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Abstract:

 The dominating set problem is a core NP-hard problem in combinatorial optimization and graph theory, and has many important applications. Baker [JACM 41,1994] introduces a k-outer planar graph decomposition-based framework for designing polynomial time approximation scheme (PTAS) for a class of NP-hard problems in planar graphs. It is mentioned that the framework can be applied to obtain an [image: there is no content] time, c is a constant, [image: there is no content]-approximation algorithm for the planar dominating set problem. We show that the approximation ratio achieved by the mentioned application of the framework is not bounded by any constant for the planar dominating set problem. We modify the application of the framework to give a PTAS for the planar dominating set problem. With k-outer planar graph decompositions, the modified PTAS has an approximation ratio [image: there is no content]. Using [image: there is no content]-outer planar graph decompositions, the modified PTAS achieves the approximation ratio [image: there is no content] in [image: there is no content] time. We report a computational study on the modified PTAS. Our results show that the modified PTAS is practical.
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1. Introduction

An important research area in graph theory and networks is domination; it has been energetically investigated for many years due to its large number of real-world applications, such as resource allocation [1,2] and voting [3]. Haynes et al. In their books, [4,5] provide a good survey on domination problems. Let G be a simple undirected graph with the set of vertices [image: there is no content] and the set of edges [image: there is no content]. We denote [image: there is no content] by n. The r-dominating set D of G is a subset of [image: there is no content] containing r vertices, such that for every vertex v in [image: there is no content], either [image: there is no content] or v is adjacent to a vertex in D. The minimum integer r for which G has a r-dominating set is called the domination number of G and is denoted by [image: there is no content]. The dominating set problem is to decide that given a graph G and an integer r, whether [image: there is no content]. The optimization version of this problem is to find a minimum dominating set.

The dominating set problem is a core NP-hard problem in combinatorial optimization and graph theory [6]. There is a long history of research on the approximation and exact algorithms to tackle the intractability of the problem. A minimization problem P is α−approximable [image: there is no content] if there is an algorithm which gives a solution for any instance of P in polynomial time in the instance size with solution value at most [image: there is no content], where [image: there is no content] is the value of an optimal solution for the instance of P. If P is [image: there is no content]approximable for any fixed [image: there is no content] then P has a polynomial time approximation scheme (PTAS). The dominating set problem for general graphs is [image: there is no content]approximable [7], however, it is not approximable within a factor [image: there is no content] for any [image: there is no content] unless [image: there is no content] [8]. The dominating set problem has been widely studied on an important class of graphs, the planar graphs. A graph is planar if it can be drawn on the sphere with no crossing edges. The dominating set problem in planar graphs (planar dominating set problem) remains NP-hard [6] but admits a PTAS [9].

The fixed parameter algorithms have played a central role in exact algorithms for the planar dominating set problem. A minimization problem P is fixed-parameter tractable if given a parameter r, whether [image: there is no content] of P is at most r can be decided in [image: there is no content] time, where [image: there is no content] is a computable function depending only on r [10]. Such an algorithm is called a fixed parameter tractable (FPT) algorithm. Readers may refer to [11] for a survey on new techniques for developing exact algorithms for NP-hard problems. It is shown in [10] that for general graphs, the dominating set problem is not fixed-parameter tractable unless some collapses occur between parametrized complexity classes. However, the planar dominating set problem is fixed-parameter tractable [10]. The planar dominating set problem also admits a linear size kernel [12].

Recent progresses in FPT algorithms result in subexponential time exact algorithms for the planar dominating set problem [13,14,15]. These algorithms use the tree-/branch-decomposition based approach and have running time O(2c[image: there is no content]n+nO(1)), c is a constant. The branch-decomposition based algorithm by Fomin and Thilikos (called FT algorithm in what follows) [14] achieves a smallest constant c in the exponent of the running time. The notion of branch-decomposition of graphs is introduced by Robertson and Seymour [16]. Informally, a branch-decomposition of a graph G is a collection of vertex cut sets of G that decomposes G into subgraphs with each edge of G a minimal subgraph. The width of a branch-decomposition is the maximum size of the vertex cuts in the collection. The branchwidth of G, denoted by [image: there is no content], is the minimum width of all possible branch-decompositions of G. Given a graph G and a branch-decomposition of G with width β, FT algorithm finds an optimal solution in [image: there is no content] time for the dominating set problem.

For a planar graph G, it is known that a branch-decomposition of minimum width [image: there is no content] can be computed in [image: there is no content] time [17,18] and [image: there is no content] [14,19]. Alber et al. [12] give an [image: there is no content] time algorithm which computes a subgraph H (kernel) of G such that H has [image: there is no content] vertices, [image: there is no content], and a minimum dominating set of G can be constructed from a minimum dominating set of H in linear time. Notice that for a subgraph H of G, [image: there is no content]. From the above, the FT algorithm solves the planar dominating set problem in [image: there is no content] and O(215.13[image: there is no content]γ(G)+n3) time (The running time of FT algorithm can be further improved to O(211.98[image: there is no content]γ(G)+n3) using fast matrix multiplication in the dynamic programming step of the algorithm [20]. However, this improvement is only of theoretical interest because the fast matrix multiplication is not practical [21]).

For graphs with small treewidth/branchwidth, an FPT algorithm may be efficient to find an optimal solution, however, for graphs with large treewidth/branchwidth, one may have to rely on approximation algorithms for the planar dominating set problem. A PTAS is highly desired if the solution values are required to be close to optimal with a guaranteed approximation ratio. Baker introduces a framework to obtain PTAS for a class of NP-hard problems [9]. This framework is based on decomposing a planar graph into k-outer planar subgraphs.

A graph G is called outer planar or 1-outer planar if it has a planar embedding such that all vertices of G are incident to a same face (called outer face). For [image: there is no content], G is a k-outer planar graph, if it has a planar embedding such that removing the vertices of G incident to the outer face will result in a [image: there is no content]-outer planar graph. A k-outer planar graph G has a branchwidth of at most [image: there is no content]. Baker’s PTAS framework for a problem P in a planar graph G is to decompose G into a collection of k-outer planar subgraphs, find an optimal partial solution of P in each subgraph by an exact algorithm, and take the union of the optimal partial solutions as a solution of P in G. When the framework is used for a minimization problem, G is decomposed in such a way that every two “neighbor" k-outer planar subgraphs share “one-level" vertices. Baker shows that the framework gives a [image: there is no content] time [image: there is no content]-approximation algorithm for the vertex cover problem in planar graphs and mentions that the framework can be applied to obtain [image: there is no content] time [image: there is no content]-approximation algorithms for many other minimization problems, including the planar dominating set problem [9]. For a maximization problem like the independent set problem in planar graphs, Baker’s framework gives a [image: there is no content] time [image: there is no content]-approximation algorithm.

We show that the approximation ratio of Baker’s framework is not bounded by any constant for the planar dominating set problem when two “neighbor" k-outer planar subgraphs share only “one-level" of vertices. To get a PTAS for the planar dominating set problem, the application of the framework has to be modified. We modify the application of the framework by decomposing G into k-outer planar subgraphs such that every two “neighbor" subgraphs share “two-levels" of vertices. Let [image: there is no content], c is a constant, be the running time of Baker’s framework with “one-level" of overlapping vertices for the planar dominating set problem. We show that the modified application of the framework gives a PTAS with approximation ratio [image: there is no content] for the planar dominating set problem. By decomposing G into [image: there is no content]-outer planar subgraphs with “two-level" overlapping vertices, the modified PTAS achieves the approximation ratio [image: there is no content] in [image: there is no content] time.

In addition to the theoretical progresses in the algorithms for the dominating set problem, the practical performance of algorithms for the problem has received much attention. A computational study of an exact algorithm (FT algorithm) for the planar dominating set problem is reported in [21]. The study shows that the FT algorithm is practically efficient for graphs with small branchwidth. Heuristic algorithms for the dominating set problem have also been well investigated and a computational study of heuristic algorithms is reported in [22]. However, the practical performance of a PTAS is not known for the planar dominating set problem. One hurdle in evaluating the practical performance of a PTAS is the implementation of the algorithm. We conduct a computational study to evaluate the practical performance of the modified PTAS for the planar dominating set problem. In our implementation, the FT algorithm is used to compute an optimal partial solution in each k-outer planar subgraph. Our results show that the PTAS finds solutions with values very close to optimal in a practical time and much better than those given by well used heuristic algorithms. The computational study gives a concrete example on using a PTAS for solving important NP-hard problems in planar graphs and shows that the PTAS is practical for the planar dominating set problem. This work provides a tool for computing solutions close to optimal for the planar dominating set problem.

The next section gives preliminaries of the paper. In Section 3, we review Baker’s framework, show that the approximation ratio of the framework is not bounded by a constant with “one-level" of overlapping vertices for the planar dominating set problem, and modify the application of the framework to give a PTAS for the problem. In Section 4, we report the computational study results. The final section concludes the paper.



2. Preliminaries

A graph G consists of a set [image: there is no content] of vertices and a set [image: there is no content] of edges, where each edge e of [image: there is no content] is a subset of two elements from [image: there is no content]. For edge [image: there is no content], we say that vertices u and v are adjacent. The node degree of a vertex u is the number of vertices adjacent to u. Vertex u is dominated by vertex v if u and v are adjacent or [image: there is no content]. Vertex u is dominated by a set D if u is dominated by a vertex of D. Edge e is covered by a vertex u if [image: there is no content]. For a subset [image: there is no content] and a subset [image: there is no content], we denote by [image: there is no content] and [image: there is no content] the subgraphs of G induced by U and A, respectively. For a subset [image: there is no content], we denote by [image: there is no content] by [image: there is no content] when G is clear from the context. A separation of graph G is a pair (A,[image: there is no content]) of subsets of [image: there is no content]. For each [image: there is no content], we denote by [image: there is no content] the vertex set V(A)∩V([image: there is no content]). The order of separation (A,[image: there is no content]) is |∂(A)|=|∂([image: there is no content])|.

A graph G is planar if G has a planar embedding (a draw on a sphere without edge crossing). We call a planar embedding of G a plane graph. A face of a plane graph G is a connected region of the sphere bounded by edges and vertices of G and containing no edge or vertex of G in its interior. For a plane graph G and a face f of G, let [image: there is no content] be the set of vertices in [image: there is no content] incident to f. Given a plane graph G and a face [image: there is no content] (called outer face) of G, let V1=VG([image: there is no content]). For [image: there is no content], let [image: there is no content], [image: there is no content], [image: there is no content] be the face of [image: there is no content] such that [image: there is no content]⊆[image: there is no content], and [image: there is no content]=V[image: there is no content]([image: there is no content]). We call the vertices of [image: there is no content]level i vertices of G. Intuitively, [image: there is no content] is the plane graph obtained from removing vertices of levels [image: there is no content] from G. [image: there is no content] is the vertices of [image: there is no content] incident to the outer face of [image: there is no content].

Branch-decomposition based algorithms play a central role in the PTAS studied in this paper. The notion of branch-decomposition is introduced by Robertson and Seymour [16]. A branch-decomposition of graph G is a pair [image: there is no content] where T is a tree each internal node of which has degree 3 and ϕ is a bijection from the set of leaves of T to [image: there is no content]. Consider a link e of T and let [image: there is no content] and [image: there is no content] denote the sets of leaves of T in the two respective subtrees of T obtained by removing e. We say that the separation (ϕ([image: there is no content]),ϕ([image: there is no content])) is induced by this link e of T. We define the width of the branch-decomposition [image: there is no content] to be the largest order of the separations induced by links of T. The branchwidth of G, denoted by [image: there is no content], is the minimum width of all branch-decompositions of G. In the rest of this paper, we identify a branch-decomposition [image: there is no content] with the tree T, regarding each leaf of T as an edge of G.

Given a branch-decomposition T of G, an optimization problem P in G may be solved by the dynamic programming method as follows: convert T into a rooted binary tree by replacing a link [image: there is no content] of T with three links [image: there is no content], where z and r are new nodes to T, and r is the root of T. For a link [image: there is no content] of T, assume u is the end node reachable from root r by passing through e. Let [image: there is no content] be the set of leaves of T reachable from r by passing through e. Link [image: there is no content] is called a leaf link if u is a leaf node, otherwise an internal link. An internal link e has two child links [image: there is no content] and [image: there is no content] covered by u. Notice that [image: there is no content]=A[image: there is no content]∪A[image: there is no content]. For a leaf link e, all partial solutions of P in the subgraph G[[image: there is no content]] can be computed by enumeration. For an internal link e, assume that all partial solutions of P in the subgraph G[A[image: there is no content]] and those in G[A[image: there is no content]] have been computed. Then all partial solutions of P in the subgraph G[[image: there is no content]] are computed by merging the partial solutions in G[A[image: there is no content]] and those in G[A[image: there is no content]]. The merging process is performed in a bottom-up way, from each leaf link to the link [image: there is no content], to find an optimal solution of P in G.

The FT algorithm is a branch-decomposition-based algorithm for the planar dominating set problem. In FT Algorithm, the number of partial solutions in G[[image: there is no content]] is 3|∂([image: there is no content])|. To compute a partial solution in G[[image: there is no content]], every pair [image: there is no content] is checked, where [image: there is no content] and [image: there is no content] are partial solutions in G[A[image: there is no content]] and G[A[image: there is no content]], respectively. Notice that each of |∂([image: there is no content])|,|∂(A[image: there is no content])|,|∂(A[image: there is no content])| is at most the width of the given branch-decomposition T. When an optimal branch-decomposition T (of width [image: there is no content]) is given, the FT algorithm takes [image: there is no content] time and O(3[image: there is no content]γ(G)) memory space to compute the partial solutions in G[[image: there is no content]]. A planar graph G can be reduced to a kernel of size [image: there is no content] in [image: there is no content] time and there are [image: there is no content] merging steps for the kernel. An optimal branch-decomposition of the kernel can be computed in [image: there is no content] time. The FT algorithm solves the planar dominating set problem in [image: there is no content] time [14]. For many other NP-hard problems, branch-decomposition-based algorithms usually have exponential time and memory space in the width of a given branch-decomposition. The exponential time and memory space are often a bottle-neck in applying branch-decomposition-based algorithms in practice.



3. PTAS for Planar Dominating Set Problem


3.1. Baker’s Framework for Minimization Problem

We review Baker’s PTAS framework for minimization problems. We define the terminology for describing the framework. Given a plane graph G with m levels of vertices, for integers [image: there is no content] and [image: there is no content], let [image: there is no content]. We define [image: there is no content]; [image: there is no content] for [image: there is no content]; and [image: there is no content]. Then [image: there is no content] is the plane subgraph of G induced by the vertices of G with levels [image: there is no content] and is s-outer planar; each [image: there is no content] is the subgraph of G induced by the vertices of G with levels [image: there is no content] and is [image: there is no content]-outer planar for [image: there is no content]; and [image: there is no content] is the subgraph of G induced by the vertices of G with levels [image: there is no content] and is t-outer planar, where [image: there is no content]. Below is Baker’s PTAS framework for minimization problems.


	Let G be a plane graph with m levels of vertices for an outer face and [image: there is no content] be an integer. Compute the vertex sets [image: there is no content].


	for [image: there is no content]


	(a)

	Compute subgraphs [image: there is no content] for [image: there is no content].



	(b)

	For every subgraph [image: there is no content], find an optimal solution [image: there is no content] by an exact algorithm.



	(c)

	Let [image: there is no content].






	Let S be a set of [image: there is no content] with the minimum cardinality.




Baker [9] gives a proof that the above framework achieves a [image: there is no content]-approximation ratio for the minimum vertex cover problem in plane graph G: find a minimum subset C of [image: there is no content] such that every edge of G is covered by a vertex in C. We review Baker’s proof of the approximation ratio for the vertex cover problem. This proof gives a base on our later argument for the planar dominating set problem.

Given a plane graph G, let C be a minimum vertex cover of G. Given integer k, let [image: there is no content] be a minimum vertex cover of [image: there is no content] and let [image: there is no content], [image: there is no content] and [image: there is no content]. Since no vertex of G in [image: there is no content] covers any edge of [image: there is no content], [image: there is no content] is a vertex cover of subgraph [image: there is no content]. From this and the fact that [image: there is no content] is a minimum vertex cover of [image: there is no content], [image: there is no content]. Therefore, [image: there is no content] is a vertex cover of G and



[image: there is no content]



(1)




Since the vertices of [image: there is no content] appear in both subgraphs [image: there is no content] and [image: there is no content], [image: there is no content],



∑i=0r|C(i,s)|=|C|+∑i=0r−1|C∩[image: there is no content]|



(2)




Notice that



min[image: there is no content]k+1{∑i=0r−1|C∩[image: there is no content]|}≤|C|k



(3)




Let S be a [image: there is no content] with a minimum cardinality. Then from Inequalities (1), (2), and (3), we have [image: there is no content], that is, the solution produced by Baker’s framework has the approximation ratio [image: there is no content] for the minimum vertex cover problem in planar graphs.



3.2. Modified Framework for Planar Dominating Set Problem

In [9], it is mentioned that the framework in the previous section can be applied to obtain a [image: there is no content]-approximation algorithm for the planar dominating set problem. We show that this is not true. Recall that for the vertex cover problem, no vertex of G in [image: there is no content] can cover any edge of [image: there is no content]. This implies that for a minimum vertex cover C, [image: there is no content] is a vertex cover of subgraph [image: there is no content] and a minimum vertex cover [image: there is no content] of [image: there is no content] has the property [image: there is no content]. However, for the planar dominating set problem, the intersection of a minimum dominating set of G and [image: there is no content] may not be a dominating set of [image: there is no content] because a vertex of G in [image: there is no content] can dominate a vertex of [image: there is no content]. More specifically, let D be a minimum dominating set of G, [image: there is no content] and [image: there is no content] be a minimum dominating set of [image: there is no content]. Then [image: there is no content] may not be a dominating set of [image: there is no content] and [image: there is no content] may not hold. Below we show by an example that the approximation ratio of the mentioned application of Baker’s framework is not bounded by any constant for the planar dominating set problem.

Let G be a plane graph with 4 levels of vertices shown in Figure 1. Let [image: there is no content] be the set of vertices of G with labels [image: there is no content], [image: there is no content]. The subgraph G[[image: there is no content]] is a chain and there is a unique vertex in G dominating all vertices of [image: there is no content]. For a large x, G has a unique minimum dominating set D with its six vertices shown as black squares in the figure. Let [image: there is no content]. For [image: there is no content], the subgraphs [image: there is no content] and [image: there is no content] are shown in Figure 2 (a) and (b), respectively. Let [image: there is no content]. Then [image: there is no content] (the set of vertices denoted by black squares) is not a dominating set of [image: there is no content]. On the other hand, a minimum dominating set [image: there is no content] of [image: there is no content] contains a fraction of vertices in [image: there is no content] and [image: there is no content] for large x=|[image: there is no content]|. Similarly, a minimum dominating set [image: there is no content] of [image: there is no content] contains a fraction of vertices in [image: there is no content] and [image: there is no content]. Let [image: there is no content]. Then [image: there is no content] is not bounded by any constant for non-constant x.

Figure 1. A plane graph G with four levels of vertices.



[image: Algorithms 06 00043 g001 1024]





Figure 2. (a) Subgraph [image: there is no content] and (b) Subgraph [image: there is no content] of G.
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For [image: there is no content], the subgraphs [image: there is no content] and [image: there is no content] are shown in Figure 3 (a) and (b), respectively. Then a minimum dominating set [image: there is no content] of [image: there is no content] contains a fraction of vertices in [image: there is no content] and a minimum dominating set [image: there is no content] of [image: there is no content] contains a fraction of vertices in [image: there is no content]. Let [image: there is no content]. Then [image: there is no content] is not bounded by any constant for non-constant x=|[image: there is no content]|. Therefore, for a set S of [image: there is no content] and [image: there is no content] with the minimum cardinality, [image: there is no content] is not bounded by any constant for non-constant x.

Figure 3. (a) Subgraph [image: there is no content] and (b) Subgraph [image: there is no content] of G.



[image: Algorithms 06 00043 g003 1024]







We modify the application of Baker’s framework to get a PTAS for the planar dominating set problem. The idea for the modification is that instead of decomposing G into [image: there is no content]-outer planar subgraphs with two neighbor subgraphs [image: there is no content] and [image: there is no content] overlapping on one level of vertices, we decompose G into [image: there is no content]-outer planar subgraphs with two neighbor subgraphs overlapping on two levels of vertices. For each subgraph, we find a minimum set which dominates only k levels of vertices in the subgraph. The formal modification is described below.

Let G be a plane graph with m levels of vertices. For integers [image: there is no content] and [image: there is no content], let [image: there is no content]. We define [image: there is no content]; [image: there is no content] for [image: there is no content]; and [image: there is no content]. [image: there is no content] is the subgraph of G induced by the vertices of G with levels [image: there is no content] and is s-outer planar; each [image: there is no content] is the subgraph of G induced by the vertices of G with levels [image: there is no content] and is [image: there is no content]-outer planar for [image: there is no content]; and [image: there is no content] is the subgraph of G induced by the vertices of G with levels [image: there is no content] and is t-outer planar, where [image: there is no content]. We call the vertices of [image: there is no content] with level s, the vertices of each subgraph [image: there is no content] ([image: there is no content]) with levels [image: there is no content] and [image: there is no content], and the vertices of [image: there is no content] with level [image: there is no content] the vertices on boundary; and call the other vertices the interior vertices.


	Let G be a plane graph with m levels of vertices for an outer face and [image: there is no content] be an integer. Compute the vertex sets [image: there is no content].


	for [image: there is no content]


	(a)

	Compute subgraphs [image: there is no content] for [image: there is no content].



	(b)

	For subgraph [image: there is no content], find a minimum subset [image: there is no content] of [image: there is no content] that dominates every vertex of [image: there is no content] (every interior vertex).

For every subgraph [image: there is no content], [image: there is no content], find a minimum subset [image: there is no content] of [image: there is no content] that dominates every vertex of [image: there is no content] (every interior vertex).

For subgraph [image: there is no content], find a minimum subset [image: there is no content] of [image: there is no content] that dominates every vertex of [image: there is no content] (every interior vertex).



	(c)

	Let [image: there is no content].






	Let S be a set of [image: there is no content] with the minimum cardinality.




Theorem 3.1 The modified application of Baker’s framework gives an O(2(6log43)[image: there is no content])kn)time [image: there is no content]-approximation algorithm for the planar dominating set problem.

Proof: We first show the approximation ratio of the framework. Notice that [image: there is no content] dominates every vertex of



[image: there is no content]








that is, [image: there is no content] is a dominating set of G. Let D be a minimum dominating set of G and let [image: there is no content], [image: there is no content] and [image: there is no content]. Since no vertex of G in [image: there is no content] can dominate any interior vertex of [image: there is no content] and D dominates every vertex of G, [image: there is no content] dominates every interior vertex of [image: there is no content]. From this and the fact that [image: there is no content] is a minimum subset of [image: there is no content] dominating every interior vertex of [image: there is no content], [image: there is no content]. From this, we have


|[image: there is no content]|≤∑i=0r|S(i,s)|≤∑i=0r|D(i,s)|



(4)




Since the vertices of [image: there is no content] and [image: there is no content] appear in subgraphs [image: there is no content] and [image: there is no content], [image: there is no content],



∑i=0r|D(i,s)|≤|D|+∑i=0r−1|D∩[image: there is no content]|+|D∩[image: there is no content]|



(5)




Notice that



min[image: there is no content]k+1{∑i=0r−1|D∩[image: there is no content]|+|D∩[image: there is no content]|}≤2|D|k



(6)




Let S be an [image: there is no content] with a minimum cardinality. Then from Inequalities (4), (5), and (6), we have [image: there is no content]. that is, the solution produced by the modified algorithm has the approximation ratio [image: there is no content] for the planar dominating set problem.

Given a planar graph G, a planar embedding of G can be computed in linear time [23]. It is obvious that Step 1 and Step 3 can be computed in linear time. Step 2 (a) and (c) can be computed in [image: there is no content] time. Recall that FT Algorithm (by Fomin and Thilikos [14]) is the most efficient known exact algorithm for the planar dominaing set problem. We use FT Algorithm for Step 2 (b). Given a graph G and a branch-decomposition of G with width β, FT Algorithm finds an optimal solution for the dominating set problem in [image: there is no content] time. Each subgraph [image: there is no content] is [image: there is no content]-outer planar and has branchwidth at most [image: there is no content]. A branch-decomposition of [image: there is no content] with width at most [image: there is no content] can be computed in linear time [24]. Each vertex of G appears in at most two subgraphs for a specific value s. Therefore, Step 2 (b) takes



∑[image: there is no content]k+1∑i=0rO(2(6log43)[image: there is no content]|W(i,s)|)=∑[image: there is no content]k+1O(2(6log43)[image: there is no content]n)=O(2(6log43)[image: there is no content]kn)








time which is the dominating part of the modified application’s running time. []
Notice that if G is decomposed into [image: there is no content]-outer planar subgraphs, the modified PTAS achieves the approximation ratio [image: there is no content] and has running time O(2(12log43)[image: there is no content]kn).

We conclude this section by comparing the running time of the modified PTAS with that of the application of Baker’s framework in Section 3.1 for the planar dominating set problem. We assume that the most efficient FT Algorithm is used in Step 2 (b) of both algorithms. Assume that G is decomposed into [image: there is no content]-outer planar subgraphs in Baker’s framework in Section 3.1. Then a branch-decomposition of [image: there is no content] with width at most [image: there is no content] can be computed in linear time and Step 2 (b) takes



∑[image: there is no content]k+1∑i=0rO(2(6log43)[image: there is no content]|U(i,s)|)=O(2(6log43)[image: there is no content]kn)








time which is the dominating part of the framework’s running time. The constant in the exponent of the running time of the modified PTAS for the approximation ratio [image: there is no content] is as twice as that of Baker’s framework in Section 3.1.



4. Computational Study of PTAS

We study the practical performance of the PTAS for the planar dominating set problem. The PTAS is implemented in C++ and its performance is tested for four different classes of graphs including the Delaunay triangulations of point sets taken from TSPLIB [25] (Class (1)), triangulations (Class (2)) and intersection graphs (Class (3)) generated by LEDA [26] and Gabriel graphs (Class (4)) generated using the points uniformly distributed in a two-dimensional plane. Those classes of graphs are well used in previous computational studies and the branchwidth of the graphs increases in the size of graphs (for classes of graphs with small branchwidth such as the maximal random planar graphs from LEDA [26], the FT algorithm can find optimal solutions efficiently [21] and thus they are not interesting in this study). The computer used for testing has an AMD Athlon(tm) 64 X2 Dual Core Processor 4600+ (2.4 GHz) and 3 GByte of internal memory. The operating system is SUSE Linux 10.2.

We use the FT algorithm to compute an optimal solution for each [image: there is no content]-outer planar subgraph. There are three major steps of FT Algorithm:


	Compute a linear size kernel H of the subgraph using the [image: there is no content] time kernelization algorithm by Alber et al. [12].


	Compute an optimal branch-decomposition of H by the [image: there is no content] time algorithm [17,18].


	Find an optimal solution for H by dynamic programming based on the branch-decomposition of H and compute an optimal solution for the subgraph from the optimal solution for H.




Step 3 has exponential time complexity and memory complexity in the width of the branch-decomposition used, and is the dominating part in the running time and used memory of the FT algorithm. Thus we include the kernelization in the FT algorithm because, for a kernel H of a graph G, [image: there is no content] and it often happens that [image: there is no content] for a kernel computed. Also, the effort for computing an optimal branch-decomposition reduces the running time and used memory in practice. For a planar graph G, the FT algorithm implemented runs in [image: there is no content] time and uses [image: there is no content] memory space. Readers may refer to [21] for more details on the practical performance of the FT algorithm.

Table Table 1 shows the computational results of the PTAS for the planar dominating set problem. For every instance, we calculate the approximated solutions for two different values of k, 3 and 4, and, for every value of k, we calculate the [image: there is no content]-outer planar decomposition for every face of the instance. We choose the best value for an approximated solution. For some instances with small branchwidth, we also include the optimal solutions computed by the FT algorithm and reported in [21] in the column of ”Exact Alg.”. The size of a minimum dominating set of graph G, computed by the FT algorithm, is indicated by [image: there is no content] in Table 1, and for every value of k, [image: there is no content] is the size of dominating set computed by the PTAS. In the table, [image: there is no content] is the branchwidth of G, β is the branchwidth of a kernel H of G in the FT algorithm and the largest branchwidth of a kernel H of a [image: there is no content]-outer planar subgraph in PTAS. The running time is in seconds. For two large instances rand16000 and rand20000, we only compute [image: there is no content] but not the minimum dominating sets by the FT algorithm due to the memory constraint. These values of [image: there is no content] are identified by “*”.


Table 1. Computational results (time in seconds) of PTAS for the planar dominating set problem.



	

	
Graph

G

	
|E(G)|

	
bw

	
Exact Alg.

	
k = 3

	
k = 4




	
γ (G)

	
β

	
time

	
DPTAS

	
β

	
time

	
DPTAS

	
β

	
time






	
(1)

	
kroB150

	
436

	
10

	
23

	
10

	
10

	
28

	
8

	
2.07

	
-

	
-

	
-




	
pr299

	
864

	
11

	
47

	
11

	
37

	
56

	
10

	
11.42

	
-

	
-

	
-




	
tsp225

	
622

	
12

	
37

	
12

	
110

	
46

	
9

	
5.21

	
-

	
-

	
-




	
a280

	
788

	
13

	
43

	
13

	
337

	
53

	
10

	
8.40

	
51

	
12

	
12.09




	
rd400

	
1183

	
17

	
-

	
-

	
-

	
75

	
10

	
35.30

	
74

	
12

	
351.93




	
pcb442

	
1286

	
17

	
-

	
-

	
-

	
79

	
10

	
10.46

	
78

	
10

	
10.86




	
d657

	
1958

	
22

	
-

	
-

	
-

	
123

	
10

	
64.89

	
120

	
12

	
604.10




	
pr1002

	
2972

	
21

	
-

	
-

	
-

	
190

	
10

	
115.65

	
182

	
12

	
1253.9




	




	
(2)

	
tri2000

	
5977

	
8

	
321

	
7

	
198

	
361

	
7

	
175.59

	
-

	
-

	
-




	
tri4000

	
11969

	
9

	
653

	
7

	
1903

	
724

	
7

	
733.06

	
-

	
-

	
-




	
tri6000

	
17979

	
9

	
975

	
8

	
3576

	
1136

	
8

	
1994.53

	
-

	
-

	
-




	
tri8000

	
23975

	
9

	
1283

	
7

	
7750

	
1430

	
7

	
2858.63

	
-

	
-

	
-




	
tri10000

	
29976

	
9

	
1606

	
7

	
16495

	
1804

	
7

	
4977.06

	
-

	
-

	
-




	
tri11000

	
32972

	
14

	
-

	
-

	
-

	
1987

	
8

	
5910.8

	
1958

	
8

	
12341.1




	
tri12000

	
35974

	
14

	
-

	
-

	
-

	
2164

	
7

	
5370.18

	
2132

	
7

	
6865.08




	
tri14000

	
41974

	
15

	
-

	
-

	
-

	
2514

	
7

	
8220.49

	
2434

	
7

	
9208.72




	
tri16000

	
47969

	
16

	
-

	
-

	
-

	
2920

	
7

	
10060.1

	
2885

	
7

	
12794.4




	




	
(3)

	
rand6000

	
10293

	
11

	
1563

	
9

	
150

	
1658

	
8

	
104.85

	
-

	
-

	
-




	
rand10000

	
17578

	
13

	
2535

	
10

	
869

	
2850

	
8

	
535.87

	
2692

	
9

	
432.23




	
rand15000

	
26717

	
14

	
3758

	
12

	
2769

	
4144

	
10

	
1313.14

	
-

	
-

	
-




	
rand16000

	
28624

	
13

	
4002*

	
13

	
5917

	
4379

	
10

	
2443.27

	
4295

	
11

	
2027.7




	
rand20000

	
35975

	
14

	
4963*

	
14

	
13993

	
5465

	
10

	
4241.65

	
5368

	
12

	
5017.02




	
rand25000

	
40378

	
16

	
-

	
-

	
-

	
7101

	
8

	
6407.91

	
6632

	
12

	
9470




	




	
(4)

	
Gab500

	
949

	
13

	
115

	
12

	
238

	
136

	
10

	
18.02

	
129

	
10

	
18.95




	
Gab600

	
1174

	
14

	
135

	
14

	
3074

	
164

	
10

	
26.05

	
156

	
10

	
22.10




	
Gab700

	
1302

	
14

	
162

	
14

	
5710

	
187

	
10

	
22.81

	
183

	
10

	
24.30




	
Gab800

	
1533

	
17

	
-

	
-

	
-

	
225

	
10

	
51.82

	
205

	
12

	
24.30




	
Gab900

	
1758

	
17

	
-

	
-

	
-

	
243

	
10

	
48.39

	
231

	
12

	
344.50




	
Gab1000

	
1901

	
18

	
-

	
-

	
-

	
260

	
10

	
49.69

	
259

	
12

	
781.89




	
Gab1500

	
2870

	
21

	
-

	
-

	
-

	
402

	
10

	
116.37

	
385

	
12

	
960.71









In order to compare the size of dominating sets obtained from the PTAS with the optimal solutions, we include some instances with small branchwidth for every class of graphs, such that a minimum dominating set can be computed by FT Algorithm. The Exact Alg. column shows the results of FT Algorithm reported in [21]. We use two values for k to decompose the instances into [image: there is no content]-outer planar component. Notice that the branchwidth of every [image: there is no content]-outer planar graph is at most [image: there is no content]. Hence, by increasing k the size of subgraphs and their branchwidth will increase. Theoretical results suggest that increasing k gives smaller approximated solutions for minimization problems. Our computing results confirm the theoretical analysis of the k-outer planar decomposition method. For example, for [image: there is no content], every instance can be decomposed into subgraphs with a branchwidth of at most 12. This is the largest value of branchwidth that can be processed on our computational platform in a practical time.

Since the theory of NP-completeness has reduced hopes that NP-hard problems can be solved in polynomial time, heuristic and approximation algorithms have attracted more attentions. These algorithms compute near optimal solutions within a reasonable time for problems of practical size. We compare the performance of the PTAS with the performance of three different heuristic algorithms introduced in [22] for the planar dominating set problem. In what follows we briefly explain these heuristic algorithms (for more details please refer to [22]).

In [22], six heuristic algorithms for the dominating set problem are studied. We test the performance of these six methods, but only report three of them with better performances. The three reported heuristics are described below. Let D be a dominating set computed by these heuristics.



Greedy: Initially, D is empty. In each iteration, a vertex which dominates a maximum number of vertices in [image: there is no content] is added to D.

Greedy-Rev: Initially [image: there is no content]. In each iteration, a vertex is removed from D, such that the resulting set remains a dominating set of G. A vertex is chosen to be removed, by ordering the vertices of D in increasing node degree, and removing the first vertex that does not dominate any vertex uniquely.

Greedy-Vote: Initially, D is empty. This algorithm does not include a vertex u in D only based on the number of vertices which are dominated by u. It uses a more complex voting scheme to select a vertex to be included. We omit the details of the selection scheme and readers may refer to [22] for details.



We study the performances of the above heuristic algorithms for the four classes of planar graphs that are used in the study of the PTAS. These heuristic algorithms are implemented in C++. Table 2 shows the computational results of these heuristic algorithms and the PTAS. In Table 2, [image: there is no content], and [image: there is no content] are the sizes of dominating sets computed by the heuristic algorithm Greedy, Greedy-Rev, and Greedy-Vote, respectively. For every graph instance, if the size of the instance allows the application of the FT algorithm, we include the size of the minimum dominating set of the instance, as well. For the PTAS, we include the best result [image: there is no content] for every instance from Table 1. Time in the table is in seconds. The results in the table show that the heuristic algorithms are always faster than the PTAS. However, the size of dominating sets computed by the heuristics are larger than those by the PTAS for most of instances.


Table 2. Computational results for heuristic algorithms and PTAS for the planar dominating set problem (time in seconds).



	

	
Graph

G

	
|E(G)|

	
γ(G)

	
Greedy Alg.

	
Greedy-Rev Alg.

	
Greedy-Vote Alg.

	
PTAS




	
DGr

	
time

	
DRev

	
time

	
DVote

	
time

	
DPTAS

	
time






	
(1)

	
kroB150

	
436

	
23

	
27

	
0.002

	
31

	
0.01

	
31

	
0.002

	
28

	
2.08




	
pr299

	
864

	
47

	
54

	
0.003

	
63

	
0.032

	
62

	
0.005

	
56

	
11.42




	
tsp225

	
622

	
37

	
49

	
0.153

	
54

	
0.02

	
50

	
0.003

	
46

	
5.21




	
a280

	
788

	
43

	
51

	
0.004

	
62

	
0.025

	
62

	
0.006

	
51

	
12.09




	
rd400

	
1183

	
-

	
78

	
0.007

	
92

	
0.032

	
90

	
0.009

	
74

	
351.93




	
pcb442

	
1286

	
-

	
76

	
0.908

	
90

	
0.063

	
87

	
0.01

	
78

	
10.86




	
d657

	
1958

	
-

	
126

	
0.016

	
146

	
0.128

	
143

	
0.021

	
120

	
604.10




	
pr1002

	
2972

	
-

	
190

	
0.032

	
236

	
0.328

	
194

	
0.04

	
182

	
1253.9




	




	
(2)

	
tri2000

	
5977

	
321

	
365

	
0.116

	
379

	
1.119

	
464

	
0.168

	
361

	
175.59




	
tri4000

	
11969

	
653

	
729

	
0.183

	
765

	
1.792

	
787

	
0.544

	
724

	
733.06




	
tri6000

	
17979

	
975

	
1118

	
0.418

	
1166

	
4.14

	
1306

	
0.541

	
1136

	
1994.53




	
tri8000

	
23975

	
1283

	
1449

	
0.715

	
1522

	
7.003

	
1653

	
0.918

	
1430

	
2858.63




	
tri10000

	
29976

	
1606

	
1819

	
1.117

	
1906

	
11.524

	
2302

	
1.572

	
1804

	
4977.06




	
tri11000

	
32972

	
-

	
2040

	
1.375

	
2116

	
14.092

	
3431

	
2.561

	
1958

	
12341.1




	
tri12000

	
35974

	
-

	
2186

	
1.607

	
2278

	
16.538

	
2741

	
2.243

	
2132

	
6865.08




	
tri14000

	
41974

	

	
2576

	
2.462

	
2664

	
22.976

	
3317

	
3.163

	
2434

	
9208.72




	
tri16000

	
47969

	
-

	
2917

	
2.839

	
3033

	
30.694

	
3684

	
4.005

	
2885

	
12794.4




	




	
(3)

	
rand6000

	
10293

	
1563

	
1932

	
0.748

	
2166

	
4.517

	
2908

	
1.206

	
1658

	
104.85




	
rand10000

	
17578

	
2535

	
3197

	
2.06

	
3618

	
13.33

	
4164

	
2.878

	
2692

	
432.23




	
rand15000

	
26717

	
3758

	
4698

	
4.861

	
5402

	
29.487

	
7277

	
7.641

	
4144

	
1313.14




	
rand16000

	
28624

	
4002*

	
5039

	
5.176

	
5744

	
35.589

	
7552

	
10.327

	
4295

	
2027.7




	
rand20000

	
35975

	
4963*

	
6273

	
8.053

	
7168

	
55.948

	
8571

	
11.903

	
5398

	
5017.02




	
rand25000

	
45327

	
-

	
7772

	
12.467

	
8942

	
91.039

	
11865

	
20.615

	
6632

	
9470




	




	
(4)

	
Gab500

	
949

	
115

	
146

	
0.006

	
173

	
0.039

	
160

	
0.007

	
129

	
18.95




	
Gab600

	
1174

	
135

	
168

	
0.007

	
199

	
0.051

	
171

	
0.009

	
156

	
22.10




	
Gab700

	
1302

	
162

	
200

	
0.01

	
242

	
0.072

	
238

	
0.012

	
183

	
24.30




	
Gab800

	
1533

	
-

	
227

	
0.012

	
270

	
0.097

	
307

	
0.019

	
205

	
24.30




	
Gab900

	
1758

	
-

	
254

	
0.016

	
303

	
0.103

	
323

	
0.022

	
231

	
344.50




	
Gab1000

	
1901

	
-

	
280

	
0.019

	
344

	
0.146

	
423

	
0.03

	
259

	
781.89




	
Gab1500

	
2870

	
-

	
426

	
0.042

	
507

	
0.335

	
496

	
0.051

	
385

	
960.71









Based on our computational results, the Greedy algorithm gives the smallest dominating sets compared to other heuristic algorithms. Table 3 shows the results of our computational study for the FT algorithm, Greedy (the best heuristic method) and PTAS for graph instances whose branchwidths are small enough to run the FT algorithm.


Table 3. Computational results for Exact, Greedy and PTAS algorithms for small instances (time in seconds).



	

	
Graph

G

	
|E(G)|

	
Exact Alg.

	
Greedy Alg.

	
PTAS




	
γ(G)

	
time

	
DG

	
time

	
DPTAS

	
time






	
(1)

	
kroB150

	
436

	
23

	
10

	
27

	
0.002

	
28

	
2.08




	
pr299

	
864

	
47

	
37

	
54

	
0.032

	
56

	
11.42




	
tsp225

	
622

	
37

	
110

	
49

	
0.153

	
46

	
5.21




	
a280

	
788

	
43

	
337

	
51

	
0.004

	
51

	
12.09




	




	
(2)

	
tri2000

	
5977

	
321

	
198

	
365

	
0.116

	
361

	
175.59




	
tri4000

	
11969

	
653

	
1903

	
729

	
0.183

	
724

	
733.06




	
tri6000

	
17979

	
975

	
3576

	
1118

	
0.418

	
1136

	
1994.53




	
tri8000

	
23975

	
1283

	
7750

	
1449

	
0.715

	
1430

	
2858.63




	
tri10000

	
29976

	
1606

	
16495

	
1819

	
1.117

	
1804

	
4977.06




	




	
(3)

	
rand6000

	
10293

	
1563

	
150

	
1932

	
0.748

	
1658

	
104.85




	
rand10000

	
17578

	
2535

	
869

	
3197

	
2.06

	
2692

	
432.23




	
rand15000

	
26727

	
3758

	
2769

	
4698

	
4.861

	
4144

	
1313.14




	
rand16000

	
28624

	
4002*

	
5917

	
5039

	
5.176

	
4295

	
2027.7




	
rand20000

	
35975

	
4963*

	
13993

	
6273

	
8.053

	
5398

	
5017.02




	




	
(4)

	
Gab500

	
949

	
115

	
238

	
146

	
0.006

	
129

	
18.95




	
Gab600

	
1174

	
135*

	
3074

	
168

	
0.007

	
156

	
22.10




	
Gab700

	
1302

	
162*

	
5710

	
200

	
0.01

	
183

	
24.30











Since the branchwidth of graphs in Class(1) grow quickly in the size of graphs, we have only included small instances of this class in Table 3. From the results of the table, we recommend the FT algorithm for optimal solutions if the branchwidth of a graph in Class (1) is smaller than 14. For the instances of Class (2), FT Algorithm is time consuming. If the running time is the driving factor, we suggest the Greedy algorithm for this class of graphs. For the instances of Classes (3) and (4), as the results in Table 3 suggest, the sizes of dominating sets computed by Greedy are considerably bigger than those computed by the PTAS. Moreover, the FT algorithm is time consuming, rendering the PTAS a better choice. For instance, for graph instance rand20000 with 35,975 edges, the FT algorithm takes almost four hours to compute the size of an optimal dominating set (not the set itself), while the PTAS computes a dominating set of a slightly larger size than the optimal value in less than two hours.

Table Table 4 shows the computational results for the instances that the FT algorithm is not able to find an optimal solution in practical time and memory space. The computational results show that for all of these instances, except one, the [image: there is no content] is smaller than [image: there is no content]. In summary, for applications with running-time priority, Greedy is a better choice to compute an approximated dominating set, and if the running-time is not a big concern, the PTAS is a better option for instances whose optimal dominating set cannot be computed by the FT algorithm in a practical time.


Table 4. Computational results for Greedy and PTAS for large instances (time in seconds).



	

	
Graph

G

	
|E(G)|

	
Greedy Alg.

	
PTAS




	
DGr

	
time

	
DPTAS

	
time






	
(1)

	
rd400

	
1183

	
78

	
0.007

	
74

	
351.93




	
pcb442

	
1286

	
76

	
0.908

	
78

	
10.86




	
d657

	
1958

	
126

	
0.016

	
120

	
604.10




	
pr1002

	
2972

	
190

	
0.032

	
182

	
1253.9




	




	
(2)

	
tri11000

	
32972

	
2040

	
1.375

	
1958

	
12341.1




	
tri12000

	
35974

	
2186

	
1.607

	
2132

	
6865.08




	
tri14000

	
41974

	
2576

	
2.462

	
2434

	
9208.72




	
tri16000

	
47969

	
2917

	
2.839

	
2885

	
12794.4




	




	
(3)

	
rand25000

	
45327

	
7772

	
12.467

	
6632

	
9470




	




	
(4)

	
Gab800

	
1533

	
227

	
0.012

	
205

	
24.30




	
Gab900

	
1758

	
254

	
0.016

	
231

	
344.50




	
Gab1000

	
1901

	
280

	
0.019

	
259

	
781.89




	
Gab1500

	
2870

	
426

	
0.042

	
385

	
960.71













5. Concluding Remarks

It is mentioned that Baker’s k-outer planar graph decomposition framework can be applied to obtain a PTAS for the planar dominating set problem. We show that, in order to get a PTAS for the planar dominating set problem, the mentioned application needs some modification. We modify the application and give a PTAS for the planar dominating set problem. We also report a computational study on the modified PTAS. Computational studies on exact algorithms and heuristic algorithms for the planar dominating set problem have already been conducted, but no report on PTAS has yet been given. Our study on the PTAS makes the computational study of planar dominating set problem more comprehensive. For larger k, the PTAS gives better solutions, but is more time/memory consuming. Due to the computation platform limitation, we only evaluated the PTAS for small k. It would be interesting to test the practical performances of the PTAS for larger k on more powerful computation platforms. The practical performances of PTASes for other optimization problems in planar graphs are worth investigation.

The authors thank the anonymous reviewers for their constructive comments.
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