

 Efficient Algorithms for Subgraph Listing

Efficient Algorithms for Subgraph Listing

Algorithms 2014, 7(2), 243-252; doi:10.3390/a7020243

Article

Efficient Algorithms for Subgraph Listing

Niklas Zechner 1,* and Andrzej Lingas 2

1

Department of Computing Science, Umea University, 901 87 Umea, Sweden

2

Department of Computer Science, Lund University, 221 00 Lund, Sweden

*

Author to whom correspondence should be addressed; Tel.: +46-90-786-9672; Fax: +46-90-58014.

Received: 6 March 2014; in revised form: 4 May 2014 / Accepted: 7 May 2014 / Published: 15 May 2014

Abstract:

Subgraph isomorphism is a fundamental problem in graph theory. In this paper we focus on listing subgraphs isomorphic to a given pattern graph. First, we look at the algorithm due to Chiba and Nishizeki for listing complete subgraphs of fixed size, and show that it cannot be extended to general subgraphs of fixed size. Then, we consider the algorithm due to Gąsieniec et al. for finding multiple witnesses of a Boolean matrix product, and use it to design a new output-sensitive algorithm for listing all triangles in a graph. As a corollary, we obtain an output-sensitive algorithm for listing subgraphs and induced subgraphs isomorphic to an arbitrary fixed pattern graph.

Keywords:

subgraph; subgraph isomorphism; subgraph listing; clique; triangle; output-sensitive algorithm; time complexity

1. Introduction

We shall consider undirected graphs. The decision version of the subgraph isomorphism problem is to decide if a host graph has a subgraph isomorphic to a pattern graph. The search version asks for finding a subgraph of the host graph isomorphic to the pattern graph. In the counting version, the number of subgraphs of the host graph isomorphic to the pattern graph should be reported. Finally, the listing version asks for a list of all subgraphs of the host graph isomorphic to the pattern graph.

A subgraph of the host graph is induced if it retains all edges of the host graph between its nodes. By replacing “subgraph” with “induced subgraph”, we obtain the corresponding versions of induced subgraph isomorphism.

The decision versions of subgraph isomorphism and induced subgraph isomorphism are NP-complete in general. Special cases of these problems include the independent set, clique, Hamiltonian cycle, and Hamiltonian path, all of which are known to be NP-complete [1]. However, for pattern graphs of fixed size, all these problems admit polynomial-time solutions. Namely, for a pattern graph with [image: there is no content] nodes and a host graph with n nodes, the brute force method yields a solution in [image: there is no content] time. Since there might be up to [image: there is no content] subgraphs or induced subgraphs isomorphic to the pattern graph, the brute force method cannot be substantially asymptotically improved in case of the listing versions in general. This however does not exclude the possibility of faster listing algorithms for restricted graph classes and output-sensitive algorithms whose complexity depends on the size of the output list of isomorphic subgraphs.

In the first part of this paper, we look at an algorithm by Chiba and Nishizeki [2], which lists all occurrences of complete subgraphs of size s. It assumes that the host graph has bounded arboricity. The arboricity of a graph is the minimum number of forests (i.e., sets of edge-disjoint trees) that are needed to cover the graph. The algorithm runs in [image: there is no content] time, where a is the arboricity of the host graph and m is its number of edges. We show that this upper bound on the running time cannot be extended to general pattern graphs—for any pattern graph that is connected but not complete, the time has to be at least quadratic in the number of nodes of the host graph.

In the second part, we consider the problem of listing all triangles, that is, complete subgraphs of size three (cf. [3]). Using the matrix product, we can find out which of the edges participate in any triangle, and how many triangles each of them belongs to [4]. Then, in order to list the triangles, we use the k-witness algorithm developed by Gąsieniec et al. [5]. It finds multiple witnesses of a Boolean matrix product (see Preliminaries), which can be used to list for each edge the triangles it participates in. The k-witness algorithm takes a parameter k and finds for each entry all the witnesses up to a maximum of k witnesses, so it is useful when no edge is in more than a small number of triangles. We devise a new algorithm, which uses the k-witness algorithm for those edges that are in few triangles, and otherwise a straightforward method checking all nodes incident to an endpoint of an examined edge. We show that the asymptotic time of this combined algorithm is less than that of the brute force algorithm in all cases except when the number of triangles is nearly cubic. For a graph with n nodes and l triangles, our combined algorithm lists all triangles in time [image: there is no content] for [image: there is no content], [image: there is no content] for [image: there is no content] and [image: there is no content] for [image: there is no content], where [image: there is no content] stands for [image: there is no content].

Nes̆etr̆il and Poljak present a straightforward reduction of subgraph isomorphism or induced subgraph isomorphism to triangle detection [6]. The reduction also works for the counting and listing versions. By using it, we can also generalize our combined algorithm to include listing of subgraphs or induced subgraphs isomorphic to an arbitrary fixed pattern graph. For a graph with n nodes and l subgraphs (induced subgraphs, respectively) isomorphic to a fixed pattern graph with h nodes, our combined algorithm lists all the aforementioned subgraphs in time [image: there is no content] for [image: there is no content], [image: there is no content] for [image: there is no content], and [image: there is no content] for n2.3940⌈h/3⌉⩽l<n3⌈h/3⌉.

Other Related Work

Itai and Rodeh present several algorithms for triangle detection in their pioneering work [3], some of which can easily be adapted to include triangle listing (see Fact 1 in Preliminaries). A good survey over known algorithms and heuristics for triangle counting and listing can be found in [7].

2. Preliminaries

A subgraph of the graph [image: there is no content] is a graph [image: there is no content] such that [image: there is no content] and [image: there is no content].

An induced subgraph of the graph [image: there is no content] is a graph [image: there is no content] such that [image: there is no content] and [image: there is no content].

The arboricity [image: there is no content] of a graph G is the minimum number of forests needed to cover all its edges.

The adjacency matrix A of a graph [image: there is no content] is the matrix where an entry [image: there is no content] is 1 if [image: there is no content], and otherwise 0.

A witness of an entry [image: there is no content] of the Boolean matrix product C of two matrices A and B is any index k such that [image: there is no content] and [image: there is no content] are equal to 1 [5].

The following fact is implicit in [3]:

Fact 1.

All triangles in a graph with n nodes and m edges can be listed in [image: there is no content]time.

Form a list of all edges of the graph. Scan the list. For each edge, count the number of triangles formed by it and a node incident to its endpoint that have not been counted for edges scanned before.

Fact 2.

The fast matrix multiplication algorithm runs in [image: there is no content]time, where ω is not greater than 2.3727 [8] (cf. [9]).

Fact 3.

The k-witness algorithm from [5] takes as input an integer k and two [image: there is no content]Boolean matrices, and returns a list of all witnesses to each entry in the Boolean matrix product of those matrices, up to a maximum of k witnesses for an entry. It runs in [image: there is no content]time, where [image: there is no content](see [13]). One can rewrite the upper time bound as [image: there is no content], where [image: there is no content][5].

3. A Lower Bound on Listing

Chiba and Nishizeki [2] describe an algorithm for finding complete subgraphs of size s. If the host graph has an arboricity a, they show that their algorithm runs in [image: there is no content] time, where m is the number of edges in the host graph. Since a tree with n nodes always has [image: there is no content] edges, a graph with arboricity a always has less than [image: there is no content] edges, so for a constant a, this is essentially linear time. We show that this upper bound for the running time cannot be extended to general pattern graphs. If the pattern graph is connected but not complete, it is possible to find a sequence of host graphs containing a number of induced subgraphs isomorphic to the pattern graph that is quadratic in the number of nodes. It follows that there is no algorithm that lists all of them in less than quadratic time.

We start by proving that every graph, unless it is complete or disconnected, has three nodes connected in a V-shape—two of them connect to the third but not to each other. Knowing that, we can create multiple copies of the end nodes of the V-shape, in a way that does not increase the arboricity. That gives us a graph with many subgraphs isomorphic to the original graph. If there are n copies of each of those two nodes, we can combine them in [image: there is no content] ways.

Theorem 1.

If a pattern graph is connected and not complete, there is no algorithm that lists all occurrences of that pattern in a host graph with constant arboricity in a time that is subquadratic in the number of nodes.

Lemma 2.

If a graph is connected but not complete, there is always a V-shaped induced subgraph; that is, there are always nodes A, B and C such that there are edges [image: there is no content]and [image: there is no content]but not [image: there is no content].

Proof.

Let G be a graph with n nodes. For [image: there is no content], the theorem holds trivially.

For [image: there is no content], inductively assume that the lemma holds for [image: there is no content]. G can be seen as the union of a graph γ with [image: there is no content] nodes and a single node ν. We may assume w.l.o.g. that γ is either complete or not connected.

Suppose γ is complete. If ν connects to all nodes in γ, then G is complete. If ν does not connect to any node in γ, then G is not connected. If there is a node α that ν connects to, and a node β that ν does not connect to, then [image: there is no content] induces a V-shaped subgraph in G.

Suppose γ is not connected. There are two subgraphs [image: there is no content] and [image: there is no content] in γ with no edge between them. If ν is not connected to any of these two subgraphs, then G is not connected. Otherwise, there is a node α in [image: there is no content] and a node β in [image: there is no content], both connected to ν. Then [image: there is no content] induces a V-shaped subgraph in G.

By induction the lemma holds for all G. ☐

Lemma 3.

If a graph P has a V-shaped induced subgraph, there exists a sequence of graphs [image: there is no content]with constant arboricity and [image: there is no content]nodes such that the number of induced subgraphs of [image: there is no content]isomorphic to P is Ω([image: there is no content]).

Proof

Suppose that [image: there is no content] induce a V-shaped subgraph in P; [image: there is no content] and [image: there is no content] form edges with B but not with each other. Let D be the subgraph of P resulting from removing the nodes [image: there is no content] and [image: there is no content], and let [image: there is no content] = [image: there is no content] Next, let [image: there is no content] be a graph based on [image: there is no content], with two more nodes; one node [image: there is no content] that connects to the same nodes as [image: there is no content] in [image: there is no content], and one node [image: there is no content] that connects to the same nodes as [image: there is no content] in [image: there is no content]. The number of nodes in [image: there is no content] is then [image: there is no content], which is [image: there is no content]. Let [image: there is no content] be the subgraph of [image: there is no content] induced by [image: there is no content] and the nodes of D. [image: there is no content] is isomorphic to P. In [image: there is no content], all [image: there is no content] with a and c in the interval [image: there is no content] are induced subgraphs. [image: there is no content] can be chosen in Ω([image: there is no content]) ways. Therefore there are Ω([image: there is no content]) induced subgraphs in [image: there is no content] that are isomorphic to P.

Each [image: there is no content] can be covered by no more than [image: there is no content] trees. For each node in D, create a tree where that node is the parent and all adjacent nodes are children. This set of trees will cover any edge with at least one endpoint in D. The nodes in [image: there is no content] have no internal edges, so the trees cover all the edges of [image: there is no content]. This shows that the arboricity of [image: there is no content] is bounded by a constant, which proves the lemma.  ☐

Proof of Theorem 1.

Lemma 1 shows that a non-complete connected pattern graph must have a V-shaped induced subgraph. Lemma 2 shows that for any such pattern graph, there is a sequence of host graphs in which the number of occurrences of the pattern increases quadratically with the number of nodes. Since the number of occurrences can be quadratic, it is impossible to list them in less than quadratic time.  ☐

	Algorithm 1 A combined algorithm for listing of triangles

	Require: A is the adjacency matrix for a graph with n nodes

	 1:

	
[image: there is no content] a list of pairs composed of a pair of nodes and an integer (initially empty)

	 2:

	
[image: there is no content] a list of triples of nodes (initially empty)

	 3:

	
calculate [image: there is no content]

	 4:

	
for [image: there is no content]to [image: there is no content]do

	 5:

	
 for [image: there is no content]to [image: there is no content]do

	 6:

	
   if [image: there is no content] & [image: there is no content][image: there is no content]>0then

	 7:

	
      add ([image: there is no content],[image: there is no content][image: there is no content]) to U

	 8:

	
   end if

	 9:

	
 end for

	10:

	
end for

	11:

	
sort U in descending order of [image: there is no content][image: there is no content]

	12:

	
[image: there is no content] the sum of all [image: there is no content][image: there is no content] in U

	13:

	
if [image: there is no content]then

	14:

	
 [image: there is no content]

	15:

	
else if [image: there is no content]then

	16:

	
 [image: there is no content]

	17:

	
else

	18:

	
 [image: there is no content]

	19:

	
end if

	20:

	
for all ([image: there is no content],[image: there is no content][image: there is no content]) in U while [image: there is no content][image: there is no content]>kdo

	21:

	
 for j = 0 to [image: there is no content]do

	22:

	
   if [image: there is no content] & [image: there is no content]then

	23:

	
      add [image: there is no content] to R

	24:

	
   end if

	25:

	
 end for

	26:

	
end for

	27:

	
run the k-witness algorithm on [image: there is no content]

	28:

	
for all remaining elements [image: there is no content] in U do

	29:

	
 for each witness j of [image: there is no content][image: there is no content] listed by the algorithm, add [image: there is no content] to R

	30:

	
end for

	31:

	
print R

4. A Combined Algorithm for Listing of Triangles

In this chapter, we present an algorithm for listing triangles that combines two different methods. Using matrix multiplication, we can find out for each edge the number of triangles it belongs to, and use one method for those edges that are in many triangles and another one for those that are in few.

For those edges [image: there is no content] that are in no more than k triangles, we make use of the k-witness algorithm [5]. For a given integer k, it finds all witnesses to the matrix product, up to a maximum of k witnesses for each entry in the product matrix. In this case, a witness j to an entry [image: there is no content][image: there is no content] of the square product of the adjacency matrix A corresponds to the triangle [image: there is no content] including the edge [image: there is no content] For those edges that are in more than k triangles, we let the algorithm examine each node once for every such edge (Fact 1).

Theorem 4.

There is an algorithm that, for a given graph with n nodes and l triangles, lists all triangles, in time

	
[image: there is no content], if [image: there is no content]

	
[image: there is no content], if [image: there is no content]

	
[image: there is no content], if [image: there is no content].

4.1. Correctness

Lemma 5.

The algorithm is correct.

Proof.

If [image: there is no content], there is an edge between x and y. If [image: there is no content][image: there is no content]>0, there is a two-edge path between x and y. If and only if both these conditions are satisfied, there is at least one triangle that includes the nodes x and y. [image: there is no content][image: there is no content] is the number of two-edge paths from x to y [4]. Therefore, if [image: there is no content], [image: there is no content][image: there is no content] is the number of (ordered) triangles [image: there is no content], where z is any other node. After the loop on Line 4, U contains the list of all (ordered) pairs of nodes [image: there is no content] that are in a triangle, and the number of triangles [image: there is no content] that they are in.

Consider a triple of nodes [image: there is no content] such that [image: there is no content][image: there is no content]>k.

If [image: there is no content] is not a triangle, then at least one of [image: there is no content], [image: there is no content] and [image: there is no content] is not an edge.

If there is no edge [image: there is no content], then [image: there is no content] will not be in U, so the test on Line 22 will not be performed for those values and the triple will not be counted.

If there is no edge [image: there is no content] or no edge [image: there is no content], the test on Line 22 will not return true for those values and the triple will not be counted.

If [image: there is no content] is a triangle, then [image: there is no content] will be in U, and the test on Line 22 will return true, so the triple will be counted.

Thus, all triangles [image: there is no content], where [image: there is no content] belongs to more than k triangles, are listed by this part of the algorithm, and no non-triangles are listed.

All triangles [image: there is no content] where [image: there is no content] is in no more than k triangles are listed by the k-witness algorithm (Fact 2). The loop on Line 28 merges the two lists, so that R contains all triangles of the graph, and only triangles. ☐

4.2. Time Complexity

Lemma 6.

The algorithm runs in time

	
[image: there is no content], if [image: there is no content]

	
[image: there is no content], if [image: there is no content]

	
[image: there is no content], if [image: there is no content]

where n is the number of nodes, and l is the number of triangles.

Proof.

The calculation on Line 3 can be implemented by using the fast matrix multiplication algorithm in [image: there is no content] time (Fact 1).

The loop on Line 4 runs in O([image: there is no content]) time.

The sorting on Line 11 can be done in O(nlogn) time. We might for example use radix sort [10].

The sum on Line 12 takes O(n) time.

Recall that l is the number of triangles in the graph. Let p be the number of elements that the loop on Line 20 goes through. For each of them, there are more than k triangles. Hence, we obtain [image: there is no content] and consequently [image: there is no content].

The loop on Line 21 has n iterations, and each iteration takes [image: there is no content] time, so the loop takes [image: there is no content] time. The loop on Line 20 therefore takes [image: there is no content] time, which is [image: there is no content], for [image: there is no content]. In the special case where [image: there is no content], we know that [image: there is no content] so the loop on Line 20 takes [image: there is no content] time. The k-witness algorithm runs in [image: there is no content] time (for [image: there is no content]), where [image: there is no content] (Fact 2). The total time is the sum of these contributions, O˜(nl/k+nωkμ+[image: there is no content]k+nω).

In the case [image: there is no content], [image: there is no content]:

The first term of the sum can be replaced by [image: there is no content], so we have

O˜(nl+nω*kμ+[image: there is no content]k+nω)=

[image: there is no content]

[image: there is no content]

In the case [image: there is no content], [image: there is no content]:

O˜([image: there is no content]k+nωkμ+[image: there is no content]k+nω)=

[image: there is no content]

We have [image: there is no content]; therefore [image: there is no content].

We have [image: there is no content]; therefore [image: there is no content].

This means that the first two terms dominate, so the time is [image: there is no content].

In the case [image: there is no content], [image: there is no content]:

O˜([image: there is no content]k+nωkμ+[image: there is no content]k+nω)=

[image: there is no content]

We have [image: there is no content]; therefore [image: there is no content]. This means that the first and third terms dominate, so the time is [image: there is no content]. ☐

Proof of Theorem 4.

As follows from Lemma 5 and Lemma 6, the algorithm satisfies the statements of the theorem. ☐

4.3. Listing Subgraphs Isomorphic to an Arbitrary Pattern Graph

The reduction of subgraph isomorphism or induced subgraph isomorphism to triangle detection from [6] also works for the counting and listing versions. By using the aforementioned reduction, we can also generalize our combined algorithm to include listing of subgraphs or induced subgraphs isomorphic to an arbitrary fixed pattern graph. For the sake of completeness, we shall outline the reduction for listing the subgraphs isomorphic to the pattern graph.

Let h be the number of nodes in the fixed pattern graph [image: there is no content] and let [image: there is no content]. Since F is fixed, we have [image: there is no content] and [image: there is no content]. Divide the pattern graph into three subgraphs [image: there is no content][image: there is no content] each having f or [image: there is no content] nodes. Form a new graph [image: there is no content] in which each node v corresponds one to one to a pair [image: there is no content] where [image: there is no content] is a subgraph of the original graph G and [image: there is no content] is an isomorphism between [image: there is no content] for some [image: there is no content] and [image: there is no content]. Two nodes v and u in [image: there is no content] are connected by an edge if and only if

	(1)

	
[image: there is no content] and [image: there is no content] are node-disjoint and the isomorphisms [image: there is no content],ϕu are defined on two distinct parts of H, [image: there is no content] and [image: there is no content], and

	(2)

	
the union of the isomorphisms [image: there is no content],ϕu yields an isomorphism between the subgraph of H induced by the nodes of [image: there is no content] and [image: there is no content], and the subgraph of G consisting of [image: there is no content] and [image: there is no content], and some edges of G between [image: there is no content] and [image: there is no content].

Observe that [image: there is no content] has [image: there is no content] nodes. By [image: there is no content] they can be be listed in [image: there is no content] time. For a given pair of nodes v,u of [image: there is no content], the necessary and sufficient conditions for making them adjacent can also be verified in [image: there is no content] time. It follows that [image: there is no content] can be constructed in [image: there is no content] time. Furthermore, triangles in [image: there is no content] are in one-to-one correspondence with isomorphisms between H and a subgraph of G isomorphic to [image: there is no content] Therefore, by using Theorem 4 to list all triangles in [image: there is no content], we can determine and list all subgraphs of G isomorphic to H in time resulting from the substitution of [image: there is no content] for n in the upper bounds of Theorem 4. By replacing “subgraph” with “induced subgraph”, we obtain the analogous reduction for listing induced subgraphs isomorphic to H.

Theorem 7.

Let H be an arbitrary fixed pattern graph with h nodes. For a graph with n nodes and l subgraphs (induced subgraphs, respectively) isomorphic to H, all the subgraphs can be listed in time

	
[image: there is no content], if [image: there is no content]

	
[image: there is no content], if [image: there is no content]

	
[image: there is no content], if [image: there is no content].

5. Final Remarks

Our lower bound (Theorem 1) does not exclude the possibility of the existence of more efficient algorithms for the related problems of counting occurrences of a non-complete pattern or finding the most frequent (complete or non-complete) patterns in sparse graphs [11,12].

The method of Theorem 7 requires [image: there is no content] space in the worst case. If each of the subgraphs [image: there is no content] ([image: there is no content]) of H occurs sparsely in G, the auxiliary graph [image: there is no content] and consequently the space requirements of the method are substantially smaller.

Acknowledgments

The authors are grateful to Mirosław Kowaluk for preliminary discussion on triangle listing.

Author Contributions

Andrzej Lingas as a supervisor provided the general idea for the paper, which after joint discussions has been implemented and written down by Niklas Zechner, with the exception of Section 4.3 and some introductory fragments.

Conflicts of Interest

The authors declare no conflict of interest.

References

	1.
Garey, M.R.; Johnson, D.S. Computers and Intractability—A Guide to the Theory of NP-Completeness; Bell Laboratories: Murray Hill, NJ, USA, 1979. [Google Scholar]

	2.
Chiba, N.; Nishizeki, T. Arboricity and subgraph listing algorithms. SIAM J. Comput. 1985, 14, 210–223. [Google Scholar] [CrossRef]

	3.
Itai, A.; Rodeh, M. Finding a minimum circuit in a graph. SIAM J. Comput. 1978, 7, 413–423. [Google Scholar] [CrossRef]

	4.
Gibbons, A. Algorithmic Graph Theory; Cambridge University Press: Cambridge, UK, 1985. [Google Scholar]

	5.
Gąsieniec, L.; Kowaluk, M.; Lingas, A. Faster multi-witnesses for Boolean matrix multiplication. Inf. Process. Lett. 2009, 109, 242–247. [Google Scholar] [CrossRef]

	6.
Nes̆etr̆il, J.; Poljak, S. On the complexity of the subgraph problem. Comment. Math. Univ. Carol. 1985, 26, 415–419. [Google Scholar]

	7.
Schank, T.; Wagner, D. Finding, counting and listing all triangles in large graphs, an experimental study. In Proceedings of the 4th International Workshop, WEA 2005, Santorini Island, Greece, 10–13 May 2005; pp. 606–609.

	8.
Vassilevska Williams, V. Multiplying matrices faster than coppersmith-winograd. In Proceedings of the 44th Symposium on Theory of Computing Conference (STOC 2012), New York, NY, USA, 19–22 May 2012; pp. 887–898.

	9.
Coppersmith, D.; Winograd, S. Matrix multiplication via arithmetic progressions. J. Symb. Comput. 1990, 9, 251–280. [Google Scholar] [CrossRef]

	10.
Cormen, T.; Leiserson, C.; Rivest, R. Introduction to Algorithms; MIT Press: Cambridge, MA, USA, 1990. [Google Scholar]

	11.
Dvorak, Z.; Tuma, V. A dynamic data structure for counting subgraphs in sparse graphs. In Proceedings of the 13th International Symposium, WADS 2013, London, ON, Canada, 12–14 August 2013; Lecture Notes in Computer Science. Springer: Berlin, Heidelberg, Germany, 2013; pp. 304–315. [Google Scholar]

	12.
Kuramochi, M.; Karypis, G. Finding frequent patterns in a large sparse graph. Data Min. Knowl. Discov. 2005, 11, 243–271. [Google Scholar] [CrossRef]

	13.
Le Gall, F. Faster algorithms for rectangular matrix multiplication. In Proceedings of the 53rd Annual IEEE Symposium on Foundations of Computer Science (FOCS 2012), New Brunswick, NJ, USA, 20–23 October 2012; pp. 514–523.

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

nav.xhtml

 algorithms-07-00243

 		
 algorithms-07-00243

