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Abstract:



Economic dispatch is an important non-linear optimization task in power systems. In this process, the total power demand is distributed amongst the generating units such that each unit satisfies its generation limit constraints and the cost of power production is minimized. This paper presents an over view of three optimization algorithms namely real coded genetic algorithm, particle swarm optimization and a relatively new optimization technique called bat algorithm. This study will further propose modifications to the original bat. Simulations are carried out for two test cases. First is a six-generator power system with a simplified convex objective function. The second test case is a five-generator system with a non-convex objective function. Finally the results of the modified algorithm are compared with the results of genetic algorithm, particle swarm and the original bat algorithm. The results demonstrate the improvement in the Bat Algorithm.
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1. Introduction


Economic load dispatch (ELD) is an optimization problem for scheduling generator outputs to satisfy the total load demand at the least possible operating cost. ELD problem is often formulated as a quadratic equation [1]. The ELD problem is in reality a nonconvex optimization problem [2]. These arise from ramp rate limits due to the physical limitations of the generating unit, effect of steam valve operation and prohibited operating zones of the generators due to vibration if the shaft bearing.



The conventional method of solving the ELD problem is by applying nonlinear programming techniques. These techniques minimize a convex objective function over a convex set thus insuring a single minimum. The problems can then be minimized using gradient or Newton based search techniques. However as nonconvex problems generally have multiple minima these techniques may be trapped at local minima. Dynamic programming is one way solving this problem, but it also has limitations due to the “curse of dimensionality” [3].



Metaheuristic optimization is another way of solving nonconvex optimization problems [4]. These algorithms are usually based on processes witnessed in physics or biology. Metaheuristic techniques are ideal for nonconvex ELD problem as they do not suffer from restriction of continuity, differentiability and convexity. Many metaheuristic techniques such as simulated annealing (SA), tabu search (TS), genetic algorithm (GA), particle swarm optimization (PSO) and bat algorithm (BA) have been successfully implemented to solve ELD problem [5,6].



Many variants of GA have previously been used with good results to solve nonconvex ELD problems [7,8,9]. The main advantage GA has over other algorithms is that it can use a chromosome coding technique tailored to the specific problem. The two main disadvantages of GA over other techniques are firstly, there is no guarantee of convergence to the global optimum solution and secondly, the execution time is very long.



PSO and many of its variants have also been extensively used for solving nonconvex ELD problems [10,11,12,13]. PSO has numerous advantages over other algorithms. It is very easy to preform and has only a few adjustable parameters. It is also very efficient in global search (exploration). The main disadvantages of PSO are it is slow convergence at refined search stage (exploitation) and its weak local search ability.



BA like PSO and GA is a relatively new population based metaheuristic approach [14,15]. This algorithm mimics the echolocation ability of micro bat which they use it for navigating and hunting. The position of the bat provides the possible solution of the problem. Fitness of the solution is specified by the best position of a bat to its prey. A big advantage BA has over other algorithms is that it has a number of tunable parameters giving a greater control over the optimization process. BA and its variants have also been used to solve the ELD problem [16,17,18]. It has proven efficient in for lower dimensional optimization problem but ineffective for high dimensional problems because of fast initial convergence [19].



This paper proposes two modifications to the original BA. The first modification is inspired from anti predatory PSO in which the particles moves not only towards the best solution but also away worst position experienced by itself and the global worst solution. The intention behind this modification is increasing the exploration capacity of the algorithm. The second modification is the introduction of a nonlinear weight for the velocity called inertia weight factor (IWF). The purpose of IWF is to provide balance between global and local exploration and better convergence rate.



For the purpose of comparison GA and PSO are also implemented and the results are compared with the modified bat algorithm (MBA). Verification of the modified algorithm has been carried out by simulating two test cases. For the verification of the results, Lambda Iteration method has been used for the convex optimization problem.




2. Problem Formulation


2.1. Problem Objectives


The objective of the economic dispatch problem is minimization of operating cost. The generator cost curves are represented by a quadratic function with a sine component. The sine component denotes the effect of steam valve operation. The fuel cost [image: there is no content] ($/h) can be expressed as [10].


[image: there is no content]



(1)




where [image: there is no content] is the number of generating units. [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] are the cost coefficients of the [image: there is no content]th generating unit. [image: there is no content] is the real power output of the [image: there is no content]th generator.




2.2. Problem Constraints


Power balance constraint. Generation should cover the total demand and the active power losses that occur in the transmission system.





[image: there is no content]



(2)




where [image: there is no content] is the total demand load and [image: there is no content] is the total transmission losses computed using quadratic approximation.
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(3)




where [image: there is no content] is the loss coefficient matrix. In this paper it is assumed constant.



Power generation limits. Each unit should generate power within its minimum and maximum limits.




[image: there is no content]



(4)





The objective and constraints can be mathematically formulated as follows.
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(5)
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(6)




where [image: there is no content] and [image: there is no content] are the number of inequality and equality constraints respectively. In this paper, the power balance constraint has been handled using the penalty function. This paper uses a penalty function that adds a penalty to the fitness function if the constrains are violated. This turns a constrained optimization problem into an unconstrained optimization problem. Mathematically it can be denoted as


[image: there is no content]



(7)
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[image: there is no content]



(9)




where [image: there is no content] is the penalty factor for the violation of the constraints. [image: there is no content] and [image: there is no content] are equality and inequality constraint violation penalties respectively and are calculated using the following formulas.





[image: there is no content]



(10)




And


[image: there is no content]



(11)









3. Bat Algorithm


Bat algorithm is a population based metaheuristic optimization technique like PSO and GA. It was developed by Xin-She Yang in 2010 [14,15]. The algorithm mimics the echolocation behavior most prominent in bats. Bats send out streams of high-pitched sounds usually short and loud. These signals then bounce off nearby objects and send back echoes. The time delay between the emission and echo helps a bat navigate and hunt. This delay is used to interpret how far away an object is. Bats use frequencies ranging from 200 to 500 kHz. In the algorithm pulse rate ranges from 0 to 1 where 0 means no emissions and 1 means maximum emissions.



At the start the populations is initialized randomly. The positions of the bats are updated using the following equations.





[image: there is no content]
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(14)




where [image: there is no content] is the pulse frequency subject to [image: there is no content]. [image: there is no content] is a uniform random number ranging from 0 to 1. [image: there is no content] is the velocity of the bat and [image: there is no content] denotes the current position of the bat. [image: there is no content] is the best position found by the swarm. The next step is to use random walk for local search. The following equation is used for this purpose.





[image: there is no content]



(15)




where [image: there is no content] is a scaling factor that limits the step size of the random walk, [image: there is no content] is the loudness and [image: there is no content] is a normal random number with mean 0 and standard deviation [image: there is no content]. As bats near their target they increase the pulse rate and decrease the amplitude. Mathematically this can be achieved using the equations.
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(17)




where [image: there is no content] and [image: there is no content] are constants. The [image: there is no content] parameter, like in simulated annealing, controls the rate of convergence of the algorithm.




4. Modifications


This paper proposes two modifications to the original bat algorithm.



4.1. Add Bad Experience Component


A new variant to the classical PSO was introduced by Selvakumar and Thanushkodi by splitting the correction component into two components [10]. These components were called the good and bad experience components. A particle tries to achieve a better position while trying to avoid the bad positions it has encountered. This paper proposes to add bad experience component to the velocity update equation. This modification is intended for enhancing the exploration capability of the algorithm. The modified equation is can be mathematically written as:


[image: there is no content]



(18)




where [image: there is no content] and [image: there is no content] are the global best and worst positions. [image: there is no content] and [image: there is no content] are the personal best and worst positions. [image: there is no content] and [image: there is no content] are parameters that accelerate the particle towards the global best and personal best positions respectively. [image: there is no content] and [image: there is no content] are constants that accelerate the particle away the swarm worst and personal worst positions respectively.




4.2. Nonlinear Inertia Weight


A variant of the bat algorithm called improved bat algorithm (IBA) has recently been presented by Jamil [20]. He proposed adding an inertia weight coefficient to the velocity component in the velocity update equation. The paper proposes the weight component decrease linearly from its maximum value to its minimum value. The purpose of the weight is to provide balance between global and local exploration and better convergence rate. This paper proposes using a nonlinear weight. The reason for using nonlinear weight is to have to ability to control the transition between the global and local exploitation so that it can be tailored for a specific problem. In this paper the following three equations have been derived to get a better control over the transition between global and local exploitation.





[image: there is no content]



(19)




where [image: there is no content] and [image: there is no content] are maximum and minimum bounds of inertia weight coefficient. [image: there is no content] is maximum allowed iterations. The constants calculated using the following equations.
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(20)
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(21)





The constants [image: there is no content] and[image: there is no content] are tunable parameters that can be adjusted for a particular problem. The constant [image: there is no content] controls the transition from global to local search. Constsnt G controls the speed of the transition. [image: there is no content] The equations derived in (20) and (21) make it easier to tune the parameters A and B for the optimization problem. The value of [image: there is no content] is set between 0 and [image: there is no content] and the value of G is set between 1 and 30. Figure 1 shows the effect of tuning variable G while H is kept constant at 250. Figure 2 shows the effect of tuning H while keeping G constant at 10. In both graphs the upper and lower bounds for inertia weight are 1 and 0 respectively.


Figure 1. (a) Effect of tuning parameter G; (b) Effect of tuning parameter H.
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Figure 2. (a) Bat Algorithm (b); Modified Bat Algorithm.
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The final form of the modified velocity update equation is given below.




[image: there is no content]



(22)





The following flowcharts detail the bat algorithm and the modified bat algorithm.





5. Experiments and Results


5.1. Test Case 1—Six-Generator Test System with System Losses


The modified bat algorithm was applied to a six-generator test system. For the first test case, the values of parameters [image: there is no content] and [image: there is no content] have been set to zero to simplify the problem into a convex optimization problem. Two simulations were carried out for a total demand of 700 MW and 800 MW. For all the experiments the maximum allowable error tolerance was set to 0.01 MW. The data for the test system is given in Table 1, Table 2 and Table 3.



Table 1. Generator active power limits.







	
Generator

	
1

	
2

	
3

	
4

	
5

	
6






	
Pmin (MW)

	
10

	
10

	
35

	
35

	
130

	
125




	
Pmax (MW)

	
125

	
150

	
225

	
210

	
325

	
315










Table 2. Fuel cost coefficients.







	
No.

	
a

	
b

	
c






	
1

	
0.15240

	
38.53973

	
756.79886




	
2

	
0.10587

	
46.15916

	
451.32513




	
3

	
0.02803

	
40.39655

	
1049.9977




	
4

	
0.03546

	
38.30553

	
1243.5311




	
5

	
0.02111

	
36.32782

	
1658.5596




	
6

	
0.01799

	
38.27041

	
1356.6592










Table 3. Optimization parameters.







	
Parameter

	
Value






	
[image: there is no content]

	
0.9




	
[image: there is no content]

	
0.1




	
[image: there is no content]

	
[0.97 0.95]




	
[image: there is no content]

	
[0.4 0.9]




	
[image: there is no content]
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[image: there is no content]

	
2000




	
[image: there is no content]

	
[10 200]




















For the purpose of comparison real coded GA was used with roulette wheel selection, arithmetic crossover and uniform mutation. The crossover and mutation probabilities were 0.9 and 0.02 respectively. Also for the purpose of comparison, PSO was implemented with inertia weight decreasing linearly form 0.9 to 0.4. Velocity constant was set to 2 for all the experiments. Values used for the tuning parameters while simulating test case 1 are in Table 3. The results are presented in Table 4.



Table 4. Economic dispatch comparison.







	

	

	
P1 (MW)

	
P2 (MW)

	
P3 (MW)

	
P4 (MW)

	
P5 (MW)

	
P6 (MW)

	
Loss (MW)

	
Cost ($/h)






	
λ Iteration

	
28.304

	
10

	
118.897

	
118.733

	
230.733

	
212.831

	
19.433

	
36912.14




	
GA

	
Best

	
26.79976

	
15.89313

	
107.3073

	
123.932

	
228.3426

	
217.1609

	
19.44

	
36924.15




	
Avg.

	
45.57365

	
48.619

	
105.8057

	
106.478

	
211.4508

	
200.6767

	
18.61

	
37505.72




	
Std

	
19.7706

	
28.6733

	
43.3288

	
36.2062

	
45.62

	
45.0436

	
1.325

	
382.88




	
PSO

	
Best

	
28.30223

	
9.999884

	
118.9522

	
118.6706

	
230.7563

	
212.7375

	
19.431

	
36911.54




	
Avg.

	
28.39792

	
10.02338

	
119.0863

	
118.5947

	
230.588

	
212.7238

	
19.4262

	
36911.75




	
Std

	
0.85864

	
0.13943

	
0.83555

	
0.62292

	
1.1889

	
0.4948

	
0.027862

	
1.4869




	
BA

	
Best

	
28.07394

	
10.05693

	
119.9855

	
117.7729

	
231.1333

	
212.3918

	
19.4238

	
36911.79




	
Avg.

	
28.39414

	
10.26771

	
119.159

	
119.0363

	
230.2951

	
212.2449

	
19.4092

	
36912.54




	
Std

	
0.69285

	
0.26761

	
2.2262

	
1.7091

	
2.9539

	
3.8

	
0.059993

	
1.0006




	
MBA

	
Best

	
28.14831

	
10.03893

	
119.7243

	
118.052

	
231.0219

	
212.4194

	
19.4239

	
36911.27




	
Avg.

	
28.28837

	
10.21736

	
119.3942

	
118.6366

	
230.4744

	
212.3904

	
19.4146

	
36912.13




	
Std

	
0.73114

	
0.19558

	
2.485

	
1.8194

	
3.38

	
3.6097

	
0.065668

	
0.84625








Total System Demand = 700 MW, Population Size = 40, Maximum Iterations = 500, Sample Size = 200.








In the first experiment MBA attained better results than the original BA. The mean and standard deviation reduced by $0.41 and 16% respectively. However, PSO performed better that the both of them by achieving the lowest mean. The worst value achieved by PSO was $36927.72 which was far greater than $36916.93 (BA) and $36916.12 (MBA). This resulted in a higher standard deviation for PSO.





In the next experiment the total system demand was increased from 700 MW to 800 MW. The system parameters remained the same. The results of the experiment are detailed in Table 5.



Table 5. Economic dispatch comparison.







	

	

	
P1 (MW)

	
P2 (MW)

	
P3 (MW)

	
P4 (MW)

	
P5 (MW)

	
P6 (MW)

	
Loss (MW)

	
Cost ($/h)






	
λ Iteration

	
32.599

	
14.483

	
141.544

	
136.041

	
257.6588

	
243.003

	
25.330

	
41896.63




	
GA

	
Best

	
39.63015

	
13.23341

	
170.317

	
155.1286

	
232.4949

	
213.4204

	
24.2359

	
41976.08




	
Avg.

	
55.35765

	
54.95395

	
130.4268

	
134.2949

	
230.3903

	
218.5409

	
23.9787

	
42614.68




	
Std

	
25.9155

	
30.1187

	
45.3717

	
39.9879

	
49.7911

	
45.6905

	
1.3105

	
436.61




	
PSO

	
Best

	
32.59937

	
14.48227

	
141.5412

	
136.0392

	
257.6555

	
242.9997

	
25.3299

	
41895.98




	
Avg.

	
32.5959

	
14.51256

	
141.4859

	
135.9388

	
257.6442

	
243.1419

	
25.3322

	
41896.02




	
Std

	
0.19817

	
0.2575

	
0.31681

	
0.66662

	
0.33471

	
0.86126

	
0.020216

	
0.23259




	
BA

	
Best

	
32.46774

	
14.34427

	
141.9097

	
135.7294

	
257.7276

	
243.1421

	
25.3359

	
41895.88




	
Avg.

	
32.58662

	
14.49149

	
141.7122

	
136.2057

	
257.3597

	
242.9548

	
25.3232

	
41896.17




	
Std

	
0.38275

	
0.49502

	
0.97076

	
0.88628

	
1.2144

	
1.3829

	
0.037035

	
0.25826




	
MBA

	
Best

	
32.49975

	
14.43056

	
141.6805

	
135.9817

	
257.502

	
243.2203

	
25.3329

	
41895.71




	
Avg.

	
32.6766

	
14.35507

	
142.1353

	
135.802

	
257.5361

	
242.803

	
25.3222

	
41896.09




	
Std

	
0.12392

	
0.37326

	
0.61012

	
0.59674

	
0.31035

	
1.0403

	
0.03666

	
0.21975








Total System Demand = 800 MW, Population Size = 40, Maximum Iterations = 500, Sample Size = 200.










In the second experiment the MBA again out performed BA. The mean and standard deviation reduced by $0.08 and 15% respectively. In this experiment also PSO achieved the lowest mean. It is important to note that in both the experiments MBA attained the lowest standard deviation.




5.2. Test Case 2–Five-Generator Test System with System Losses


The second test case was a five-generator system. Simulation was carried out for a total demand of 730 MW. This test case included the added effect of steam valve operation and thereby resulting in non-convex optimization problem. Transmission line losses were neglected for this experiment. The data for the test system is given in Table 6 and Table 7, the results are presented in Table 8.



Table 6. Generator active power limits.







	
Generator

	
1

	
2

	
3

	
4

	
5






	
Pmin (MW)

	
50

	
20

	
30

	
10

	
40




	
Pmax (MW)

	
300

	
125

	
175

	
75

	
250










Table 7. Fuel cost coefficients.







	
No.

	
[image: there is no content]
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1

	
0.0015

	
1.8

	
40

	
200

	
0.035




	
2

	
0.0030

	
1.8

	
60

	
140

	
0.040




	
3

	
0.0012

	
2.1

	
100

	
160

	
0.038




	
4

	
0.0080

	
2.0

	
25

	
100

	
0.042




	
5

	
0.0010

	
2.0

	
120

	
180

	
0.037










Table 8. Economic dispatch comparison.







	

	

	
P1 (MW)

	
P2 (MW)

	
P3 (MW)

	
P4 (MW)

	
P5 (MW)

	
Cost ($/h)






	
GA

	
Best

	
234.82

	
100.92

	
112.80

	
71.46

	
209.99

	
2068.06




	
Avg.

	
253.89

	
91.39

	
127.71

	
49.37

	
207.62

	
2357.02




	
Std

	
29.12

	
19.19

	
27.23

	
15.85

	
23.30

	
111.80




	
PSO

	
Best

	
229.51

	
102.98

	
112.67

	
75.00

	
209.81

	
2029.63




	
Avg.

	
248.71

	
94.28

	
126.39

	
55.04

	
205.56

	
2165.08




	
Std

	
30.85

	
19.33

	
27.77

	
23.06

	
26.58

	
104.24




	
BA

	
Best

	
229.14

	
101.30

	
114.05

	
74.26

	
211.23

	
2042.88




	
Avg.

	
250.69

	
90.03

	
133.26

	
53.18

	
202.84

	
2176.06




	
Std

	
38.69

	
26.89

	
32.47

	
27.81

	
28.00

	
106.92




	
MBA

	
Best

	
231.06

	
99.59

	
113.48

	
74.42

	
211.44

	
2032.23




	
Avg.

	
256.94

	
96.53

	
131.55

	
47.81

	
197.14

	
2141.50




	
Std

	
35.60

	
17.06

	
29.09

	
29.65

	
30.24

	
95.39








Total System Demand = 730 MW, Population Size = 40, Maximum Iterations = 500, Sample Size = 100














For this experiment [image: there is no content] and [image: there is no content] were reduced to [image: there is no content] was set at 6 and [image: there is no content] was set at 350. In this test case MBA produced the best results in comparison to GA, PSO and BA. The mean attained by MBA is $23.58 and $34.56 lower than PSO and BA respectively. It also achieved the lowest standard deviation which is 8.5% and 10.8% lower that PSO and BA.





6. Conclusions


This paper proposes two modifications to the original bat algorithm. The modified algorithm is then tested for solving the economic load dispatch problem and was compared with various metaheuristic optimization techniques. The proposed modifications improved the results. One important observation from the results of all three experiments is that MBA achieved the lowest standard deviation. It can hence be deduced that MBA is the most robust algorithm for the experiments performed. This work can be extended to test the algorithm’s robustness for high dimensional problems or for multi objective optimization problems.
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