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Abstract:

 We study the problem of finding the minimum-length curvature constrained closed path through a set of regions in the plane. This problem is referred to as the Dubins Traveling Salesperson Problem with Neighborhoods (DTSPN). An algorithm is presented that uses sampling to cast this infinite dimensional combinatorial optimization problem as a Generalized Traveling Salesperson Problem (GTSP) with intersecting node sets. The GTSP is then converted to an Asymmetric Traveling Salesperson Problem (ATSP) through a series of graph transformations, thus allowing the use of existing approximation algorithms. This algorithm is shown to perform no worse than the best existing DTSPN algorithm and is shown to perform significantly better when the regions overlap. We report on the application of this algorithm to route an Unmanned Aerial Vehicle (UAV) equipped with a radio to collect data from sparsely deployed ground sensors in a field demonstration of autonomous detection, localization, and verification of multiple acoustic events.
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1. Introduction

Research in the area of unmanned aerial vehicles (UAV) has evolved in recent years. There is rich literature covering various areas of autonomy including path planning, trajectory planning, task allocation, cooperation, sensing, and communications. As the mission objectives of UAVs have increased in complexity and importance, problems are starting to arise at the intersection of these disciplines. The Dubins Traveling Salesman Problem with Neighborhoods (DTSPN) combines the problem of path planning with trajectory planning while using neighborhoods to represent communication ranges or sensor footprints. In this problem the UAV simply needs to enter a region surrounding each objective waypoint.


1.1. Relevant Literature

The path planning problem seeks to determine the optimal sequence of waypoints to visit in order to meet certain mission objectives while minimizing costs, such as the total length of the mission [1,2]. Path planning problems typically rely on approximating the cost of the mission by the length of the solution to a Euclidean Traveling Salesman Problem (ETSP), where the cost to travel from one waypoint to the next is approximated by the Euclidean distance between the two waypoints. This approximation simplifies the overall optimization but may lead to UAV routes that are far from optimal because the aircraft kinematic constraints are not considered.

Another area of UAV research is trajectory planning, in which the goal given an initial and final waypoint pair is to determine the optimal control inputs to reach the final waypoint in minimum time given kinematic constraints of the aircraft. In 1957, Dubins showed that for an approximate model of aircraft dynamics, the optimal motion between a pair of waypoints can be chosen among six possible paths [3]. Similar results were proven later in [4] using tools from optimal control theory. In [5], the authors propose a means of choosing the optimal Dubins path without computing all six possible Dubins optimal paths.

A significant amount of research has gone into combining the problems of motion planning and path planning [6,7,8,9,10]. In these works, the dynamics of the UAV are taken into consideration by using the Dubins model when determining the optimal sequence of waypoints. This problem is typically referred to as the Dubins Traveling Salesman Problem (DTSP).

A third area of UAV related research is a version of path planning that takes into account the communication range of the aircraft or the sensor footprint of the aircraft. This problem is best described as a Traveling Salesman Problem with Neighborhoods (TSPN). Now, not only does one determine a sequence of regions but also an entry point at each region. Many researchers have addressed this problem with various regions, but most have used the Euclidean distance as the cost function [11,12,13]. Obermeyer was the first to tackle the TSPN with the Dubins vehicle model in [14] using a genetic algorithm approach, then later in [15] by using a sampling-based roadmap method, which we will call RCM, that is proven to be resolution complete. In the latter method, the DTSPN is transformed into a General Traveling Salesman Problem (GTSP) with non-overlapping node sets, and then to an Asymmetric Traveling Salesmen Problem (ATSP) through a version of the Noon and Bean transformation [16].



1.2. Contributions

We propose an algorithm to approximate the DTSPN via a sampling-based roadmap method similar to that of [15] but use a more general version of the Noon and Bean transformation [17] in which the GTSP can contain intersecting node sets. We show that for the same set of samples this method will produce a tour that is no longer than that of RCM from [15] and performs significantly better when the regions intersect frequently. Finally, we report on the application of this algorithm to guide a UAV in collecting data from a sparsely deployed sensor network.

The proposed method converts the DTSPN into a GTSP by sampling, and the Noon and Bean transformation is used to convert the resulting problem into an ATSP, a problem with numerous exact and approximate solvers. The optimal solution of the GTSP can then be recovered from the optimal solution to the resulting ATSP. It should be noted that the Noon and Bean transformations [16,17] only preserve the optimal solution. There is no guarantee that suboptimal solutions to the ATSP will result in good solutions or even feasible solutions to the GTSP [18]. However, experimental results exist that show that the Noon and Bean transformation works well for small to moderate instances of the GTSP [19]. In our experience, the Noon and Bean transformation was suitable for solving GTSP instances of several hundred nodes without any feasibility issues. For very large instances it may be appropriate to avoid the transformation to an ATSP by using a direct GTSP solver such as the memetic algorithm due to Gutin and Karapetyan [18].



1.3. Organization

The remainder of this article is organized as follows. In Section 2, the Dubins Traveling Salesman Problem with Neighborhoods is formally introduced. Section 3 describes the proposed approximation algorithm for the DTSPN. In Section 4, we present a numerical study comparing our algorithm with an existing algorithm for various sized regions and various amounts of overlap. The results from a field demonstration are reported in Section 5 along with a summary of modifications necessary for operational deployment. Conclusions and future work are discussed in Section 6.




2. Problem Statement

The kinematics of the UAV can be approximated by the Dubins vehicle in the plane. The pose of the Dubins vehicle X can be represented by the triplet [image: there is no content], where [image: there is no content] define the position of the vehicle in the plane and [image: there is no content] defines the heading of the vehicle. The vehicle kinematics are then written as,



[image: there is no content]



(1)




where ν is the forward speed of the vehicle, ρ is the minimum turning radius, and [image: there is no content] is the bounded control input. Let [image: there is no content] associate the length [image: there is no content] of the minimum length path from an initial pose [image: there is no content] of the Dubins vehicle to a final pose [image: there is no content], subject to the kinematic constraints in Equation (1). Notice that this length depends implicitly on the forward speed of the vehicle and the minimum turning radius through the kinematic constraints in Equation (1). This length, which we will refer to as the Dubins distance from [image: there is no content] to [image: there is no content], can be computed in constant time [5].
Let [image: there is no content] be set of n compact regions in a compact region [image: there is no content], and let [image: there is no content] be an ordered permutation of [image: there is no content]. Define a projection from [image: there is no content] to [image: there is no content] as P:SE(2)→[image: there is no content], i.e., P(X)=xyT, and let [image: there is no content] be an element of [image: there is no content] whose projection lies in [image: there is no content]. We denote the vector created by stacking a vehicle configuration [image: there is no content] for each of the n regions as [image: there is no content].

The DTSPN involves finding the minimum length tour in which the Dubins vehicle visits each region in R while obeying the kinematic constraints of Equation (1). This is an optimization over all possible permutations Σ and configurations P. Stated more formally:

Problem 2.1 (DTSPN).



minimizeΣ,PLρ(Pσn,Pσ1)+∑i=1n-1Lρ(Pσi,Pσi+1)subject toP([image: there is no content])∈[image: there is no content],i=1,…,n








The problem presented in Problem 2.1 is combinatorial in Σ, the sequence of regions to visit and infinite dimensional in P, the poses of the vehicle. We present an algorithm to convert this problem to a finite dimensional combinatorial optimization on a graph by first generating a set of [image: there is no content] sample configurations [image: there is no content], [image: there is no content] such that



P(Sk)∈⋃i=1n[image: there is no content],k=1,…,m



(2)




and ∀i∃ks.t.P(Sk)∈[image: there is no content]. The algorithm then approximates Problem 2.1 by finding the best sample configurations [image: there is no content] and the order Σ in which to visit them.
Problem 2.2 (Sampled DTSPN).



minimizeΣ,PLρ(Pσn,Pσ1)+∑i=1n-1Lρ(Pσi,Pσi+1)subject toPi∈SP([image: there is no content])∈[image: there is no content],i=1,…,n










3. DTSPN Intersecting Regions Algorithm

Problem 2.2 can now be formulated as a Generalized Traveling Salesman Problem (GTSP) with intersecting node sets in the following manner. The GTSP can be described with a directed graph [image: there is no content], with nodes N and arcs A where the nodes are members of predefined node sets [image: there is no content]. Here each node represents sample vehicle pose [image: there is no content], and the arc connecting node [image: there is no content] to node [image: there is no content] represents the length of the minimum length path for a Dubins vehicle c[image: there is no content]=Lρ([image: there is no content],[image: there is no content]) from configuration [image: there is no content] to configuration [image: there is no content]. The node set [image: there is no content] corresponding to region [image: there is no content] contains all samples whose projection lies in [image: there is no content], [image: there is no content]:={[image: there is no content]|P([image: there is no content])∈[image: there is no content]} for [image: there is no content] and [image: there is no content]. The objective of the GTSP is to find a minimum cost cycle passing through each node set exactly one time. An example instance of Problem 2.2 can be seen in Figure 1(a).

Figure 1. Example DTSPN with the corresponding “GTSP with intersecting node sets”. (a) Example instance of DTSPN with three circular regions R1,R2,andR3 and samples [image: there is no content]. The circuit through samples [image: there is no content],and,S8 is the optimal tour; (b) Problem (P0): A GTSP with intersecting node sets representation of the DTSPN example. Note: only an essential subset of arcs is shown for clarity of illustration.
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Next, the GTSP can be converted to an Asymmetric TSP through a series of graph transformations due to Noon and Bean [17]. What follows is a brief summary of the Noon–Bean transformation from [17] as it is used in this work. The transformation is best described in three stages. The first stage converts the asymmetric GTSP to a GTSP with mutually exclusive node sets. The second stage converts the GTSP to the canonical form by eliminating intra-set arcs. Finally the third stage converts the canonical form to a clustered TSP and then to an Asymmetric TSP.




3.1. Stage 1

We begin by restating the problem above in a compact manor to facilitate the discussion. Problem [image: there is no content] is a GTSP defined by the graph [image: there is no content] with the corresponding cost vector [image: there is no content]. An example of Problem (P0) is shown in Figure 1(b). The first stage converts the GTSP [image: there is no content] to a new problem [image: there is no content] which is a GTSP with mutually exclusive node sets. This is done by first eliminating any arcs from [image: there is no content] that do not enter at least one new node set.

Problem [image: there is no content] is a GTSP defined by the graph [image: there is no content] with the corresponding cost vector [image: there is no content]. Where [image: there is no content], and [image: there is no content]. The arc set [image: there is no content] is formed by first setting [image: there is no content]=[image: there is no content], and then removing any edges that do not enter at least one new node set. Let [image: there is no content] denote the set of node sets of which node i is a member, i.e., if i∈[image: there is no content], then [image: there is no content]. For every [image: there is no content]∈[image: there is no content], if [image: there is no content], then remove the arc [image: there is no content] from set [image: there is no content], see Figure 2(a).

Figure 2. Example of Problem (P1) and Problem (P2) from Stage 1 of transformation. (a) Problem (P1): Any arcs that do not enter at least one new node set [image: there is no content] and [image: there is no content] have been removed from the graph in Problem (P0); (b) Problem (P2): A large finite cost α is added to each edge. Here [image: there is no content], where [image: there is no content] is defined in Equation (4).



[image: Algorithms 06 00084 g002 1024]







Next, a constant is added to the cost of each arc entering a new node set. Problem [image: there is no content] is a GTSP defined by the graph [image: there is no content] with the corresponding cost vector [image: there is no content]. Where [image: there is no content], A2=[image: there is no content], and [image: there is no content]. Notice that all arc costs are nonnegative. We now define a finite, positive constant α as,



∞>α≥∑[image: there is no content]∈[image: there is no content]c[image: there is no content]1



(3)




For every arc [image: there is no content]∈[image: there is no content], set the cost of the arc [image: there is no content]∈A2 in the following manner,


[image: there is no content]=(|M(j)-{M(i)∩M(j)}|)α+c[image: there is no content]1



(4)




Here [image: there is no content], represents the cardinality of the set Z. Notice that Equation (4) adds to the original arc cost an additional cost of α for each new node set entered by arc [image: there is no content]. An example of Problem (P2) can be seen in Figure 2(b), where [image: there is no content] represents [image: there is no content].
Next, any nodes that belong to more than one node set are duplicated and placed in different node sets so as to allow each node to have membership in only one node set. Problem [image: there is no content] is a GTSP over the graph [image: there is no content] with the corresponding cost vector [image: there is no content]. The set of nodes [image: there is no content] will be populated with the same set of nodes in [image: there is no content] plus the additional nodes created to account for the nodes that fall into multiple node sets. For every i∈[image: there is no content], create [image: there is no content] nodes and assign each to a different node set. For all [image: there is no content], add the node [image: there is no content] to [image: there is no content], and to the node set [image: there is no content]. This insures that |M([image: there is no content])|=1. Any arcs to and from the original nodes are duplicated as well. For every arc [image: there is no content]∈A2, create the arc [image: there is no content] with the corresponding cost cip,jq3=[image: there is no content] for every [image: there is no content] and [image: there is no content]. In addition, zero cost arcs are added between all the spawned nodes of each multiple membership node. For each node i∈[image: there is no content] with multiple node set membership [image: there is no content], create arcs [image: there is no content] with associated costs [image: there is no content] for all [image: there is no content], such that [image: there is no content]. See Figure 3(a) for an example of Problem (P3).

Figure 3. Example of Problem (P3) and Problem (P4) from Stage 1 and Stage 2 of transformation. (a) Problem (P3): Nodes [image: there is no content] and [image: there is no content] from (P2) lie in multiple node sets. These nodes are duplicated and the spawned nodes [image: there is no content] and [image: there is no content] are placed in node set [image: there is no content]. Zero cost arcs (dashed arrows) are added connecting [image: there is no content] to [image: there is no content] and [image: there is no content] to [image: there is no content]; (b) Problem (P4): The intra-set arc (5,3′) from Problem (P3) is removed.
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To summarize, Stage 1 of the Noon–Bean transformation takes GTSP with intersecting node sets and transforms it into a GTSP with mutually exclusive node sets. The following theorem from [17] summarizes the relationships between problems [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content].

Theorem 3.1 (Noon and Bean [17]). Given a GTSP in the form of [image: there is no content], we can transform the problem to a problem of the form of [image: there is no content]. Given an optimal solution to [image: there is no content]with cost less than [image: there is no content], we can construct an optimal solution to [image: there is no content]. If an optimal solution to [image: there is no content]has a cost greater than or equal to [image: there is no content], the problem [image: there is no content]is infeasible.



3.2. Stage 2

The second stage takes the GTSP with mutually exclusive node sets and eliminates any intra-set arcs, leaving a GTSP in “canonical form.” Define a problem [image: there is no content] that differs from problem [image: there is no content] only by the arcs and arc costs. Problem [image: there is no content] is a GTSP over the graph [image: there is no content] with the corresponding cost vector [image: there is no content] where [image: there is no content]=[image: there is no content] and [image: there is no content]. The arc set [image: there is no content] is populated in the following manner. For every [image: there is no content] pair of nodes in [image: there is no content] for which [image: there is no content], calculate the lowest cost path from i to j over the arc set A[image: there is no content]⊆A3. An arc (k,l)∈A[image: there is no content] if the following four conditions hold,


	[image: there is no content],


	[image: there is no content],


	if [image: there is no content] then [image: there is no content] must also equal [image: there is no content],


	if [image: there is no content] then [image: there is no content] must also equal [image: there is no content].




If the shortest path has finite cost, add the arc [image: there is no content] to the arc set [image: there is no content], and set the corresponding arc cost c[image: there is no content]4 equal to the shortest path cost. If no feasible path exists, then the arc [image: there is no content] will not be part of [image: there is no content]. The problem defined on [image: there is no content] is now in the GTSP canonical form with mutually exclusive node sets and no intra-set arcs. See Figure 3(b) for an example of Problem (P4). The following theorem from [17] establishes the correctness of the transformation in Stage 2.

Theorem 3.2 (Noon and Bean [17]). Given an optimal solution, [image: there is no content], to [image: there is no content], we can construct the optimal solution, [image: there is no content], to [image: there is no content].



3.3. Stage 3

The third stage of the transformation converts the canonical GTSP to a “clustered” TSP. Problem [image: there is no content] is a clustered TSP over the graph [image: there is no content] with the corresponding cost vector [image: there is no content] where [image: there is no content]. For every node set [image: there is no content] corresponding to nodes in [image: there is no content], define a cluster [image: there is no content] corresponding to the nodes in [image: there is no content]. The nodes in each cluster are first enumerated. Let [image: there is no content] denote the ordered nodes of [image: there is no content] where r represents the cardinality of the cluster, r=|[image: there is no content]|. Next, a zero cost cycle is created for each cluster by adding zero cost edges between consecutive nodes in each cluster and connecting the first node to the last. For each cluster i with [image: there is no content], add the arcs [image: there is no content] to [image: there is no content], and for each of these intra-cluster arcs assign a zero cost, i.e., [image: there is no content]. The inter-set edges are then shifted so they emanate from the previous node in its cycle. For every inter-set arc (ik,jl)∈[image: there is no content], with [image: there is no content], create the arc (ik-1,jl)∈[image: there is no content] with the corresponding cost, [image: there is no content]. For each interest arc (i1,jl)∈[image: there is no content], create the arc (ir,jl)∈[image: there is no content] with the corresponding cost, [image: there is no content], where r=|[image: there is no content]|. See Figure 4(a) for an example of Problem (P5).

Figure 4. Example of Problem (P5) and Problem (P6) from Stage 3 of transformation. (a) Problem (P5): The clustered TSP is created by forming zero cost intra-set cycles and adjusting the originating node in each inter-set arc; (b) Problem (P6): A large finite cost β is added to each inter-set edge. Here c¯[image: there is no content]=c[image: there is no content]6, where c[image: there is no content]6 is defined in Equation (5). The optimal tour is shown in red with a cost of [image: there is no content].
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Finally, the clustered TSP is converted to an ATSP by adding a large finite cost to each inter-cluster arc cost.

Problem [image: there is no content] is a ATSP over the graph [image: there is no content] with the corresponding cost vector [image: there is no content] where N6=[image: there is no content] and A6=[image: there is no content]. The arc costs are differ from [image: there is no content] in the following way. For every arc [image: there is no content]∈A6, if i and j belong to the same clusters in [image: there is no content], then c[image: there is no content]6=c[image: there is no content]5. If i and j belong to different clusters in [image: there is no content], then



c[image: there is no content]6=c[image: there is no content]5+β



(5)




where


∞>β>∑[image: there is no content]∈[image: there is no content]c[image: there is no content]5



(6)




An example can be seen in Figure 4(b), where c¯[image: there is no content] depicts c[image: there is no content]6. The optimal tour is shown in red.
The following theorem from [17] establishes the correctness of the transformation in Stage 3.

Theorem 3.3 (Noon and Bean [17]). Given a canonical GTSP in the form of [image: there is no content]with n node sets, we can transform the problem into a standard TSP in the form of [image: there is no content]. Given an optimal solution [image: there is no content]to [image: there is no content]with [image: there is no content][image: there is no content]<(n+1)β, we can construct an optimal solution [image: there is no content]to [image: there is no content].





3.4. Performance Comparison

The Intersecting Regions Algorithm (IRA) proposed here is similar to the Resolution Complete Method (RCM) proposed in [15] with the key exception that we use the fact that visiting one of the samples in the intersection of multiple regions achieves the goal of visiting all the regions in the intersection. Figure 5 illustrate this key difference. The RCM requires mutually exclusive node sets for the conversion from DTSPN to a GTSP with disjoint node sets. To meet this requirement, samples are assigned directly to the node set of the region from whose boundary they are drawn, as depicted in Figure 5(b). If multiple regions overlap and a sample lies in the intersection, IRA assigns this sample to all the node sets corresponding to the intersecting regions, as depicted in Figure 5(a), while RCM does not. The IRA then uses this additional information in the optimization.

Figure 5. A comparison of IRA and RCM on an example DTSPN instance with three regions and three sample poses. (a) Example Tour: IRA, Tour Length [image: there is no content]; (b) Example Tour: RCM, Tour Length [image: there is no content].
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Theorem 3.4 (IRA Performance). Given [image: there is no content], the set of [image: there is no content]possibly intersecting regions, R, and the set of m sample configurations, S, let [image: there is no content]and [image: there is no content]denote the tours produced by IRA and the RCM [15], respectively. Then the length of [image: there is no content]is no greater than that of [image: there is no content],



length([image: there is no content])≤length([image: there is no content])



(7)




Proof. [Proof of Theorem 3.4] Let T={S1,[image: there is no content],…,Sn} be a feasible tour, and note that both IRA and RCM minimize the tour length plus an additive constant while ensuring that all regions are visited. The difference is that IRA may produce tours visiting fewer than n unique samples, should some samples lie in the multiple regions. In particular, the IRA ensures that each leg of the tour enters at least one new region, by construction. Therefore, in performing the optimization IRA will either consider T, or subset of T, in which samples at the end of legs not entering an unvisited region have been removed. Due to the Dubins distance function satisfying the triangle inequality [20], a tour that visits a redundant sample will be longer than a tour that visits a subset of the samples. The optimal tour [image: there is no content] cannot be longer than [image: there is no content], because both optimize over the same set of feasible tours except for the tours in which IRA bypasses these unneeded samples.     ☐
The property resolution complete method as used in [15], dictates that the method converges to a solution at least as good as any nonisolated optimum solution as the number of sample configurations goes to infinity.

Corollary 3.5 (IRA is Resolution Complete). Given [image: there is no content], the set of [image: there is no content]possibly intersecting regions, R, and the set of m sample configurations, S drawn from a Halton quasi-random sequence [21] as in RCM, then IRA is Resolution Complete.

Proof. [Proof of Corollary 3.5] From [15], the RCM is a resolution complete method and converges as the number of samples goes to infinity, and from Theorem 3.4, we have shown that for the same set of sample configurations IRA will produce a tour that is no longer than RCM.     ☐





3.5. Complexity of Intersecting Regions Algorithm

We have provided an algorithm that takes advantage of sample configurations that lie in overlapping regions, and we have shown that this algorithm produces a tour that is no longer than the previous best algorithms in the literature. However, the size of the ATSP is increased by the number of multiple node set duplicate nodes. Given m samples from n regions, this algorithm will compute the ATSP over at most [image: there is no content] nodes. The worst case computational complexity of the Noon and Bean transformation [17] is [image: there is no content]. Then the worst case complexity for solving the ATSP using the modified version of Christofides’ algorithm provided in [22] is [image: there is no content].




4. Numerical Results

In Theorem 3.4 we have shown that for the same sample set, IRA will perform no worse than the resolution complete method from [15], but at the cost of solving a larger ATSP problem when there exist samples that are contained in multiple regions. In this section, we use Monte Carlo simulation to investigate the level of performance improvement that can be gained as well as the degree of increase in the size of the resulting ATSP by using IRA compared with the RCM.



The centers of circular regions of variable but homogeneous diameters are randomly placed in a square of variable side length. By varying both the size of regions and the area in which the centers of the regions are confined we are able to vary the degree of overlap. The turning radius of the UAV ρ is set to unit radius. To solve for the tours we used the symmetric TSP solver linkern available at [23], which uses the Chained Lin–Kernighan Heuristic from [24]. The radii of the circular regions were varied over [image: there is no content], and the length of the sides of the square were varied over [image: there is no content].

For the first test, we ran 100 trials where 10 regions were randomly placed in the bounding box and 50 samples were drawn from the boundaries of the regions. The results can be seen in Figure 6, where the average ratio of the length of the tours found by the IRA to those found by RCM are displayed for each test configuration (Figure 6(a)) as well as the average ratio of the size of the resulting ATSP (Figure 6(b)). In a second test, we repeated the same test parameters where IRA optimized over 50 sample poses, but allowed the RCM to optimize over the same 50 samples plus an additional sample for each duplicated node in the IRA. These extra samples ensured that both algorithms solved the same size ATSP. The results can be seen in Figure 7, where the average ratio of the length of the tours found by the IRA to those found by RCM are displayed for each test configuration. In both instances, it is clear that for small regions and large bounding box (bottom right of plots), there is little to no overlap, and the two algorithms perform equivalently. The tests of interest are when the regions grow, and the bounding area shrinks (moving from bottom right to top left). For these cases we see that on average, IRA finds tours that are nearly half the length of RCM. It should be noted that as the density increases, there becomes a point where a single sample will be contained in all regions (the top left corner). In this case, RCM would still visit n samples (one from each region) while IRA would only visit the single sample contained in all regions. In practice there is no need for planning once it is recognized that a single loiter circle will visit all the regions, thus both algorithms were assigned the length of one loiter radius. It should also be noted that the size of the resulting ATSP is increased by only as much as [image: there is no content], which is significantly less than the worst case analysis would predict [image: there is no content].

Figure 6. Simulation results for 100 Monte Carlo trials where both IRA and RCM optimized over the same 50 sample poses. (a) The color represents the average of the ratio of the tour length under IRA to the tour length under the RCM planning algorithm. Here the red regions indicate near parity in performance while the blue regions indicate that IRA produced tours that are approximately half the length of tours produced by the RCM algorithm; (b) The color represents the average of the ratio of the size of the ATSP solved under IRA to the size of the ATSP solved under the RCM planning algorithm. Here the blue regions indicate near parity in size while the red regions indicate that IRA increased the size of the ATSP by as much as four times.
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Figure 7. Simulation results for the where IRA optimized over 50 sample poses and RCM optimized over the same 50 samples plus an additional sample for each duplicated node in the IRA. These extra samples ensured that both algorithms solved the same size ATSP.
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5. Demonstration

The algorithm presented here was demonstrated as part of a large field test conducted in June 2011 at Camp Roberts, CA by a team consisting of Teledyne Scientific Company, the University of California, Santa Barbara, the U.S. Army Research Laboratory, the U.S. Army Engineer Research and Development Center, and IBM UK. The goal of the field test included the integration of multiple autonomously controlled UAVs to gather information regarding the detection and localization of multiple acoustic events by sparsely deployed ground sensors, and the use of the International Technology Alliance (ITA) Sensor Network Fabric [25].

A schematic of the system used in the deployment is shown in Figure 8(a). We deployed six ToA sensors over a region that was roughly [image: there is no content] km ×0.5 km in size. We used GPS receivers at each sensor to estimate their locations and synchronize them in time. Two propane cannons that have acoustic characteristics similar to artillery were fired randomly and potentially close to one another in time. A UAV traveled along a DTSPN tour produced by IRA, gathering ToAs and inferring possible event locations. When the inference algorithm had sufficient confidence in a candidate event, it dispatched a second UAV, fitted with a gimbaled camera, to fly over the estimated location and image the source. The data gathering and event imaging was done continuously, with the events being imaged on a first come first served basis.

Figure 8. The configuration of sensors and UAV trajectory during the field demonstration at Camp Roberts, CA. (a) Field Demonstration Description. The acoustic sensors visited by the data collecting UAV are shown as yellow dots; (b) The blue lines represent the GPS logs of the path taken by data collecting UAV during the test. The desired path was sent to the autopilot via the square waypoints. The sensors and communication regions are represented by green and blue circles respectively.
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5.1. Modifications for the Demonstration

The Intersecting Regions Algorithm from above is designed as a path planning algorithm. If the planned path is followed in an open-loop fashion, the system is susceptible to disturbances such as wind and modeling errors. As such the IRS was modified slightly to be more robust to disturbances such as wind as well as allow for waypoint control of the UAV. The first modification of the routing algorithm reduced the size of the communication regions in the optimization to ensure that the resulting path would penetrate the original communication region even under the influence of small disturbances. The second modification involved sampling the desired path to obtain a finite sequence of waypoints to command to the UAV autopilot.

The route flown by the mule-UAV and the communication regions used in the DTSPN path planning algorithm are shown in Figure 8(b). It took on average two minutes and fifty seconds for the mule-UAV to complete the circuit and collect measurements from all ground sensors. This time is conservative due to the modifications to the algorithm that ensure that the UAV enters into each communication region (radius [image: there is no content] m).




6. Conclusions

We have introduced an algorithm addressing the Dubins Traveling Salesman Problem with Neighborhoods. This algorithm samples the regions and then utilizes the Noon and Bean transformation [17] for intersecting node sets to transform the problem to an ATSP. We show that for the same set of samples this method will produce a tour that is no longer than that of [15] and presented numerical results that show performance improvement when there is overlap in the regions of interest.

There are many directions in which this work may be extended. Although we have focused on the Dubins model for a fixed wing UAV, the IRA could be applied to any nonholonomic vehicle whose node to node cost is well defined. Also, it is of interest to understand if a deterministic way to sample the configurations would be of benefit in possibly reducing the number samples needed to achieve a certain level of performance. For instance, if there is significant overlap, would it be beneficial to ensure that at least one sample is taken from each subregion. Finally, for large instances of the DTSPN, we are interested in comparing the performance of this method with direct GTSP solvers such as the memetic algorithm due to Gutin and Karapetyan [18].
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