of radioisotope, it emits positrons. Each positron moves in the body for a small distance (usually less than 1 mm) and then interacts with an electron to produce a pair of gamma photons that travel in almost opposite directions. The scanning device in the imaging system can detect each pair of gamma photons with a certain probability and all such detections form the measurements that can appear in a histogram or a list form [3]. It is usually assumed that the detection probabilities are known and they can be pre-computed and stored or computed on-the-fly.

Note that a special feature of measurements is that they are contaminated by noises, which can be a severe problem particularly if each measurement is small in value due to dose safety limit. It is possible that, if the noises are not properly addressed, the reconstructed image can be distorted by excessive noises. For example, for low dose X-ray CT (a type of transmission tomography), the metal streak artifact (e.g., [4]) can be a severe problem for the traditional filtered backprojection method. Statistical iterative reconstruction methods, due to their ability to model the physics and measurements more accurately, are capable to reduce metal streak artifacts [5].

To deal with the noise contamination problem, statistical image reconstruction methods in emission, transmission, X-ray CT, etc. have been developed based on specified probability models for measurements. For example, for single photon emission computed tomography (SPECT), possible options include: weighted least squares (equivalent to variable variance Gaussian) [6], fixed variance Gaussian [7] and Poisson [8] models. These models can also be used for transmission scans. Since accidental coincidences are the main source of background noise in PET, most PET scans are precorrected for accidental coincidences by real-time subtraction of the coincidences in the delayed window [9]. For randoms-precorrected PET scans, possible measurement models are Gaussian, ordinary Poisson and shifted Poisson [9], and all of these are just approximations as the true probability density function (pdf) for the measurements is difficult. Shifted Poisson is also used to model X-ray CT measurements [10].

Different algorithms have been proposed to maximize their corresponding objective functions. For example, for emission tomography, the expectation-maximization (EM) algorithm [8] is designed to maximize the log-likelihood formulated from Poisson distributed measurements, or the iterative space reconstruction algorithm (ISRA) [7] for maximizing the log-likelihood formulated from Gaussian (with fixed variances) distributed measurements. An attractive aspect of both EM and ISRA is that they are very easy to implement and both respect the non-negativity constraint on the reconstructions. However, if the objective function contains a penalty term, which is normally used to smooth the reconstruction, then both EM and ISRA become impractical as they involve, in each iteration, a non-linear system of equations that is tedious to solve exactly due to the large number of unknowns in these equations. Moreover, the penalty function also adds an extra inconvenience when searching for a non-negative solution is desirable.

To simplify notations, both the measurements and the unknown image are lexicographically ordered into vectors. More specifically, we use [image: there is no content] to present the measurement vector and [image: there is no content] to denote the unknown image vector, where superscript T denotes matrix transpose. Note although the notations are unified for different reconstruction problems in this paper, the meaning of these notations, such as x and y, can be different for different imaging modalities. Vectors y and x are related through a system matrix A; see Equation (4) below for some examples. For tomographic reconstruction problems, matrix A is usually assumed known so its estimation is not covered by this paper. Rather, we focus on how to estimate x from the observed y and the known system matrix A. We denote the estimate of x by [image: there is no content].

Statistical reconstruction [image: there is no content] obtained by maximum penalized likelihood (MPL) (also known as maximum a posteriori (MAP)) is defined by



[image: there is no content]=argmaxx≥0Ψ(x)



(1)




where [image: there is no content] is an objective function derived from the probability distribution for measurements and the penalty function. When the [image: there is no content]’s are assumed independent (given x), the penalized likelihood objective function is


[image: there is no content]



(2)




where [image: there is no content] is the log-likelihood function given by


l(x)=∑i=1n[image: there is no content]([image: there is no content](x);[image: there is no content])



(3)




Here [image: there is no content] is the smoothing parameter and [image: there is no content] is the penalty function used to smooth [image: there is no content]. In Equation (3), [image: there is no content] denotes the log-density function for measurement [image: there is no content], and [image: there is no content] is a function of [image: there is no content] (here [image: there is no content] denotes the non-negative orthant of [image: there is no content]) representing the mean measurement of camera bin i. Examples of [image: there is no content] include


[image: there is no content](x)=[image: there is no content](x)+[image: there is no content]emission[image: there is no content]e−[image: there is no content](x)+[image: there is no content]transmission



(4)




where [image: there is no content] with [image: there is no content] being the ith row of matrix A, [image: there is no content] is the known blank scan counts of the ith detector and [image: there is no content] the known mean background counts. Another example is polyenergetic transmission scans (such as X-ray CT) where


[image: there is no content](x)=∑[image: there is no content]M[image: there is no content]e−[image: there is no content][image: there is no content]+[image: there is no content]



(5)




and here [image: there is no content] denotes the attenuation map corresponding to the m-th energy spectrum, x is a vector formed by the [image: there is no content]’s and [image: there is no content] is the blank scan count from energy spectrum m.
In Equation (3) the notation [image: there is no content]([image: there is no content];[image: there is no content]) is used to emphasize that [image: there is no content] is a function of [image: there is no content] and it also involves measurement [image: there is no content]. We can also write this function as [image: there is no content]([image: there is no content]) or [image: there is no content](x) in different contexts when there is no ambiguity. However, the functional properties of [image: there is no content] may change with respect to its different arguments. For example, if assuming [image: there is no content] follows a Poisson distribution for either emission or transmission scans, then



[image: there is no content]([image: there is no content])=−[image: there is no content]+[image: there is no content]log[image: there is no content]



(6)




This is clearly a concave function of [image: there is no content] for both emission and transmission cases. However, for [image: there is no content](x) (treated as a function of x), it may be no longer concave for transmission but still concave for emission scans. Concavity is an important property exploited by the optimization transfer algorithms.
Let [image: there is no content] be an n-vector of all [image: there is no content]. The first term of Equation (2), i.e., [image: there is no content], measures similarity between y and [image: there is no content]. Different probability distributions have been used to model [image: there is no content] even under the same imaging modality. For example, for emission tomography, if assuming the Poisson model for [image: there is no content] (i.e., [image: there is no content]∼Poisson([image: there is no content])) then [image: there is no content] is given by Equation (6), or if considering the weighted least squares then



[image: there is no content]=−([image: there is no content]−[image: there is no content])2/[image: there is no content]



(7)




where [image: there is no content] is the weight. When [image: there is no content]=[image: there is no content] we have the weighted least squares model as suggested in [11]. Another example in emission (or transmission) tomography is the randoms-precorrected PET scan (assume no scattering to simplify). In this context, the observed measurements are [image: there is no content]=[image: there is no content]−[image: there is no content], where [image: there is no content] and [image: there is no content] (both unavailable directly) denotes the number of coincidences of the prompt and delayed windows respectively. Although we can assume [image: there is no content]∼Poisson([image: there is no content]x+[image: there is no content]) and [image: there is no content]∼Poisson([image: there is no content]) and that they are independent, the exact distribution of [image: there is no content] cannot be derived directly (e.g., [9]). An approximate probability model suggested in [9] is the shifted Poisson distribution, namely [image: there is no content]+2[image: there is no content]∼Poisson([image: there is no content]x+2[image: there is no content]), which gives


[image: there is no content]=−([image: there is no content]x+2[image: there is no content])+([image: there is no content]+2[image: there is no content])log([image: there is no content]x+2[image: there is no content])



(8)




or the weighted least squares given by


[image: there is no content]=−([image: there is no content]−[image: there is no content]xi)2/([image: there is no content]x+2[image: there is no content])



(9)




Note that the shifted Poisson approximation matches the first two moments with the true probability model for [image: there is no content]+2[image: there is no content] when both the prompt and delayed measurements are assumed independent and follow Poisson distributions.
In this paper, we present and discuss several important non-negatively constrained penalized likelihood reconstruction algorithms. When designing a reconstruction algorithm in tomographic imaging, one considers the following important issues: (i) the algorithm is computationally efficient, and ideally it involves only forward-projection (e.g., [image: there is no content]) and back-projection (e.g., [image: there is no content]) operations; (ii) the algorithm can be easily applied to different measurement probability models and imaging modalities; (iii) the algorithm can impose the non-negativity constraint; (iv) the algorithm converges fast. Our discussions on the algorithms in this paper will mainly focus on these points.

In tomographic imaging, it is important to produce smoothed reconstructions as severe noise in a reconstruction can cause false diagnoses. Smoothing can generally be achieved by one of the following five practices: (i) early termination of the iterations (e.g., [12]); (ii) MPL reconstructions with an appropriate smoothing parameter (e.g., [13]); (iii) functional representation of the unknown image by a set of smooth basis functions (e.g., [14]); (iv) post smoothing of the reconstruction within each iteration (e.g., [15]) or after all iterations ([16]); and (v) pre-smoothing of the camera data (i.e., sinogram) followed by filter backprojection (FBP) (e.g., [17,18]). We focus on the penalized likelihood approach to smoothing in this paper. In Equation (2), the smoothing parameter h balances two conflicting targets: fidelity of the [image: there is no content]s to the [image: there is no content]s and smoothness of x. Although an appropriate choice of h is important for achieving a reconstruction with balanced fidelity and smoothness, we will not consider how to estimate h in this paper. A penalty function [image: there is no content] is used to smooth or regulate the estimate [image: there is no content]. Usually, [image: there is no content] takes the form of



[image: there is no content]



(10)




where [image: there is no content] represents a neighborhood operation (such as the first or second order difference) on pixel j, and function [image: there is no content] measures the magnitude of [image: there is no content]. A common choice of ρ is the quadratic function: [image: there is no content]. Generally, a quadratic penalty tends to produce images with over-smoothed edges. Possible edge preserving penalties include total variation (TV) (e.g., [19]) Huber [20] and hyperbolic functions (e.g., [21]). Note that [image: there is no content] is convex for all these options.
The optimal choice of the penalty function J and the smoothing parameter h are unsolved problems in image processing and will not be further elaborated in this paper. We emphasize that smoothing by MPL indeed produce visually improved reconstructions over the tradition filtered-backprojection method particularly in dose-limited tomography such as low dose X-ray CT. The edge preserving penalties are extremely useful, such as TV and Huber penalties; see [22,23,24]. However, the MPL reconstructions can have unnatural noise textures very different from the familiar filtered-backprojection method. Its impact on diagnostic tasks is still unknown and this is an active research area; see [25] for examples and discussions.

We adopt the following notations throughout this paper. Let [image: there is no content] be the estimate of x obtained at iteration k of an algorithm. The notation [image: there is no content] indicates the derivative of function b with respect to the variable in the brackets. For example, ∇b([image: there is no content]x) represents the derivative of b with respect to [image: there is no content]x and ∇b(x;[image: there is no content]) the derivative of b with respect to x. We use [image: there is no content] to denote the derivative of b with respect to [image: there is no content], the j-th element of vector x. We also let ∇b([image: there is no content]) and ∇jb([image: there is no content]) represent, respectively, [image: there is no content] and [image: there is no content] evaluated at x=[image: there is no content].

Non-negatively constrained MPL image reconstruction algorithms can be classified into simultaneous and block-iterative (a.k.a. ordered subset (OS)) algorithms. For simultaneous algorithms, all elements in y are used to update x in each iteration, and for block-iterative algorithms, distinct portions of y are used in turn to update x. We discuss in this paper some simultaneous algorithms for non-negatively constrained MPL reconstructions, and the block-iterative algorithms are not included in our discussions. The rest of this paper is arranged as follows. The expectation-maximization algorithm for emission tomography is discussed in Section 2. Section 3 explains the alternating minimization algorithm designed specifically for transmission tomography. Section 4 contains explanations on the optimization transfer algorithms and their applications to tomographic reconstructions. The multiplicative iterative (MI) algorithms for tomographic imaging are provided in Section 5 and the Fisher scoring based Jacobi or Gauss–Seidel over-relaxation algorithms are presented in Section 6. Section 7 explains another Gauss–Seidel method named the iterative coordinate ascent algorithm. Finally, Section 8 includes discussions and remarks about this paper.

In this paper we focus on explaining and summarizing different non-negatively constrained tomographic imaging algorithms. Numerical comparisons of some of these algorithms are available in [26], and therefore will not be given in this paper.



2. EM Algorithm for Maximum Likelihood Reconstruction in Emission Tomography

The expectation-maximization (EM) algorithm [27] is a statistical algorithm for iteratively computing maximum likelihood estimates when data contain random missing values. Here “random” means these missing values do not provide extra information about the parameters we wish to estimate. We first give a brief summary of the EM algorithm below.

Since there exist the missing and the observed (or incomplete) components, we can define the complete data set as a combination of the incomplete and the missing data. Note, however, that our aim is to estimate the unknown parameters by maximizing the log-likelihood of the incomplete data. The rationale for the EM algorithm is that if maximizing the incomplete data likelihood is difficult while maximizing the complete data likelihood is easy, then EM can be used to compute iteratively the maximum of the incomplete data likelihood by maximizing the complete data likelihood in each iteration.

Let [image: there is no content] be the complete data set given by [image: there is no content]=[[image: there is no content],[image: there is no content]], where [image: there is no content] denotes the incomplete data and [image: there is no content] the missing data. Let l[image: there is no content](x) be the log-likelihood based on the complete data [image: there is no content] and [image: there is no content] the log-likelihood of the incomplete data [image: there is no content], where x is a p-vector for the unknown parameters. Let [image: there is no content] be the maximum likelihood (ML) estimate of x. Then iteration [image: there is no content] of the EM algorithm comprises two steps:


	E-Step: Compute the conditional expectation of the complete data log-likelihood given the incomplete data and [image: there is no content], and denote this function by



Q(x;[image: there is no content])=E(l[image: there is no content](x)∣[image: there is no content],[image: there is no content])



(11)





	M-Step: Update the x estimate by maximizing the Q function, namely



[image: there is no content]=argmaxxQ(x;[image: there is no content])



(12)







One major advantage of EM is that it guarantees, under certain regularity conditions, that the incomplete data log-likelihood [image: there is no content] increases in consecutive iterations before convergence. Note that EM requires availability of the Q function in a closed form; otherwise, a Monte-Carlo E-step can be used to replace the E-step [28].
The EM algorithm was first applied to emission tomograph by Shepp and Vardi [8] and Lange and Carson [29]. Both papers adopt the Poisson model for emission counts, namely [image: there is no content] are independent Poisson random variables with mean [image: there is no content]=[image: there is no content]x. This model assumes [image: there is no content]=0; otherwise, we can depict [image: there is no content] as the value after subtracting [image: there is no content] from the bin i measurement. From this Poisson model, we can formulate the complete data as [image: there is no content]={[image: there is no content]:[image: there is no content]=∑j=1p[image: there is no content]}, where [image: there is no content] follows the Poisson distribution with mean μij=[image: there is no content][image: there is no content]. Clearly, each [image: there is no content] represents the unknown portion of measurement on camera bin i attributed to image pixel j. The corresponding complete data log-likelihood is



l[image: there is no content](x)=∑i=1n∑j=1p−μij+[image: there is no content]logμij



(13)




and the corresponding Q function is


Q(x;[image: there is no content])=∑i=1n∑j=1p−μij+yij(k)logμij



(14)




where yij(k)=E([image: there is no content]∣[image: there is no content],[image: there is no content]). Since the conditional distribution of [image: there is no content]∣[image: there is no content] is Binomial([image: there is no content];μij/[image: there is no content]), we have yij(k)=[image: there is no content][image: there is no content][image: there is no content]/∑t=1paitxt(k). Thus after solving ∇jQ(x;[image: there is no content])=0, the M-step of the EM algorithm gives the following updating formula for x:


xj[image: there is no content]=[image: there is no content]∑i=1n[image: there is no content]∑i=1n[image: there is no content][image: there is no content]∑t=1paitxt(k)



(15)




for [image: there is no content]. It has been pointed out in [23,30] that formula (15) can also be explained by the Bayes conditional probability formula. This EM algorithm possesses the following properties making it attractive for emission tomography; they are:

	If the initial [image: there is no content] then [image: there is no content]≥0 for all [image: there is no content]; i.e., it automatically satisfies the non-negativity constraint on x.


	The algorithm is easy to implement as it only involves forward- and back-projections.


	The updating formula in Equation (15) increases the incomplete data log-likelihood: l([image: there is no content])≥l([image: there is no content]), where equality holds only when the iteration has converged.


	[image: there is no content] satisfies ∑i[image: there is no content]=∑i[image: there is no content], where [image: there is no content] is [image: there is no content] with x=[image: there is no content]. Thus the x estimate at any iteration satisfies that the total expected and the total observed counts are equal.




The above EM is easy to implement and possesses some attractive properties on the reconstructions. This algorithm, however, is restricted only to emission tomography with Poisson distributed measurements. It cannot be easily extended to other reconstruction tasks. For example, application of the EM algorithm to transmission tomography does not lead to an exact updating formula due to the fact that its M-step does not produce a closed-form solution; see [29]. Another limitation is that this EM algorithm can only be used for maximum likelihood reconstructions, and its application to the MPL reconstruction will not in general result in closed-form updating formula. To rectify this problem, Green [31] developed a one-step-late (OSL) algorithm for the MPL reconstruction by replacing x in the derivative of the penalty function by its current estimate [image: there is no content], and therefore an “exact” solution can still be accomplished. But this method suffers from the deficiencies that (i) the algorithm may be non-convergent; and (ii) some estimates may be negative.

De Pierro [32] reproduced the EM updating formula using a totally different argument. In his derivation, there is no missing data and hence no E-step. Although the algorithm is named “modified EM”, it is not a real EM. In fact, this algorithm belongs to a more general class called the optimization transfer algorithms, since the Poisson log-likelihood optimization problem is transferred to a simpler optimization in each iteration. We will summarize the optimization transfer algorithms in the Section 4.



3. Alternating Minimization Algorithms for Transmission Tomography

We have explained in Section 2 that the EM algorithm is not directly suitable for transmission scans as its M-step cannot be computed exactly. In this section, we summarize an alternating minimization algorithm designed to solve the transmission tomographic problem, including X-Ray CT. This algorithm is a generalization to the EM algorithm [33] and its application to transmission tomography can be found in [34].

Following [34], we explain this algorithm using the polyenergetic transmission tomography example. In this context, if assuming transmission scans follow Poisson distributions, the corresponding log-likelihood is



l(z)=∑i=1n{[image: there is no content]log[image: there is no content](z)−[image: there is no content](z)}



(16)




where [image: there is no content] is the scan count of detector i and [image: there is no content] (now expressed as a function of vector z, which will be defined below) is given by Equation (5). Moreover, elements of the attenuation map associated with spectrum m, namely elements of [image: there is no content] in Equation (5), are further modeled by


[image: there is no content]



(17)




where j indexes pixels, r represents different types of materials, [image: there is no content] are known linear attenuation coefficients and [image: there is no content] are the unknown partial densities (e.g., [34]) we wish to estimate. In Equation (16), z is a vector of size [image: there is no content] formed by column-wise stacking the vectors [image: there is no content].
Define set



[image: there is no content]={[image: there is no content];i=1,…,nandm=0,1,…,M}



(18)




where


[image: there is no content]=[image: there is no content]e−∑j=1p[image: there is no content]∑r=1a[image: there is no content][image: there is no content]



(19)




for [image: there is no content] and [image: there is no content] equals the background noise [image: there is no content] for [image: there is no content]. Clearly, [image: there is no content] given in Equation (5) can now be expressed as [image: there is no content]=∑[image: there is no content]M[image: there is no content]. Define another set


[image: there is no content]={[image: there is no content]:[image: there is no content]≥0and∑m[image: there is no content]=[image: there is no content];i=1,…,nandm=0,1,…,M}



(20)




In [34, [image: there is no content] is called the exponential family and [image: there is no content] the linear family. Let p and q be the vectors created from [image: there is no content] and [image: there is no content] respectively. It can be shown that the problem of maximizing the log-likelihood Equation (16) can be re-written as


maxzl(z)=minq∈[image: there is no content]minp∈[image: there is no content]{I(p∥q)}



(21)




subject to [image: there is no content]≥0, where I(p∥q) is the I-divergence [35] given by


I(p∥q)=∑i=1n∑[image: there is no content]M[image: there is no content]log[image: there is no content][image: there is no content]−[image: there is no content]+[image: there is no content]



(22)




Thus, maximizing the log-likelihood in Equation (16) can be achieved iteratively. Assuming the estimates [image: there is no content], [image: there is no content] and [image: there is no content] are obtained at iteration k, then iteration [image: there is no content] contains two steps:

	(i)

	compute [image: there is no content] by minimizing I(p∥q(k)) subject to p∈[image: there is no content];



	(ii)

	compute [image: there is no content] by minimizing I([image: there is no content]∥q) subject to q∈[image: there is no content].





Note that the second step is equivalent to minimizing I([image: there is no content]∥q) over [image: there is no content]≥0 with [image: there is no content] being given by the expression in Equation (19).
Minimizing I(p∥q(k)) over p∈[image: there is no content] is easily achieved using the Lagrange multiplier, and the result is



pim[image: there is no content]=qim(k)[image: there is no content]∑m′=0Mqim′(k)



(23)




On the other hand, direct optimization of I([image: there is no content]∥q) over [image: there is no content]≥0 is an unmanageable task as the [image: there is no content]’s are mixed (i.e., not decoupled or separated from each other) within the objective function. One approach to overcome this problem is by using a decoupled objective function representing an upper bound of the original objective function. In fact, it can be shown that for [image: there is no content] given by Equation (19),


I([image: there is no content]∥q)≤∑r=1a∑j=1p∑i=1n∑[image: there is no content]Mpim[image: there is no content][image: there is no content][image: there is no content][image: there is no content]+[image: there is no content][image: there is no content][image: there is no content]1v0ev0(z^rj−[image: there is no content])+termsindependentof[image: there is no content]



(24)




where v0=max(i,m)∑j∑r[image: there is no content][image: there is no content] and [image: there is no content] is an estimate of [image: there is no content] corresponding to the estimate [image: there is no content] of [image: there is no content]. This inequality is obtained from the fact that I([image: there is no content]∥q) is a convex function of [image: there is no content]. Clearly, [image: there is no content] on the right hand side of Equation (24) are decoupled and thus their non-negatively constrained optimizations will result in closed-form solutions. When we take [image: there is no content], the optimal solution to [image: there is no content] is


[image: there is no content]



(25)




where [image: there is no content] and [image: there is no content]. We give some remarks about this algorithm below.
Remarks


	(1)

	This algorithm is designed for maximum likelihood estimation. However, it can be easily extended to MPL where the penalty function must be convex and therefore can also be decoupled.



	(2)

	This algorithm is developed for the likelihood function derived from the simple Poisson measurement noise. Note that the alternating minimization algorithm was also developed for a compound Poisson noise model in [36] and its comparison with the simple Poisson alternating minimization was provided in [37]. For other measurement distributions, however, the corresponding algorithms have to be completely re-developed.



	(3)

	The convergence properties of the alternating maximization algorithm have been studied in [34]. Particularly, it is monotonically convergent under certain conditions.



	(4)

	It will become clear in Section 5 (Example 5.3) that the multiplicative-iterative algorithm can be derived more easily for this transmission reconstruction problem.



	(5)

	The trick of decoupling the objective function using its convex (or concave) property is also the key technique of the optimization transfer algorithms discussed in Section 4.







4. Optimization Transfer Algorithms

Details of the optimization transfer (OT) algorithm (also called the minorization–maximization (MM) algorithm for maximizations) can be found in, for example, [38]. In this section we present this algorithm briefly and explain its application in emission and transmission tomography.

The fundamental idea of the OT algorithm is that it employs a surrogate function to minorize (see the definition below) the objective function [image: there is no content] in each iteration, and then update the parameter estimate by maximizing this surrogate function.

More specifically, a function Φ(x;[image: there is no content]) is said to minorize [image: there is no content] at [image: there is no content] if it satisfies the following “minorization” conditions:


	(i)

	Ψ([image: there is no content])=Φ([image: there is no content];[image: there is no content]), and



	(ii)

	Ψ(x)≥Φ(x;[image: there is no content]) for all x.





Then at iteration [image: there is no content], x is estimated by maximizing Φ(x;[image: there is no content]), i.e.,


[image: there is no content]=argmaxx≥0Φ(x;[image: there is no content])



(26)




If the exact maximum is not easy to obtain, we can find an [image: there is no content] by simply increasing Φ(x;[image: there is no content]), as this will also guarantee that the monotonic condition stated below remains for [image: there is no content].
An attractive property when using this surrogate function is that [image: there is no content] satisfies the monotonic condition, namely



Ψ([image: there is no content])≥Ψ([image: there is no content])



(27)




where equality holds only when the iteration has converged. This monotonic property can be easily verified by the minorization conditions since


Ψ([image: there is no content])=Φ([image: there is no content];[image: there is no content])+Ψ([image: there is no content])−Φ([image: there is no content];[image: there is no content])≥Φ([image: there is no content];[image: there is no content])+Ψ([image: there is no content])−Φ([image: there is no content];[image: there is no content])










=Ψ([image: there is no content])








For implementation of the OT algorithm to medical imaging, a surrogate function Φ(x;[image: there is no content]) must be determined. There exist different ways of choosing the surrogate function, such as those listed in [38]. We mainly consider two approaches in this paper: (i) the method based on the inequality on concave functions (called the concave inequality hereafter); and (ii) the method based on quadratic lower bounds (also known as paraboloidal surrogates [39]). These ideas are summarized below.

Let G(x)=∑i=1n[image: there is no content]([image: there is no content]x) be the objective function we wish to maximize, where [image: there is no content] is the i-th row of matrix [image: there is no content] and x is a p-vector. For matrix A, we assume its elements [image: there is no content] are non-negative and ∑j[image: there is no content]≠0. We also assume that all [image: there is no content] are concave functions. Let [image: there is no content] be weights satisfying [image: there is no content]. Then according to the concave inequality we have



[image: there is no content]([image: there is no content]x)=[image: there is no content]∑j=1p[image: there is no content][image: there is no content][image: there is no content][image: there is no content]≥∑j=1p[image: there is no content][image: there is no content][image: there is no content][image: there is no content][image: there is no content]



(28)




There are different ways of choosing weights [image: there is no content]. For example, we can use [image: there is no content]=[image: there is no content][image: there is no content]/[image: there is no content]x, which is also adopted in [32]. In this case since each [image: there is no content] is a function of x, the surrogate function corresponding to Equation (28) is


Φ(x;[image: there is no content])=∑j=1p∑i=1n[image: there is no content]xj(k)[image: there is no content][image: there is no content][image: there is no content][image: there is no content][image: there is no content][image: there is no content][image: there is no content]



(29)




and it is easy to verify that this surrogate satisfies the minorization conditions. The right hand side of Equation (29) is a weighted summation of functions [image: there is no content], each involving a single [image: there is no content] only (i.e., decoupled), and therefore maximization with respect to x of Φ(x;[image: there is no content]) can be achieved by a sequence of 1-D optimizations. Another trick, due to De Pierro [32], uses the following concave inequality:


[image: there is no content]([image: there is no content]x)=[image: there is no content]∑j=1p[image: there is no content][1[image: there is no content][image: there is no content]([image: there is no content]−xj(k))+[image: there is no content][image: there is no content]]≥∑j=1p[image: there is no content][image: there is no content]1[image: there is no content][image: there is no content]([image: there is no content]−xj(k))+[image: there is no content][image: there is no content]



(30)




If the weights [image: there is no content] do not depend on [image: there is no content], then Equation (30) leads to the surrogate function of


Φ(x;[image: there is no content])=∑j=1p∑i=1n[image: there is no content][image: there is no content][image: there is no content][image: there is no content]([image: there is no content]−xj(k))+[image: there is no content][image: there is no content]



(31)




which clearly also meets the minorization conditions. In Equation (31), the choice of [image: there is no content] is again flexible, and one popular option is to use [image: there is no content]=[image: there is no content]/∑rair.
The above two surrogates are developed based on the concave inequality. Another useful approach is to employ a quadratic lower bound (e.g., [40]). Assume [image: there is no content] is twice differentiable with its second derivative denoted by ∇2[image: there is no content]. Let [image: there is no content] be a number such that [image: there is no content]≤∇2[image: there is no content]([image: there is no content]x) for all [image: there is no content]x>0, then



[image: there is no content]([image: there is no content]x)≥[image: there is no content]([image: there is no content][image: there is no content])+(x−[image: there is no content])TAiT∇[image: there is no content]([image: there is no content][image: there is no content])+12(x−[image: there is no content])TAiT[image: there is no content][image: there is no content](x−[image: there is no content])



(32)




The right hand side of Equation (32) is a parabola surrogate of [image: there is no content] and the condition on [image: there is no content] guarantees that this function lies below [image: there is no content]. Unlike the previous surrogate functions, this surrogate is not separable in x, and therefore its maximization with respect to x cannot be reduced to a series of 1-D problems. To overcome this problem we can find another function surrogating the above parabola surrogate but with separable x. Towards this, we denote the right hand side quadratic function of Equation (32) by [image: there is no content]([image: there is no content]x). Since [image: there is no content] is concave in [image: there is no content]x, we can use either Equations (29) or (31) to find a surrogate to [image: there is no content] and the resulting algorithm is called the separable paraboloidal surrogate (SPS) algorithm [39]. For example, corresponding to Equation (31), a separable parabola surrogate of [image: there is no content] is


Φ(x;[image: there is no content])=∑j=1p∑i=1n[image: there is no content][image: there is no content][image: there is no content][image: there is no content]([image: there is no content]−xj(k))+[image: there is no content][image: there is no content]



(33)




A careful selection of the curvature [image: there is no content] in Equation (32) can lead to fast convergence of the SPS algorithm. Erdoǧan and Fessler [39] derived the optimal curvature for the SPS algorithm in transmission tomography.
Next, we present two examples explaining how to implement the OT algorithm to emission and transmission tomography.

Example 4.1 (OT for emission scans with Poisson noise). 

In this example we explain the application of OT for MPL reconstruction in emission tomography, where measurements are assumed to follow Poisson distributions. De Pierro’s modified EM (MEM) [32] coincides with the method discussed below when [image: there is no content]=0. Firstly, under the Poisson model for emission scans, the penalized log-likelihood function is



Ψ(x)=∑i=1n−([image: there is no content]x+[image: there is no content])+[image: there is no content]log([image: there is no content]x+[image: there is no content])−h∑t=1pρ(Ctx)



(34)




where ρ is assumed a convex function. Let


[image: there is no content]([image: there is no content])=−([image: there is no content]+[image: there is no content])+[image: there is no content]log([image: there is no content]+[image: there is no content])



(35)




where [image: there is no content]=[image: there is no content]x. It is easy to verify that [image: there is no content] is concave with respect to [image: there is no content], so we can use Equation (28) to define its surrogate function. On the other hand, for the penalty function in Equation (34), [image: there is no content] is concave, so we can use Equation (31) to construct its surrogate. Combining them together we have the following surrogate for [image: there is no content]:


Φ(x;[image: there is no content])=∑j=1p∑i=1n[image: there is no content][image: there is no content]ηi(k)[image: there is no content]ηi(k)[image: there is no content][image: there is no content]−h∑t=1pπtjρctjπtj([image: there is no content]−[image: there is no content])+Ct[image: there is no content]



(36)




where [image: there is no content]. Now


∇jΦ(x;[image: there is no content])=∑i=1n[image: there is no content]−1+[image: there is no content][image: there is no content]ηi(k)/[image: there is no content]+[image: there is no content]−h∑t=1pctj∇ρctjπtj([image: there is no content]−[image: there is no content])+Ct[image: there is no content]



(37)




The equation ∇jΦ(x;[image: there is no content])=0 has a closed-form solution for [image: there is no content] when [image: there is no content] and [image: there is no content]=0 for all i. In this context, Equation (37) reduces to a quadratic function so we wish to solve for [image: there is no content] from


h∑t=1pctj2πtjxj2+∑i=1n[image: there is no content]+h∑t=1pctjCt[image: there is no content]−ctj2πtj[image: there is no content][image: there is no content]−[image: there is no content]∑i=1n[image: there is no content][image: there is no content]ηi(k)=0



(38)




subject to [image: there is no content]≥0, and its analytic solution is readily available. If [image: there is no content]≠0 or ρ is not quadratic, the analytic solution to Equation (37) does not exist. In this case, one can use an 1-D optimization method to solve it, or alternatively, one may use a separable parabola surrogate rather than Equation (36). An example of the latter is explained in the next example where the reconstruction problem is for transmission tomography.
Example 4.2 (OT for transmission scans with Poisson noise). 

This example considers the application of OT to MPL reconstruction in transmission tomography. Our explanations follow [39] closely. For transmission scans with Poisson noise, the penalized log-likelihood is given by



Ψ(x)=∑i=1n−([image: there is no content]e−[image: there is no content]x+[image: there is no content])+[image: there is no content]log([image: there is no content]e−[image: there is no content]x+[image: there is no content])−h∑t=1pρ(Ctx)



(39)




where ρ is convex. Let [image: there is no content]=[image: there is no content]x and


[image: there is no content]([image: there is no content])=−([image: there is no content]e−[image: there is no content]+[image: there is no content])+[image: there is no content]log([image: there is no content]e−[image: there is no content]+[image: there is no content])



(40)




Since [image: there is no content]([image: there is no content]) is concave with respect to [image: there is no content], a separable parabola surrogate can be defined according to Equation (33). For the first term of Equation (39) (i.e., the log-likelihood part), a separable parabola is given by


Φ1(x;[image: there is no content])=∑j=1p∑i=1n[image: there is no content][image: there is no content][image: there is no content][image: there is no content]([image: there is no content]−[image: there is no content])+[image: there is no content][image: there is no content]



(41)




where


[image: there is no content]([image: there is no content])=[image: there is no content](ηi(k))+∇[image: there is no content](ηi(k))([image: there is no content]−ηi(k))+12[image: there is no content]([image: there is no content]−ηi(k))2



(42)




and here [image: there is no content] satisfies [image: there is no content]≤∇2[image: there is no content]([image: there is no content]) for all [image: there is no content]≥0. For the second term of Equation (39) (i.e., the penalty part), let [image: there is no content] and let the weights [image: there is no content]. Its separable parabola surrogate is


Φ2(x;[image: there is no content])=∑j=1p∑t=1pξtjwt(k)ctjξtj([image: there is no content]−[image: there is no content])+Ct[image: there is no content]



(43)




where


[image: there is no content]



(44)




Here [image: there is no content] is chosen such that [image: there is no content]≥∇2ρ([image: there is no content]) for all [image: there is no content] in its range; this curvature [image: there is no content] ensures that wt(k)([image: there is no content]) lies above ρ([image: there is no content]). Aggregating Equations (41) and (43) we obtain a separable parabola surrogate for [image: there is no content]:


Φ(x;[image: there is no content])=Φ1(x;[image: there is no content])−hΦ2(x;[image: there is no content])



(45)




We have


∇jΦ(x;[image: there is no content])=∑i=1n[image: there is no content]∇[image: there is no content](ηi(k))+[image: there is no content][image: there is no content][image: there is no content]([image: there is no content]−[image: there is no content])−h∑t=1pctj∇ρ(γt(k))+[image: there is no content]ctjξtj([image: there is no content]−[image: there is no content])



(46)




and for this example


∇[image: there is no content](ηi(k))=[image: there is no content]e−ηi(k)−[image: there is no content][image: there is no content]e−ηi(k)+[image: there is no content]+1



(47)




Let [image: there is no content] and [image: there is no content]. The solution of ∇jΦ(x;[image: there is no content])=0, subject to [image: there is no content]≥0, is given by [image: there is no content] where


x˜j[image: there is no content]=[image: there is no content]−∑i=1n[image: there is no content]∇[image: there is no content](ηi(k))−h∑t=1pctj∇ρ(γt(k))∑i=1n[image: there is no content](ai·[image: there is no content])−h∑t=1pctj(ct·[image: there is no content])



(48)




This is in fact a special gradient algorithm with a diagonal preconditioning matrix.


5. Multiplicative Iterative Algorithms

The OT algorithms presented in the last section have the following important achievements: (1) they manage to transform a high dimensional optimization problem into a series of 1-D optimizations; (2) due to 1-D optimizations, the non-negativity constraints can be easily enforced by simply resetting negative estimates to zero in each iteration; (3) the surrogate given by the separable parabola approach is general enough to be applicable to different tomographic reconstructions. A limitation of OT is that it requires all [image: there is no content](·) (log-density) and [image: there is no content] (negative penalty) to be concave functions.

In this section we discuss a competitive alternative to the OT method called the multiplicative iterative (MI) algorithm; its application to tomographic imaging can be found in [26] and to box-constrained image processing in [41].

The main motivation of the MI algorithm is that it can be easily derived under different imaging modalities and different measurement noise models. Moreover, for some difficult penalties, such as TV, or even non-convex penalties [42], MI can be easily implemented to solve the corresponding optimization problems.

A general MI updating formula can be developed suitable for all tomographic reconstruction problems regardless of the mean function model, measurement probability distribution and penalty function. The simulation study reported in [26] reveals that MI has competitive convergence speed when compared with OT and other reconstruction algorithms. The MI algorithm does not require concavity of the functions [image: there is no content] and [image: there is no content] and therefore is more general than the OT algorithm. It requires existence of the first derivatives of [image: there is no content](·) and [image: there is no content]. It is possible that the objective function [image: there is no content] in Equation (2) has multiple local maxima. In this case, MI finds one of the local non-negative maxima, depending on the starting value of the algorithm.

Here are some notations needed to explain the MI algorithm. For a function [image: there is no content], let [image: there is no content]+ be the positive component of [image: there is no content] and [image: there is no content]− the negative component so that b(z)=[image: there is no content]++[image: there is no content]−. For a number b, Let [image: there is no content] and [image: there is no content] so that [image: there is no content]. Thus, for the numerical value of function [image: there is no content] at point [image: there is no content], we can also write b([image: there is no content])=[b([image: there is no content])]++[b([image: there is no content])]−.

We develop the MI algorithm from the Karush–Kuhn–Tucker (KKT) necessary conditions for the non-negatively constrained optimization of [image: there is no content]. They are:



∇jΨ(x)=0 if [image: there is no content]>0 and



(49)






∇jΨ(x)≤0 if [image: there is no content]=0



(50)




for [image: there is no content]. Therefore, we aim to solve for x from


[image: there is no content]∑i=1n∇[image: there is no content]([image: there is no content])∇j[image: there is no content](x)−h∇jJ(x)=0



(51)




Note that the expression inside the brackets of Equation (51) represents [image: there is no content], and [image: there is no content] is included in Equation (51) to reflect the conditions in Equations (49) and (50).
The key step in developing the MI algorithm is to rearrange Equation (51) such that its positive and negative terms appear on different sides of the Equation (51). Hence we rewrite Equation (51) as



[image: there is no content]−∑i=1n(∇[image: there is no content]([image: there is no content])+∇j[image: there is no content](x)−+∇[image: there is no content]([image: there is no content])−∇j[image: there is no content](x)+)+h[∇jJ(x)]+=[image: there is no content]∑i=1n(∇[image: there is no content]([image: there is no content])+∇j[image: there is no content](x)++∇[image: there is no content]([image: there is no content])−∇j[image: there is no content](x)−)−h[∇jJ(x)]−



(52)




This equation naturally suggests the following fixed point algorithm to update x:


[image: there is no content]



(53)




where [image: there is no content] and [image: there is no content] denote respectively the right and left hand side of Equation (52), namely,


[image: there is no content]=∑i=1n{∇[image: there is no content]([image: there is no content])+∇j[image: there is no content]([image: there is no content])++∇[image: there is no content]([image: there is no content])−∇j[image: there is no content]([image: there is no content])−}−h[∇jJ([image: there is no content])]−



(54)




and


[image: there is no content]=−∑i=1n{∇[image: there is no content]([image: there is no content])+∇j[image: there is no content]([image: there is no content])−+∇[image: there is no content]([image: there is no content])−∇j[image: there is no content]([image: there is no content])+}+h[∇jJ([image: there is no content])]+



(55)




and ϵ is a small positive constant, such as [image: there is no content], used to avoid zero denominate of Equation (53). Note that the ϵ value does not affect where the algorithm converges to. As both numerator and denominator of Equation (53) are positive, [image: there is no content] whenever [image: there is no content].
In Equation (53) the updated [image: there is no content] is denoted by [image: there is no content] indicating this is not the final estimate for iteration [image: there is no content]. In fact, this update does not ensure monotonic increment of [image: there is no content] and a line search step must be included to rectify this problem. We first express Equation (53) as a gradient algorithm:



[image: there is no content]=[image: there is no content]+[image: there is no content]∇jΨ([image: there is no content])



(56)




where [image: there is no content]=sj([image: there is no content]) with sj(x)=[image: there is no content]/(δj2(x)+ϵ). Note that [image: there is no content] when [image: there is no content]. When [image: there is no content] we set [image: there is no content] only if ∇jΨ([image: there is no content])<0 (since [image: there is no content] satisfies the KKT condition in this case); otherwise, we set [image: there is no content]=[image: there is no content]/(δj2([image: there is no content])+ϵ), where [image: there is no content] is another small constant such as [image: there is no content]. Equation (56) explains that [image: there is no content] emanates from [image: there is no content] in the gradient direction of Ψ with a non-negative step size [image: there is no content]. For the line search step, the search direction is d(k)=x(k+1/2)−[image: there is no content] with [image: there is no content] denoting the line search step size. Sine [image: there is no content] guarantees [image: there is no content]≥0, we only search in the fixed range of [image: there is no content]. After including a line search step [image: there is no content] is obtained according to


[image: there is no content]=[image: there is no content]+α(k)d(k)



(57)




Due to the fixed search interval, this line search is remarkably simple. One simple and efficient search strategy is provided by the Armijo’s rule (e.g., [43]). Armijo line search is a finite terminating algorithm. Briefly, it starts with [image: there is no content], and for each α it checks if the following Armijo condition is satisfied:


Ψ([image: there is no content]+αd(k))≤Ψ([image: there is no content])−ξα∇Ψ([image: there is no content])Td(k)



(58)




where [image: there is no content] is a fixed parameter such as ξ=[image: there is no content]. If Equation (58) is true then stop; otherwise, reset [image: there is no content] (such as [image: there is no content]) and reevaluate the Armijo condition (58). Note that the repeated evaluations of Ψ([image: there is no content]+αd(k)) can be made with [image: there is no content] being computed only once. Therefore, the line search step does not add extra major computations to the MI algorithm.
Convergence properties of the MI algorithm are given in [26,41]. Briefly, under certain regular conditions, MI converges monotonically to a local maxima satisfying the KKT conditions.

For the mean functions given in Equation (4), we have ∇j[image: there is no content](x)=[image: there is no content] for emission and ∇j[image: there is no content](x)=−[image: there is no content]e−[image: there is no content]x[image: there is no content] for transmission tomography; the corresponding updating formula (53) becomes:



[image: there is no content]=[image: there is no content]∑i=1n∇[image: there is no content]([image: there is no content])+[image: there is no content]−h[∇jJ([image: there is no content])]−+ϵ−∑i=1n∇[image: there is no content]([image: there is no content])−[image: there is no content]+h[∇jJ([image: there is no content])]++ϵ



(59)




for emission tomography, and


[image: there is no content]=[image: there is no content]−∑i=1n∇[image: there is no content]([image: there is no content])−[image: there is no content]e−[image: there is no content][image: there is no content][image: there is no content]−h[∇jJ([image: there is no content])]−+ϵ∑i=1n∇[image: there is no content]([image: there is no content])+[image: there is no content]e−[image: there is no content][image: there is no content][image: there is no content]+h[∇jJ([image: there is no content])]++ϵ



(60)




for transmission tomography. The derivative ∇[image: there is no content]([image: there is no content]) in the above formulae depends on the log-density [image: there is no content]([image: there is no content]). Some examples are presented below.
Example 5.1 (MI for emission scans with Poisson noise). 

For emission tomography with Poisson noise, we have the log-density function for [image: there is no content]:



[image: there is no content]([image: there is no content])=−[image: there is no content]+[image: there is no content]log[image: there is no content]



(61)




where [image: there is no content]=[image: there is no content]x+[image: there is no content]. Thus ∇[image: there is no content]([image: there is no content])=−1+[image: there is no content]/[image: there is no content], which gives ∇[image: there is no content]([image: there is no content])+=[image: there is no content]/[image: there is no content] and ∇[image: there is no content]([image: there is no content])−=−1. The updating formula (59) becomes, for [image: there is no content],


[image: there is no content]=[image: there is no content]∑i=1n[image: there is no content][image: there is no content]/[image: there is no content]−h[∇jJ([image: there is no content])]−+ϵ∑i=1n[image: there is no content]+h[∇jJ([image: there is no content])]++ϵ



(62)




Note that when [image: there is no content] (i.e., maximum likelihood reconstruction), [image: there is no content]=0 and [image: there is no content], this algorithm coincides with the EM algorithm for emission tomography. After line search, the estimate of x at iteration [image: there is no content] is given by Equation (57). In this algorithm, there is only one back-projection (for the numerator of Equation (62)) and one forward-projection in each iteration; its computational burden is the same as EM.
Example 5.2 (MI for randoms-precorrected PET emission scans). 

Some PET scans produce measurements that have already been corrected for randoms [44] and their measurements no longer follow Poisson distributions. We consider in this example the model weighted least squares which is also used in [11] but under a different context, i.e., we reconstruct from randoms-precorrected measurements [image: there is no content] by maximizing the objective Equation (2) where



[image: there is no content]([image: there is no content])=−([image: there is no content]−[image: there is no content])2([image: there is no content]+2[image: there is no content])



(63)




Here [image: there is no content] is used to denote [image: there is no content]x, and for this [image: there is no content] formula (59) still applies. Now since


∇[image: there is no content]([image: there is no content])=[image: there is no content]+2[image: there is no content][image: there is no content]+2[image: there is no content]2−1



(64)




we have ∇[image: there is no content]([image: there is no content])+=[([image: there is no content]+2[image: there is no content])/([image: there is no content]+2[image: there is no content])]2 and ∇[image: there is no content]([image: there is no content])−=−1. The MI algorithm updates x first according to


[image: there is no content]=[image: there is no content]∑i=1n[image: there is no content][image: there is no content]+2[image: there is no content][image: there is no content]+2[image: there is no content]2−h[∇jJ([image: there is no content])]−+ϵ∑i=1n[image: there is no content]+h[∇jJ([image: there is no content])]++ϵ



(65)




and then, after the line search step, computes [image: there is no content] according to Equation (57).
Example 5.3 (MI for polyenergetic transmission scans with Poisson noise). 

Application of the MI algorithm to polyenergetic X-ray CT is again extremely easy. Under the assumption of Poisson noise, the log-density for measurement [image: there is no content] is identical to Equation (61) but now with [image: there is no content]=∑[image: there is no content]M[image: there is no content]e−∑j[image: there is no content]∑r[image: there is no content][image: there is no content]+[image: there is no content]; see Equation (17). In Example 5.1 we have already derived ∇[image: there is no content]([image: there is no content])+ and ∇[image: there is no content]([image: there is no content])− for the Poisson noise log-density. On the other hand, the derivative of [image: there is no content] with respect to [image: there is no content] (denoted by ∇rj[image: there is no content]) is



∇rj[image: there is no content]=−∑m[image: there is no content]e−∑j[image: there is no content]∑r[image: there is no content][image: there is no content][image: there is no content][image: there is no content]



(66)




Thus, the updating formula for ployenergetic transmission is


zrj(k+1/2)=zrj(k)∑i=1n[image: there is no content]∑[image: there is no content]M[image: there is no content][image: there is no content]e−∑j[image: there is no content]∑r[image: there is no content]zrj(k)−h[∇jJ([image: there is no content])]−+ϵ∑i=1n[image: there is no content]([image: there is no content]/[image: there is no content])∑[image: there is no content]M[image: there is no content][image: there is no content]e−∑j[image: there is no content]∑r[image: there is no content]zrj(k)+h[∇jJ([image: there is no content])]++ϵ



(67)




for [image: there is no content] and [image: there is no content]. After the line search step specified in Equation (57), [image: there is no content] is obtained. This iterative formula involves one forward- and two back-projections in each iteration, and therefore it demands similar amount of computations when compared with the alternative minimization algorithm in [34]. When [image: there is no content], [image: there is no content]=0[image: there is no content] and [image: there is no content], this MI algorithm is identical to the algorithm given in [45] for maximum likelihood reconstruction in transmission tomography. Note that unlike the optimization transfer and alternating minimization algorithms, the MI algorithm can be easily derived for other objective functions, such as the weighted least-squares function.
The above examples demonstrate that the MI algorithms are easy to derive and to implement in tomographic imaging. The line search step it requires does not incur significant computational burden.



6. Modified Fisher’s Method of Scoring Using Jacobi or Gauss–Seidel Over-Relaxations

In this section we elaborate on another non-negatively constrained method for tomographic imaging, which is a modification to the standard Fisher’s method of scoring (FS) algorithm. This method is developed based on the following steps. Firstly, the objective function [image: there is no content] is approximated by a quadratic function in each iteration, where the Fisher information matrix (e.g., [46]) is used to define the quadratic term; secondly, an over-relaxation method, either the Jacobi over-relaxation (JOR) or the Gauss–Seidel over-relaxation (also called the successive over-relaxation (SOR)), is employed to solve approximately the linear system derived from zeroing the derivative of this quadratic function. The resulting algorithms are called FS-JOR and FS-SOR and their detailed descriptions can be found in [47,48]. Descriptions of the JOR and SOR methods are available, for example, in [49].

FS is a general optimization algorithm for computing maximum likelihood estimates. Its advantages over the traditional Newton’s method have been documented in [50]. Briefly, FS iterations are well defined due to the non-negativeness of the Fisher information matrix, but for the Newton’s method, the negative Hessian matrix may not even be non-negative definite, making it unnecessarily proceed in the uphill direction in some applications. Transmission tomography is an example where this problem for the Newton’s method indeed occurs; see Example 6.2.

We assume the objective function [image: there is no content] in Equation (2) is twice differentiable and let [image: there is no content] be the Fisher information matrix, namely [image: there is no content]. At iteration [image: there is no content] of the Fisher scoring algorithm, [image: there is no content] is approximated by the following quadratic function:



[image: there is no content]≈Ψ([image: there is no content])+(x−[image: there is no content])T∇Ψ([image: there is no content])−12(x−[image: there is no content])T[image: there is no content](x−[image: there is no content])≡Ψ(k)(x)



(68)




where [image: there is no content] denotes the Fisher information matrix at [image: there is no content]. Then the x estimate is updated by constrained maximization of [image: there is no content], namely


[image: there is no content]=argmaxx≥0Ψ(k)(x)



(69)




The KKT conditions for this optimization are


∇jΨ(k)(x)=0 if [image: there is no content]>0 and



(70)






∇jΨ(k)(x)≤0 if [image: there is no content]=0



(71)




where


∇jΨ(k)(x)=∇jΨ([image: there is no content])−[image: there is no content](x−[image: there is no content])



(72)




Here [image: there is no content] denotes the j-th row of matrix [image: there is no content]. The JOR and SOR methods solve, for [image: there is no content],


[image: there is no content]



(73)




in different manners: JOR solves it by fixing all the x elements, except [image: there is no content], at their estimates from the last iteration (i.e., iteration k), but SOR solves it by fixing all the x elements, except [image: there is no content], at their most current estimates.
The above illustrations describe how to incorporate JOR or SOR sub-iterations into the FS algorithm. In fact, in each iteration, JOR or SOR is used to solve approximately the linear system of equations determined by the FS algorithm, and then this approximate solution is used as the starting value for the next FS iteration. These new schemes modify the standard FS method, and are feasible for large estimation problems.

Usually it suffices to run one JOR or SOR sub-iteration. But running more than one sub-iterations is also attractive as it has the potential to reduce the computations for the entire optimization process. Suppose within each Fisher scoring iteration we run m sub-iterations of JOR or SOR. The resulting algorithms are called the m-step FS-JOR and m-step FS-SOR algorithms respectively. Let r be the sub-iteration index for the over-relaxation method and [image: there is no content] the estimate of x at the r-th over-relaxation sub-iteration of the k-th FS iteration. Let [image: there is no content] be the [image: there is no content]-th element of [image: there is no content]. Assume [image: there is no content] for all j. At iteration [image: there is no content], first set x(k,0)=[image: there is no content]. If using JOR to solve Equation (73) we have



[image: there is no content]=xj(k,r)+ω1fjj(k)∇jΨ([image: there is no content])−∑t=1p[image: there is no content](xt(k,r)−xt(k))



(74)




and if using SOR to solve we then have


[image: there is no content]=xj(k,r)+ω1fjj(k)∇jΨ([image: there is no content])−∑t=1j−1[image: there is no content](xt(k,r+1)−xt(k))−∑t=jp[image: there is no content](xt(k,r)−xt(k))



(75)




where [image: there is no content] and [image: there is no content] is the relaxation parameter. If any [image: there is no content] then it is reset to zero. This resetting is correct since the only possibility for [image: there is no content] is that the expressions in the round brackets of Equations (74) and (75) are negative since [image: there is no content] and [image: there is no content]. Hence resetting [image: there is no content] to zeros assures that the FS-JOR and FS-SOR algorithms converge to, when they converge, the solution satisfying the KKT conditions. At the end of the sub-iterations set [image: there is no content]=x(k,m). Note that when [image: there is no content], the last term in the round brackets of either Equation (74) or (75) becomes zero. Thus 1-step FS-JOR is basically a gradient algorithm and we can therefore replace ω by a line search step size [image: there is no content], where the search range is fixed at 0<[image: there is no content]≤1 as this range will keep the estimate non-negative.
The relaxation parameter ω is used to achieve convergence of the FS-JOR and FS-SOR algorithms. Results contained in [47] give convergence properties when [image: there is no content] and when the non-negativity constraint is ignored. In fact in this context FS-SOR converges if [image: there is no content] and FS-JOR converges if [image: there is no content], where [image: there is no content] is the maximum eigenvalue of DF([image: there is no content])−1/2F([image: there is no content])DF([image: there is no content])−1/2. Here [image: there is no content] is the MPL solution.

From the updating formulae given in Equations (74) and (75) we can see that both FS-JOR and FS-SOR involve the gradient [image: there is no content] and the Fisher information matrix based operation [image: there is no content]. The gradient is standard for most reconstruction algorithms, but the computation of [image: there is no content] requires more careful consideration. It will become clear in Examples 6.1 and 6.2 that for tomographic reconstructions [image: there is no content] usually exhibits as [image: there is no content], where [image: there is no content]. It is not wise to compute [image: there is no content] first as this involves multiplications of two huge matrices A and [image: there is no content]. For FS-JOR, a feasible alternative is to use the forward projection to find [image: there is no content] first, then to multiply it with the diagonal values of W to get [image: there is no content], and finally to back-project [image: there is no content] to obtain [image: there is no content] (ignoring the penalty term). This approach involves only one forward- and one back-projections in every sub-iteration. The situation for FS-SOR is more complicated since [image: there is no content] changes with the pixel index j. The above approach for FS-JOR cannot be used here as otherwise each FS-SOR sub-iteration will demand infeasible p pairs of forward- and back-projections. To confront this problem, let



[image: there is no content]



(76)




The F[image: there is no content] part of Equation (75) involves A(x≻j(k,r)−[image: there is no content]). Note that


[image: there is no content](x≻j(k,r)−[image: there is no content])=[image: there is no content](x≻j−1(k,r)−[image: there is no content])+[image: there is no content](xj−1(k,r+1)−xj−1(k,r))



(77)




so we can start with A(x≻0(k,r)−[image: there is no content])≡A(x≻p+1(k,r−1)−[image: there is no content]) and obtain A(x≻j(k,r)−[image: there is no content]) by applying Equation (77). Although here the number of multiplications for [image: there is no content] (where vector [image: there is no content] varies with its index j) becomes the same as [image: there is no content], it requires column access to the system matrix A, which can be a problem if A is generated on-the-fly.
We next provide examples of applying FS-JOR and FS-SOR to emission and transmission tomography.

Example 6.1 (Emission scans with Poisson noise). 

For emission reconstruction with Poisson noise, the log-density of [image: there is no content] is given by Equation (61). Thus for the corresponding object function [image: there is no content] of Equation (2), its gradients are



∇jΨ(x)=∑i=1n[image: there is no content]−1+[image: there is no content][image: there is no content]−h∇jJ(x)



(78)




and its Fisher information matrix elements are


fjt=E[−∇jt2Ψ(x)]=∑i=1n[image: there is no content]ait[image: there is no content]+h∇jt2J(x)



(79)




where [image: there is no content]=[image: there is no content]x+[image: there is no content], jandt=1,…,p. Assuming we run only one sub-iteration for FS-JOR or FS-SOR (i.e., [image: there is no content]), the FS-JOR iterative formula is


x˜j[image: there is no content]=[image: there is no content]+ω1∑iaij2/[image: there is no content]+h∇jj2J([image: there is no content])∑i=1n[image: there is no content]([image: there is no content]−[image: there is no content])/[image: there is no content]−h∇jJ([image: there is no content])



(80)




and the FS-SOR formula is


x˜j[image: there is no content]=[image: there is no content]+ω1∑iaij2/[image: there is no content]+h∇jj2J([image: there is no content])∑i=1n[image: there is no content]([image: there is no content]−[image: there is no content])/[image: there is no content]−h∇jJ([image: there is no content])−∑t=1j−1∑i=1n[image: there is no content]ait/[image: there is no content]+h∇jt2J([image: there is no content])(xt[image: there is no content]−xt(k))



(81)




Then xj[image: there is no content]=max{0,x˜j[image: there is no content]}. The formula given in Equation (80) is just a gradient algorithm so ω can be replaced by a line search step size [image: there is no content]∈(0,1]. Efficient computation of Equation (81) requires column access to matrix A as explicated before. Hudson et al. [48] reported simulation results and a real data application for emission reconstruction. They compared FS-JOR and FS-SOR with EM. The computer time required per iteration for the EM and one-step FS-JOR algorithms were similar. By comparison with the EM algorithm, FS-JOR and FS-SOR accelerated convergence when an appropriate value of ω was used. Particularly, FS-SOR had a superior speed of convergence when [image: there is no content].
Example 6.2 (Transmission scans with Poisson noise). 

For transmission reconstructions with Poisson noise, we can easily work out the gradient and Fisher information matrix from its penalized likelihood function. The gradients are



∇jΨ(x)=∑i=1n[image: there is no content][image: there is no content]e−[image: there is no content]1−[image: there is no content][image: there is no content]−h∇jJ(x)



(82)




and the Fisher information matrix elements are


fjt=E[−∇jt2Ψ(x)]=∑i=1n[image: there is no content]ait([image: there is no content]e−[image: there is no content])2[image: there is no content]+h∇jt2J(x)



(83)




where [image: there is no content]=[image: there is no content]x, [image: there is no content]=[image: there is no content]e−[image: there is no content]+[image: there is no content] and jandt=1,…,p. Note that for this example, the Fisher information matrix is non-negative but the negative Hessian matrix may not be non-negative, making the Newton method non-applicable. Corresponding to [image: there is no content], the FS-JOR iterative formula is


x˜j[image: there is no content]=[image: there is no content]+ω1∑iaij2([image: there is no content]e−ηi(k))2/[image: there is no content]+h∇jj2J([image: there is no content])∑i=1n[image: there is no content][image: there is no content]e−ηi(k)(−[image: there is no content]+[image: there is no content])/[image: there is no content]−h∇jJ([image: there is no content])



(84)




and the FS-SOR formula is


x˜j[image: there is no content]=[image: there is no content]+ω1∑iaij2([image: there is no content]e−ηi(k))2/[image: there is no content]+h∇jj2J([image: there is no content])∑i=1n[image: there is no content][image: there is no content]e−ηi(k)(−[image: there is no content]+[image: there is no content])/[image: there is no content]−h∇jJ([image: there is no content])−∑t=1j−1∑i=1n[image: there is no content]ait([image: there is no content]e−ηi(k))2/[image: there is no content]+h∇jt2J([image: there is no content])(xt[image: there is no content]−xt(k))



(85)




Then xj[image: there is no content]=max{0,x˜j[image: there is no content]}. Again, Equation (84) is a gradient algorithm so that a line search can be used, and efficient implementation of Equation (85) demands unpleasant column access to A.
This section explains the Fisher scoring based image reconstruction algorithms using JOR or SOR sub-iterations. For these algorithms, any negative estimates in each iteration can be corrected by simply resetting to zero, as this way of resetting enforces the KKT conditions. If only one sub-iteration is used, FS-JOR is equivalent to a gradient algorithm. For efficient implementation of FS-SOR, it requires column retrieval of the system matrix A, which can be infeasible for some reconstruction problems.



7. Iterative Coordinate Ascent Algorithms

Another method using SOR is the method of iterative coordinate ascent (ICA) (or iterative coordinate descent (ICD) for minimization problems). ICA was first implemented to tomographic imaging in [51,52]. The basic idea of ICA is to apply SOR directly to the objective function [image: there is no content], resulting in a sequence of 1-D functions where each [image: there is no content] is associated with one of these 1-D functions. Then each function is solved exactly or approximately to update the corresponding [image: there is no content]. More specifically, using the SOR principle we can define a function for [image: there is no content] according to



ψj[image: there is no content]([image: there is no content])=Ψ(x1[image: there is no content],…,xj−1[image: there is no content],[image: there is no content],xj+1(k),…,xp(k))



(86)




This is a function of [image: there is no content] only and we can update the [image: there is no content] estimate by


xj[image: there is no content]=argmax[image: there is no content]≥0ψj[image: there is no content]([image: there is no content])



(87)




Since this is a 1-D function, the constraint [image: there is no content]≥0 can be easily enforced using, for example, the resetting to zero approach.
One computational issue with ICA when applied to tomographic imaging is that it requires repeated calculations of [image: there is no content](x)=∑jaitxt for all i when updating [image: there is no content]. This problem can be rectified by the following approach. Let



x≻jk=(x1[image: there is no content],…,xj−1[image: there is no content],[image: there is no content],…,xp(k))T



(88)




Consider the evaluation of [image: there is no content](x≻jk). Assuming the update of [image: there is no content] is given by xj−1[image: there is no content]=xj−1(k)+δj−1(k), then ai,j−1xj−1[image: there is no content]=ai,j−1xj−1(k)+ai,j−1δj−1(k), and therefore


[image: there is no content](x≻jk)=[image: there is no content](x≻j−1k)+ai,j−1δj−1(k)



(89)




This relationship explains that [image: there is no content](x≻jk) can be cheaply computed using the [image: there is no content] value before the [image: there is no content] update plus a correction term. However, similar to FS-SOR, it necessitates column access to A. This can be a potential issue if A is generated on-the-fly.
Next we use again the emission and transmission examples to elaborate the ICA algorithm.

Example 7.1 (Emission scans with Poisson noise). 

Firstly, we define



[image: there is no content]=(x1[image: there is no content],…,xj−1[image: there is no content],[image: there is no content],xj+1(k),…,xp(k))T



(90)




From the penalized log-likelihood function of emission measurements [image: there is no content] (see, for example, Equation (34)), function ψj([image: there is no content]) is given by


ψj([image: there is no content])=∑i=1n−([image: there is no content](x(j)(k))+[image: there is no content])+[image: there is no content]log([image: there is no content]([image: there is no content])+[image: there is no content])−hJ([image: there is no content])



(91)




Since this is a non-quadratic function of [image: there is no content], exact maximization is infeasible. We can find its approximate optimization by running a single or multi- step of, for example, the Newton or Fisher scoring algorithm. In this example we consider using the Fisher scoring algorithm to optimize ψj([image: there is no content]) and call the resulting algorithm ICA-FS. After a single step of Fisher scoring we have


x˜j[image: there is no content]=[image: there is no content]+[image: there is no content]1∑iaij2/[image: there is no content](x≻jk)+h∇jj2J(x≻jk)∑i=1n[image: there is no content]([image: there is no content]/[image: there is no content](x≻jk)−1)−h∇jJ(x≻jk)



(92)




where [image: there is no content](x≻jk)=[image: there is no content](x≻jk)+[image: there is no content] and [image: there is no content] is a line search step size enforcing ψj(xj[image: there is no content])≥ψj([image: there is no content]), where equality holds only when the algorithm is converged. This monotonic condition eventually leads to Ψ([image: there is no content])≥Ψ([image: there is no content]). The update for [image: there is no content] is then xj[image: there is no content]=max{0,x˜j[image: there is no content]}.
Example 7.2 (Transmission scans with Poisson noise). 

For this example we have



ψj([image: there is no content])=∑i=1n−([image: there is no content]e−[image: there is no content][image: there is no content]+[image: there is no content])+[image: there is no content]log([image: there is no content]e−[image: there is no content][image: there is no content]+[image: there is no content])−hJ([image: there is no content])



(93)




where [image: there is no content] is defined in Equation (90). The ICA-FS algorithm gives


x˜j[image: there is no content]=[image: there is no content]+[image: there is no content]1∑iaij2[image: there is no content]e−[image: there is no content]x≻jk2/[image: there is no content](x≻jk)+h∇jj2J(x≻jk)×










∑i=1n[image: there is no content][image: there is no content]e−[image: there is no content]x≻jk−[image: there is no content]/[image: there is no content](x≻jk)+1−h∇jJ(x≻jk)



(94)




where [image: there is no content](x≻jk)=[image: there is no content]e−[image: there is no content]x≻jk+[image: there is no content], and then xj[image: there is no content]=max{0,x˜j[image: there is no content]}.


8. Conclusions

Image reconstruction from projections has wide applications, particularly in medical imaging. Emission and transmission tomography and X-ray CT all fall into this category. Three types of reconstruction methods are available: Fourier methods, algebraic methods and likelihood based reconstruction methods. Our attention in this paper is on the penalized likelihood approaches.

In this paper we present and discuss several important simultaneous MPL reconstruction algorithms, where the non-negativity constraint is enforced. The EM algorithm is limited to maximum likelihood reconstruction problems in emission tomography and is difficult to extend to other imaging modalities and probability models for the likelihood. One variation of EM, called the alternating minimization, is developed for transmission tomography. Another variation of EM, called the OT algorithm, is suitable for any imaging modalities and probability models, but its derivation is often cumbersome as the option for the surrogate function is flexible. The OT algorithm based on the separable parabola surrogate is relatively easy to implement to different tomographic imaging. The MI algorithm, on the other hand, is easy to derive and to implement as its line search step is cheap to compute. Its convergence speed, according to the simulation study, is similar to the separable parabola surrogate algorithm. The FS-JOR and FS-SOR algorithms first apply the Fisher information matrix to obtain a quadratic approximation to the objective function, and then optimize it using JOR or SOR schemes. Implementation of ICA-FS reverses the order of FS and SOR in FS-SOR. For both FS-SOR and ICA-FS, their convergence speeds are usually superior, but their potential problem is that both involves column retrieval of A, which may not be pre-generated and stored.

For some of the algorithms covered in this paper, their corresponding block-iterative algorithms have been developed. Block-iterative algorithms can usually achieve faster convergence than their simultaneous counterpart. However, discussions of the block-iterative algorithms are not included in this paper.
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