
Algorithms 2014, 7, 554-581; doi:10.3390/a7040554
OPEN ACCESS

algorithms
ISSN 1999-4893

www.mdpi.com/journal/algorithms

Article

Parallelizing Particle Swarm Optimization in a Functional
Programming Environment
Pablo Rabanal 1, Ismael Rodríguez 1 and Fernando Rubio 1,*

Computer Science Faculty, Complutense University, Madrid 28040, Spain;
E-Mails: prabanal@fdi.ucm.es (P.R.); isrodrig@sip.ucm.es (I.R.)

* Author to whom correspondence should be addressed; E-Mail: fernando@sip.ucm.es;
Tel.:+34-91-394-7629.

External Editor: Henning Fernau

Received: 4 July 2014; in revised form: 4 October 2014 / Accepted: 14 October 2014 /
Published: 23 October 2014

Abstract: Many bioinspired methods are based on using several simple entities which search
for a reasonable solution (somehow) independently. This is the case of Particle Swarm
Optimization (PSO), where many simple particles search for the optimum solution by using
both their local information and the information of the best solution found so far by any of
the other particles. Particles are partially independent, and we can take advantage of this
fact to parallelize PSO programs. Unfortunately, providing good parallel implementations
for each specific PSO program can be tricky and time-consuming for the programmer.
In this paper we introduce several parallel functional skeletons which, given a sequential
PSO implementation, automatically provide the corresponding parallel implementations of
it. We use these skeletons and report some experimental results. We observe that, despite
the low effort required by programmers to use these skeletons, empirical results show that
skeletons reach reasonable speedups.

Keywords: Particle Swarm Optimization; parallel programming; skeletons;
functional programming

Algorithms 2014, 7 555

1. Introduction

Evolutionary and swarm metaheuristics [1–7] provide generic solutions to face hard computational
problems. They are based on making some simple entities interact with each other according to some
simple rules, in such a way that the solution or set of solutions iteratively improves. Since interactions
between entities are simple and local, typically these algorithms can be efficiently parallelized, reaching
reasonable speedups: if (sets of) entities are assigned to different processors, then the overhead due
to the communications between (sets of) entities at different processors might be a small proportion
of all necessary computations. Several parallel schemes for implementing these methods have been
proposed [8–13].

In both sequential and parallel bioinspired algorithms, finding the suitable metaheuristic for each
problem is not an easy task. Many methods work fine for some problems but provide poor results
for other problems. Thus, if a given problem is intended to be solved by using these methods and
some minimum optimality level is required, then the programmer must invest some time implementing
different algorithms (or adapting available metaheuristic frameworks to the problem under consideration)
and checking which one performs best for the problem under consideration. Due to the additional
difficulties of parallel programming, this investment is even higher if a parallel approach is intended
to be used.

Functional programming [14] is a programming paradigm where, after the initial learning curve,
complex programs can be written in short time compared to other paradigms. The higher-order nature of
functional languages, where programs (functions) can be treated as any other kind of program data, make
them very useful to implement generic programming solutions which can be trivially reused for other
problems. This is even clearer in parallel programming. Since programs can trivially refer to themselves,
the coordination of parallel subcomputations can be defined by using the same constructions as in the
rest of the program. This enables the construction of skeletons [15], which are generic implementations
of parallel schemes that can be invoked in run-time to immediately obtain a parallelization of a given
sequential program. The skeleton defines how subcomputations coordinate in parallel, and the skeleton
user just has to define (part of) the subcomputations.

Several parallel functional languages have been proposed (see, e.g., [16–21]). In this paper we show
how to use one of them to simplify the development of parallel versions of a swarm optimization method.
In particular, we use the language Eden [17,22], a parallel version of Haskell [23], to create a generic
skeleton implementing the parallelization of Particle Swarm Optimization (PSO) [24–30], which is one
of the most essential methods in swarm optimization. However, the main ideas presented in the paper
can also be applied to deal with other bioinspired methods. In fact, this work continues our project to
develop Eden skeletons for several kinds of bioinspired methods, which began in [31] by the introduction
of an skeleton to parallelize genetic algorithms [32].

We present some Eden skeletons to parallelize Particle Swarm Optimization. Note that skeletons
allow us to quickly compare not only different parallel metaheuristics, but also different strategies to
parallelize the same metaheuristic. For instance, in one of these skeletons, the operation of updating the
best solution found so far at all processes is not performed every execution iteration, but it is constrained
to some specific times. Thus, particles assigned to each processor (particle islands) evolve more

Algorithms 2014, 7 556

independently, which reduces the communication overhead and improves the speedup. The performance
of these skeletons is tested for several PSO instances, and we report experimental results. Empirical
results show that users of our skeletons can obtain reasonable speedups with very small programming
effort. Thus, any programmer without large expertise on parallel programming can easily benefit from
our parallel skeleton, whose clear modularity enables a fast and easy adaptability to any kind of problem
under consideration.

In the literature we can find different types of parallel languages using very different levels of control
over parallelism. Languages range from completely explicit parallelism, where the programmer controls
all the details of the parallelization, to completely implicit parallelism, where the compiler automatically
exploits the inherent parallelism of the sequential version of the program. Explicit languages allow to
obtain better time performance at the cost of more programming effort, while implicit languages reduce
the programming effort, though the obtained performance is usually worse. The Eden language tries to
find a trade off between both extremes: it is a explicit language where the programmer specifies what is to
be executed in parallel, but the compiler deals automatically with many details of the parallelization, like
communication and synchronization between processes. Moreover, by using skeletons, we can get the
best of both worlds. First, an expert parallel programmer can develop efficient skeletons by making use
of explicit parallelism to control all the required details. Second, non expert parallel programmers can
directly use the available skeletons, reaching speedups similar to those obtained by explicit languages,
though with a programming effort close to that needed by implicit languages, because it is only necessary
to replace a sequential function call by the corresponding call to the parallel skeleton.

The main contribution of this paper consists in providing parallel functional skeletons for
implementing PSO. The library is publicly available at the web page of the first author of the paper.
This contribution is useful for the following reasons:

(a) The functional paradigm allows programmers to write clean and highly reusable programs with a
relatively low effort.

(b) The skeletons can be used to quickly test the performance of different versions of parallel PSO for
the a given problem, thus helping the programmer to decide whether PSO (or a given parallel PSO
approach) is the right choice for her problem. Together with other parallel functional skeletons for
other metaheuristics (e.g., a skeleton for genetic algorithms was introduced in [31]), programmers
will be able to quickly test different parallel metaheuristics for a given problem, compare them,
and pick the most appropriate one.

(c) Using the skeletons does not require programming in Eden, since Eden can invoke functions
written in other languages. For instance, after a programmer provides a fitness function written
in C, all of these skeletons are ready to be executed.

The rest of the paper is structured as follows. In Section 2 we introduce the main features of the
functional languages we will use in the paper. In Section 3 we introduce the Particle Swarm Optimization
method. Then, in Section 4, we present how to develop a higher-order sequential Haskell function
dealing with particle swarm optimization algorithms. Afterwards, in Section 5 we introduce several
parallel versions of such higher-order function. Experimental results are presented and discussed in
Section 6. Finally, Section 7 contains our conclusions and lines of future work.

Algorithms 2014, 7 557

2. Functional Languages under Consideration

In this section we introduce the functional languages used in the paper. First, we introduce the
sequential functional language Haskell, and then we present its parallel extension Eden.

2.1. Brief Introduction to Haskell

The core notion of functional programming is the mathematical function, that is, a program is
a function. Complex functional programs are created by starting with simple basic functions and
using functional composition. Haskell is the de facto standard of the lazy-evaluation functional
programming community. It is a strongly typed language including polymorphism, higher-order
programming facilities, and lazy order of evaluation of expressions. Lazy evaluation is an evaluation
strategy which delays the evaluation of each expression until the exact moment when it is actually required.

As it can be expected, the language provides large libraries of predefined functions, and also
predefined data types for the most common cases, including lists. Let us remark that Haskell provides
polymorphism. Thus, data types can depend on other types. For instance, the programmer can define a
generic type to deal with binary trees of any concrete type a:

data Tree a = Empty | Node a (Tree a) (Tree a)

New functions can be defined by analyzing cases on the structure of the data types. For instance, the
following function computes the total number of elements of any tree (of any concrete type) by using
pattern matching:

length :: Tree a -> Int

length Empty = 0

length (Node x t1 t2) = 1 + length t1 + length t2

The first line of the definition is optional, and it represents the type declaration of the function: Given
a tree of any concrete type a, it returns an integer. The rest of the definition represents the definition of
the behavior of the function: If it receives an empty tree, then it returns 0; otherwise, it adds 1 to the sum
of the lengths of both subtrees.

Structures like binary trees are potentially infinite. Usually, a computation over such infinite structure
would imply the evaluation of the whole structure, that is, it would mean the non-termination of the
program. How can we manage with them? Haskell provides a very powerful tool to treat this type
of structures: laziness. When an expression is not needed, thanks to laziness it is not evaluated. In
particular, the evaluation is driven by demand. For instance, let us consider the following definition of
an infinite binary tree:

infTree :: Tree Int

infTree = Node 1 infTree infTree

and the following function to know whether a binary tree is empty or not:

emptyTree :: Tree a -> Bool

emptyTree Empty = True

emptyTree (Node a b c) = False

Algorithms 2014, 7 558

Knowing whether the binary tree

(Node 1) infTree infTree

is empty or not is possible because, thanks to laziness, both subexpressions infTree of

emptyTree ((Node 1)infTree infTree)

remain unevaluated.
Other powerful characteristic of Haskell is higher-order. It means that functions can be arguments of

functions. For instance, the following predefined function map receives as input a function f and a list,
and then it applies function f to every element of the list:

map :: (a -> b) -> [a] -> [b]

map f [] = []

map f (x:xs) = (f x):(map f xs)

Notice that the type declaration of function map indicates that its first parameter has type a->b,
denoting that the first parameter is a function that receives values of type a and returns values of type b.
The second parameter is a list of elements of type a, and the result is again a list, but in this case of
elements of type b.

It is also possible to define functions dealing with lists by using comprehension lists. For instance,
the previous map definition is equivalent to the following one:

map :: (a -> b) -> [a] -> [b]

map f xs = [f x | x <- xs]

Notice that, in higher-order languages like Haskell, it is also possible to deal with partially applied
functions. For instance, map can take as its functional argument a partial application of function (+):

mapPlusOne :: [Int] -> [Int]

mapPlusOne xs = map (1+) xs

Thus, it adds one to each element of the list.
Let us remark that functions like map can be used to deal with lists of any type. However, sometimes

it is also useful to have functions that can deal with many types but not all of them. For instance, if we
want to sort a given list, we can only do it in case the elements of the list belong to a type where we
can compare elements. Haskell deals with this issue by defining classes of types. For instance, function
sort only works for lists whose basic type belongs to class Ord:

sort :: Ord a => [a] -> [a]

sort [] = []

sort (x:xs) = (sort [y|y<-xs,y<x]) ++ [x] ++ (sort[y|y<-xs,y>=x])

New type classes can be defined by programmers. They only need to specify what basic operations
are required to belong to the class.

Algorithms 2014, 7 559

2.2. Introduction to Eden

Eden [22,33] is a parallel extension of Haskell. It introduces parallelism by addingsyntactic constructs
to define and instantiate processes explicitly. It is possible to define a new process abstraction p by
applying the predefined function process to any function \x -> e, where variable xwill be the input
of the process, while the behavior of the process will be given by expression e. Process abstractions
are similar to functions—the main difference is that the former, when instantiated, are executed in
parallel. From the semantics point of view, there is no difference between process abstractions and
function definitions. The differences between processes and functions appear when they are invoked.
Processes are invoked by using the predefined operator #. For instance, in case we want to create a
process instantiation of a given process p with a given input data x, we write (p # x). Note that, from a
syntactical point of view, this is similar to the application of a function f to an input parameter x, which
is written as (f x).

Therefore, when we refer to a process we are not referring to a syntactical element but to a new
computational environment, where the computations are carried out in an autonomous way. Thus, when
a process instantiation (e1 # e2) is invoked, a new computational environment is created. The new
process (the child or instantiated process) is fed by its creator by sending the value for e2 via an input
channel, and returns the value for e1 e2 (to its parent) through an output channel.

Let us remark that, in order to increase parallelism, Eden employs pushing instead of pulling of
information. That is, values are sent to the receiver before it actually demands them. In addition to that,
once a process is running, only fully evaluated data objects are communicated. The only exceptions are
streams, which are transmitted element by element. Each stream element is first evaluated to full normal
form and then transmitted. Concurrent threads trying to access not yet available input are temporarily
suspended. This is the only way in which Eden processes synchronize. Notice that process creation is
explicit, but process communication (and synchronization) is completely implicit.

2.3. Eden Skeletons

Process abstractions in Eden are not just annotations, but first class values which can be manipulated
by the programmer (passed as parameters, stored in data structures, and so on). This facilitates the
definition of skeletons as higher order functions. Next we illustrate, by using a simple example, how
skeletons can be written in Eden. More complex skeletons can be found in [22].

The most simple skeleton is map. Given a list of inputs xs and a function f to be applied to each of
them, the sequential specification in Haskell is as follows:

map f xs = [f x | x <- xs]

that can be read as for each element x belonging to the list xs, apply function f to that element. This
can be trivially parallelized in Eden. In order to use a different process for each task, we will use the
following approach:

map_par f xs = [pf # x | x <- xs] ‘using‘ spine

where pf = process f

Algorithms 2014, 7 560

The process abstraction pfwraps the function application (f x). It determines that the input parameter
x as well as the result value will be transmitted through channels. The spine strategy (see [16] for
details) is used to eagerly evaluate the spine of the process instantiation list. In this way, all processes
are immediately created. Otherwise, they would only be created on demand.

Let us note that the Eden’s compiler has been developed by extending the GHC Haskell compiler.
Hence, it reuses GHC’s capabilities to interact with other programming languages. Thus, Eden can be
used as a coordination language, while the sequential computation language can be, for instance, C.

3. Introduction to Particle Swarm Optimization

Particle Swarm Optimization [24–27] (from now on PSO) is a metaheuristic inspired on the social
behavior of flocks of birds when flying, as well as on the movement of shoals of fish. A population of
entities moves in the search space during the execution of the algorithm. These entities are very simple
and perform local interactions. The result of combining simple behaviors is the emergence of complex
behaviors and the ability to get good results as a team.

It is assumed that the flock searches for food in an area and that there are some food at each point in
the area. It is also assumed that birds in the flock do not know where the maximum amount of food is, but
they can see where other birds are, so a good strategy to find a big food source is to follow the bird that
found the biggest food source so far. PSO emulates this behavior to solve optimization problems. Each
solution or particle is a bird in the search space that is always moving and never dies. In some versions
of PSO, birds can actually die. In fact, we can consider that the swarm is a multi-agent system where
particles are simple agents that move through the search space and store (and possibly communicate) the
best solution found so far.

Each element of the swarm has a fitness value, a position and a velocity vector that directs its flight.
The movement of particles is partially guided by the best solution found by all particles. Concretely, a
particle swi is composed of four vectors: (a) Vector xi, which stores the current position (location) of the
particle in the search space; (b) vector vi, which stores the velocity vector according to which the particle
moves; (c) vector pi, which stores the location of the best solution found by the particle so far; and (d)
vector g, which stores the location of the best solution found by the swarm and is common to all entities.
It also has three fitness values: (i) xfitnessi , which stores the fitness of the current solution (xi vector); (ii)
pfitnessi , which stores the fitness of the best local solution (pi vector); and (iii) gfitness, which stores the
fitness of the best global solution (g vector).

The movement of each particle swi depends on the best solution it has found since the algorithm
started, pi, and the best solution found by all particles in the entire cloud of particles, g. This kind
of particle neighborhood, where all particles in the swarm are attracted to the best solution, is called
gbest neighborhood [34]. There exist other kinds of social structures, such as the lbest neighborhood,
where each element is guided by the best solution found by its k nearest neighbors. The behavior of other
neighborhood topologies has been studied [35]. In particular, it is shown that using an adequate topology
is important to obtain good performance, although the best choice depends on the problem being solved.
Generally, the gbest topology provides a quick algorithm convergence. According to this topology, the
velocity vi of swi is changed at each iteration of the algorithm to bring it closer to positions pi and g.

Algorithms 2014, 7 561

Given a swarm sw where S is the number of particles in sw, the goal is to minimize or
maximize a function f : Rn → R (hereafter we will assume that the goal is minimizing it). A basic
PSO algorithm follows:

(Initialization)

For i = 1, . . . , S Do

initPosition(i)

initBestLocal(i)

If i = 1 Then initBestGlobal()

If improvedGlobal(i) Then updateBestGlobal(i)

initVelocity(i)

End For

(While loop)

While not endingCondition()

For i = 1, . . . , S Do

createRnd(rp,rg)

updateVelocity(i,rp,rg)

updatePosition(i)

If improvedLocal(i) Then updateBestLocal(i)

If improvedGlobal(i) Then updateBestGlobal(i)

End For

End While

We comment on the algorithm steps. First, there is an initialization where all swi ∈ sw (first For
loop) are initialized as it is described next. In initPosition(i), the position xi of particle swi is
randomly chosen within the range [bot, up], where bot and up are the lower and upper bounds of the
search space (note that bot and up can be different for each dimension); this is usually called the dynamic
range, and particles cannot move out of these limits. Additionally, we compute xfitnessi = f(xi).
In the initBestLocal(i) phase, we set pi = xi and pfitnessi = xfitnessi . The next instruction,
initBestGlobal(), is only executed when i = 1 and initializes g = x1 and gfitness = xfitness1 .
If improvedGlobal() = True, that is, if pfitnessi < gfitness, then the best global solution is
updated in updateBestGlobal(i), where the following operations are performed: g = pi and
gfitness = pfitnessi . Finally, in the initVelocity(i) phase, the particle’s velocity is randomly
established in the range [−|up − bot|, |up − bot|] for each of the dimensions, but usually it is limited
by a fixed value, vmax, which cannot be exceeded.

After the initialization, the core of the PSO method is executed until the endingCondition() is
satisfied (While loop). The endingCondition() can limit the number of iterations performed, the
time consumed, or the fitness adequation. In the body of the While loop (the For loop), all particles
are updated. The first step in the For loop, createRnd(rp,rg), creates two random values (rp and
rg) in the range (0, 1) that will be used in the next phase. Then, in updateVelocity(i,rp,rg),
the velocity of swi is updated in the following way:

vi = ω · vi + φp · rp · (pi − xi) + φg · rg · (g − xi)

Algorithms 2014, 7 562

where ω is a parameter called inertia weight (introduced in [25]) which influences the convergence
of the algorithm: For instance, an excessive inertia value can make the particle systematically exceed
the optimum from a side to another in each movement, whereas a low value could make it approach the
optimum at a too low pace; φp and φr are called the cognitive and social parameter, and make the method
be less predictable and more flexible. φp controls the influence on the movement of the own knowledge
of the particle, while φr controls the influence of the global knowledge. All of these parameters are
experimentally set (see [29,36–38] for further details) and control the behavior and efficacy of the PSO
method. The next step, updatePosition(i), updates the position of swi, adding its new velocity to
its current position: xi = xi + vi, and updates the fitness value by setting xfitnessi = f(xi). If xmax is
exceeded, then we set xi = xmax. At the end of the loop, if improvedLocal() = True, that is,
if xfitnessi < pfitnessi , then the best local solution is updated in updateBestLocal(i) as follows:
pi = xi and pfitnessi = xfitnessi . In the last step, if improvedGlobal() is satisfied then the global
solution is updated in the updateBestGlobal(i) phase as we explained above.

4. Generic PSO Algorithms in Haskell

Let us note that Haskell functions are first-class citizens. Thus, they can be used as parameters of other
functions. In particular, in order to provide a general scheme to deal with PSO algorithms, we need to use
as parameter the concrete fitness function used in the problem. In addition to the fitness function, we also
need to consider other parameters like the number of particles to be used, the number of iterations to be
executed by the program, the boundaries of the search space, and the parameters ω, φp and φr described
in Section 3. Moreover, in order to implement PSO in a pure functional language like Haskell, we need an
additional parameter to introduce randomness. Note that Haskell functions cannot produce side-effects,
so they need an additional input parameter to be able to obtain different results in different executions.
Taking into account these considerations, the type of the higher-order Haskell function dealing with PSO
algorithms is the following:

pso :: RandomGen a => a --Random generator

-> WPGparams --ω, φ p and φ r

-> Int --Number of particles

-> Int --Number of iterations

-> (Position->Double) --Fitness function

-> Boundaries --Search space bounds

-> (Double,Position) --Result:Best fitness and position

Note that the type Position should be able to deal with arbitrary dimensions. Thus, the simplest
and more general solution to define a position is to use a list of real numbers, where the length of the list
is equal to the number of dimensions of the search space. Analogously, the type Boundaries should
contain a list of lower and upper bounds for each of the dimensions. Thus, it can be described by a list of
pairs of real numbers. Finally, the type WPGparams is even simpler, as it only contains a tuple of three
real numbers describing the concrete values of parameters ω, φp and φr:

type Position = [Double]

type Boundaries = [(Double,Double)]

Algorithms 2014, 7 563

type WPGparams = (Double, Double, Double)

Once input parameters are defined, it is time to define the body of the function. First, we use function
initialize to randomly create the list of initial particles. Its definition is simple, as we only need
to create np particles randomly distributed inside the search space defined by the boundaries bo. Once
particles are initialized, we use an independent function pso’ to deal with all the iterations of the
PSO algorithm. As in the case of the main function pso, the auxiliary function pso’ will also need
a way to introduce randomness in order to have appropriate random values for rp and rg in the range
(0, 1). This problem is solved by function makeRss, which creates all needed random values.

pso sg wpg np it f bo = obtainBest (pso’ rss wpg it f bo initPs)

where initPs = initialize sg np bo f

rss = makeRss np (randomRs (0, 1) sg)

--Particle: Best local value, best global value, current position and

--velocity, best local position, best global position

type Particle = (Double,Double,Position,Velocity,Position,Position)

type Velocity = [Double]

Note that each particle contains its position, its velocity (that will also be randomly initialized), the
best solution found by the particle, and the best solution found by any particle.

Function pso’ has a simple definition. It runs recursively on the number of iterations. If there is not
any iteration to be performed then we just return as result the input particles. Otherwise, we apply one
iteration step (by using an auxiliary function oneStep) and then we recursively call our generic scheme
with one iteration less:

pso’ _ _ 0 _ _ pas = pas

pso’ (rs:rss) wpg it f bo pas = pso’ rss wpg (it-1) f bo

(oneStep rs wpg f bo pas)

Figure 1 summarizes the flowchart of function pso. First, function initialize creates the initial
conditions to start the evaluation, and then function pso’ performs the real work. In this case, pso’ is
executed while the number of remaining iterations is not zero, calling the auxiliary function oneStep
in each iteration. When the iterations are finished, function obtainBest returns the best solution
found so far.

Let us now concentrate on how each step is performed. First, each particle is updated. This is done
by function updateParticle, that applies the equations described in Section 3 to update the velocity
and position. Moreover, this function also checks if the fitness of the new position is better than the best
solution found so far. Thus, the output of the function is a list of pairs (Bool, Particle) where the boolean
value is True if the new position of the particle is better than the best position found globally so far. Once
all particles have been updated, we check if any of them have improved the best solution or not. If some
particles have improved the best solution, we sort the new best solutions and select the new best one.
Finally, all particles are updated with the information about the new best global position. The next code
shows how each step is done:

Algorithms 2014, 7 564

oneStep :: [(Double,Double)] -> WPGparams -> (Position -> Double)

-> Boundaries -> [Particle] -> [Particle]

oneStep rs wpg f bo pas

|null newBests = newPas

|otherwise = map(updateGlobalBest newBvBp)newPas

where newBsPas = zipWith (updateParticle wpg f bo) rs pas

newPas = map snd newBsPas

newBests = map snd (filter fst newBsPas)

newBvBp = obtainBest [minimum newBests]

updateParticle :: WPGparams ->(Position->Double)->Boundaries

->(Double,Double)->Particle->(Bool,Particle)

updateParticle (w,p,g) f bo (rp,rg) (blv,bgv,po,s,blp,bgp)

|newFit < bgv = (True,(newFit,newFit,newPos,newVel,newPos,newPos))

|newFit < blv = (False,(newFit,bgv,newPos,newVel,newPos,bgp))

|otherwise = (False,(blv,bgv,newPos,newVel,blp,bgp))

where newVel = w*&s +& p*rp*&(blp-&po) +& g*rg*&(bgp-&po)

newPos = limitRange bo (po +& newVel)

newFit = f newPos

where +& and -& perform the sum and difference on arbitrary large vectors, while *& multiplies all the
elements of a vector by a single real number.

Figure 1. Basic flowchart of function pso.

PSO’

obtainBest

it--

oneStep

No

Yesit==0?

inialize

Note that the higher-order nature of Haskell makes it simple to define a generic function dealing with
PSO algorithms, as the fitness function can be passed as input parameter to the main pso function.
Moreover, it is also easy to define fitness functions over arbitrary large dimensions. For instance, let us
consider the following function that will be used in the experiments shown in this paper:

f(x) =
n∑
i=1

−xisin(
√
|xi|)

This function was considered in [39] as a function which is specially hard to optimize, because the
number of local minima increases exponentially with the number of dimensions of the searching space.

Algorithms 2014, 7 565

In particular authors used 30 dimensions, where all dimensions are bound within the interval [−500, 500].
We can trivially codify this function in Haskell as follows:

fit :: Position -> Double

fit xs = sum (map fit’ xs) where fit’ xi = -xi * sin (sqrt (abs xi))

bo :: Boundaries

bo = replicate 30 (-500,500)

5. PSO Parallel Skeletons in Eden

In this section we present several skeletons to deal with PSO in parallel. First we present a very simple
version, and then we introduce more sophisticated versions to improve the parallel performance.

5.1. A Simple Parallel Skeleton

It is well known that it is only possible to obtain good speedups in a parallelization if we can identify
time-consuming tasks that can be executed independently. In the case of PSO, the most obvious work
that can be divided into independent tasks is the update of velocities and positions of the list of particles,
as well as the computation of the fitness function for the new positions. Although the time needed to
execute these tasks will usually be short, it will be executed many times and, in practice, most of the
execution time of the program will be devoted to these tasks.

Since we have to apply the same operations to a list of particles, this can be done in Eden by
using the skeleton map_par. Thus, the only piece of code that has to be modified is the call
to function updateParticle inside function oneStep. Now, instead of sequentially calling to
updateParticle for each particle, we use the parallel skeleton map_par to create an independent
process to deal with the operation for each particle:

oneStep rs wpg f bo pas

| null newBests = newPas

| otherwise = map (updateGlobalBest newBvBp) newPas

where newBsPas = map_par updatingP (zip rs pas)

updatingP = uncurry (updateParticle wpg f bo)

newPas = map snd newBsPas

newBests = map snd (filter fst newBsPas)

newBvBp = obtainBest [minimum newBests]

In the most common case, the number of particles will be much higher than the number of available
processors. Thus, it would be more efficient to create only as many processes as processors available,
and to fairly distribute the population among them. This can be done by substituting map_par by a call
to map_farm:

...

newBsPas = map_farm noPe updatingP (zip rs pas)

...

Algorithms 2014, 7 566

where noPe is an Eden variable which equals to the number of available processors in the system,
while map_farm implements the idea of distributing a large list of tasks among a reduced number of
processes. The implementation firstly distributes the tasks among the processes, producing a list of lists
where each inner list will be executed by an independent process. Then, it applies map_par, and finally
it collects the results by joining the list of lists of results into a single list of results. Notice that, due
to the laziness, these three tasks are not done sequentially, but in interleaving. As soon as any worker
computes one of its outputs, it sends this subresult to the main process, and it continues computing the
next element of the output list. Notice that communications are asynchronous, so it is not necessary
to wait for acknowledgments from the main process. When the main process has received all needed
results, it finishes the computation. The Eden source code of this skeleton is shown below, where not
only the number of processors np but also the distribution and collection functions (unshuffle and
shuffle respectively) are also parameters of the skeleton:

map_farmG np unshuffle shuffle f xs

= shuffle (map_par (map f) (unshuffle np xs))

Different strategies to split the work into the processes can be used provided that, for every list
xs, (shuffle (unshuffle np xs)) == xs. In our case, we will use a concrete version
of map_farmG called map_farm where functions used to unshuffle/shuffle distribute tasks in a
round-robin way.

5.2. A Parallel Skeleton Reducing Communications

One of the advantages of skeleton-based parallel programming is that several different parallel
implementations can be provided for a single sequential specification. Thus, depending on the concrete
problem to be solved and depending on the concrete parallel architecture available, the programmer can
choose the implementation that better fits his necessities. In this section we show a different and more
sofisticated implementation of the PSO skeleton.

In many situations, the implementation presented in the previous section would obtain poor speedups.
In particular, in case the processors of the underlying architecture do not use shared memory, lots of
communications would be needed among processes, dramatically reducing the speedup. The solution
to this problem implies increasing the granularity of the tasks to be performed by each process.
In particular, we can increase the granularity by splitting the list of particles into as many groups as
processors available. Then, each group evolves in parallel independently during a given number of
iterations. After that, processes communicate to compute the new best overall position, and then they go
on running again in parallel. This mechanism is repeated as many times as desired until a given number
of global iterations are performed.

In order to implement in Eden a generic skeleton dealing with this idea, we need to pass new
parameters to function pso. In particular, we need a new parameter pit to indicate how many iterations
have to be performed independently in parallel before communicating with the rest of processes. Besides,
the parameter it will now indicate the number of parallel iterations to be executed, that is, the total
number of iterations will be it * pit. Finally, we can add an extra parameter nPE to indicate

Algorithms 2014, 7 567

the number of processes that we want to create (typically, it will be equal to the number of available
processors). Thus, the new type of function pso is as follows:

psoPAR :: RandomGen a => a --Random generator

-> WPGparams --ω, φ p and φ r

-> Int --Number of particles

-> Int --Iterations per parallel step

-> Int --Number of parallel iterations

-> Int --Number of parallel processes

-> (Position -> Double) --Fitness function

-> Boundaries --Search space bounds

-> (Double,Position) --Result: Best fitness and position

Before explaining how to implement the main function pso, let us consider how to define the function
describing the behaviour of each of the processes of the system. In addition to receiving a parameter for
creating random values, each process needs to receive a parameter with values ω, φp and φr, the number
of iterations to be performed in each parallel step, the fitness function, and the boundaries of the search
space. It also receives, through an input channel, a list containing the initial particles assigned to the
process. Finally it also receives, through another channel, a list containing the best overall positions
found by the swarm after each parallel step. Let us remark that, in Eden, list elements are transmitted
through channels in a stream-like fashion. This implies that, in practice, each process will receive a
new value through its second input channel right before starting to compute a new parallel step. The
output of the process is a list containing the best solution found after each parallel step of the process.
Summarizing, the type of the processes is the following:

psoP :: RandomGen a => a --Random generator

-> WPGparams --ω, φp and φr

-> Int --Iterations per parallel step

-> (Position -> Double) --Fitness function

-> Boundaries --Search space bounds

-> ([Particle],[(Double,Position)]) --Initial local particles,

--best overall solutions

-> [(Double,Position)] --Out:Best local solutions

Note that we return both the best fitness values and the corresponding positions. Let us now consider
how to implement the process definition. It is defined recursively on the structure of the second input
channel. That is, when the main function finishes sending the list of new best values through the
input channel, the process also finishes its execution. Each time a new value is received, we update
the local particles with the information about the new global best solution (if it is better than the best
local solution). Then, we use exactly the same function pso’ used in the sequential case, so we can
perform pit iterations over current particles. Finally, we send through the output channel the best value
newOut computed locally in this parallel step, and we perform the recursive call to go on working in
the next parallel step.

psoP sg wpg pit f bo (pas,[]) = []

Algorithms 2014, 7 568

psoP sg wpg pit f bo (pas,newBest:newBests)

= newOut:psoP sg2 wpg pit f bo (newPas,newBests)

where rss = makeRss (length pas) (randomRs (0,1) sg1)

(sg1,sg2) = split sg

pas’ = if newBest < oldBest

then map (updateGlobalBest newBest) pas

else pas

newPas = pso′ rss wpg pit f bo pas’

newOut = obtainBest newPas

oldBest = obtainBest pas

Finally, we have to define the behaviour of the main function pso. The first step it must perform is
the same as in the sequential case, that is, particles are initialized by using the same sequential function
initialize. Then particles are fairly unshuffled among nPE lists, generating the list of lists of
particles pass, so that each inner list can be sent to a different process. Due to functional technical
details (in particular, the management of random numbers in Haskell as monads), we also need to create
a list of random generators sgs, one for each process.

The core of function pso is the creation of nPE independent processes. Each of them receives its
corresponding element from the list of random generators sgs, and the corresponding list from the list
of lists of initial particles pass. Moreover, all processes also receive, through their last input channel,
the list best1 of the best overall solutions found after each parallel step (see Figure 2). The first element
of best1 corresponds to the best value obtained from the list of initial random particles, while the rest
of elements of the list are obtained from the output of the processes (pouts). Note that Haskell uses
lazy evaluation, so it can easily deal with mutually recursive definitions like the ones relating pouts

and bests1. Finally, note also that pouts returns the list of outputs of each process. Thus, each
list of pouts contains outputs from a single process, whereas computing bests requires dealing with
all first outputs of all processes together in a single list. Hence, in order to compute bests, we first
transpose the list of lists pouts (by using function transp). Then, each list is sorted and the best
value is obtained. By doing so, each element of bests contains the best overall value computed after
each parallel step.

The source code dealing with the creation of processes is the following:

psoPAR sg wpg np pit it nPE f bo = last bests

where initPs = initialize sg np bo f

pass = unshuffle nPE initPs

sgs = tail (generateSGs (nPE+1) sg)

pouts :: [[(Double,Position)]]

pouts = [process (psoP (sgs!!i) wpg pit f bo)#(pass!!i,bests1)

|i<-[0..nPE-1]] ‘using‘ spine

bests,bests1 :: [(Double,Position)]

bests = map minimum (transp pouts)

bests1 = take it (obtainBest initPs : bests)

Algorithms 2014, 7 569

Figure 2. Basic structure of the second skeleton.

Let us remark that, in order to convert a sequential PSO algorithm into the corresponding parallel
program, the programmer only has to change a call to function pso by a call to function psoPAR

indicating appropriate values for parameters pit, it and nPE. In fact, the only programmer effort is
due to selecting a reasonable value for pit.

Note that the programmer does not need to deal with the details of the parallelization. In fact, it is not
even necessary that the programmer understands the details of the parallel implementation, provided that
he understands the type interface of function psoPAR. Actually, the only function to be developed by the
programmer is the fitness function. Moreover, it is important to recall that Eden programs can interact
with other programming languages. In particular, C code can be encapsulated inside a Haskell function.
Hence, Eden can be used as a coordination language dealing with the parallel structure of the program,
whereas the core of the fitness function could be implemented in a computation language like C.

5.3. Alternative Skeletons

It is possible to provide more versions of the PSO skeleton so that the programmer can select the one
that better fits his necessities. For instance, if the parallel environment to be used is not homogeneous,
then the distribution of tasks among processors should take into account the characteristics of each
processor. Let us consider a simple environment with two processors where one of them is much faster
than the other. In that case, it would not be a good idea to assign half of the particles to each processor,
because the faster one would finish its assignment in less time than the other one. Thus, it would be idle
during the rest of the time, waiting until its counterpart finishes its tasks and thus reducing the overall
performance of the system. Obviously, the problem is the same when the number of processors is larger
and not all of them have the same speed.

The solution is simple: the number of tasks to be assigned to each processor should depend on the
relative speed of all of them. Thus, instead of an integer denoting the number of available processors,
the new skeleton has a new parameter containing a list of numbers denoting the speed of each processor.
Note that, given the list, we also know the number of processors, so we can forget the nPE parameter.
The type of the new skeleton is the following:

psoPARh :: RandomGen a => a --Random generator

-> WPGparams --ω, φp and φr

Algorithms 2014, 7 570

-> Int --Number of particles

-> Int --Iterations per parallel step

-> Int --Number of parallel iterations

-> [Double] --Speed of processors

-> (Position -> Double) --Fitness function

-> Boundaries --Search space bounds

-> (Double,Position) --Result: Best fitness and position

Regarding the implementation, we only need to modify the definition of psoPAR to include a new
way to create the list of lists of particles pass by unshuffling the initial particles among processes, in
such a way that their speeds are taken into account:

psoPARh sg wpg np pit it speeds f bo = last bests

where initPs = initialize sg np bo f

nPE = length speeds

pass = shuffleRelative speeds initPs

sgs = tail (generateSGs (nPE+1) sg)

pouts :: [[(Double,Position)]]

pouts =[process (psoP (sgs!!i) wpg pit f bo) #(pass!!i,bests1)

|i<-[0..nPE-1]] ‘using‘ spine

bests,bests1 :: [(Double,Position)]

bests = map minimum (transp pouts)

bests1 = take it (obtainBest initPs : bests)

The new function shuffleRelative first computes the percentage of tasks to be assigned to
each process, and then it distributes the tasks by using function splitWith:

shuffleRelative speeds tasks = splitWith percentages tasks

where percentages=map (round.(m*).(/total)) speeds

total = sum speeds

m = fromIntegral (length tasks)

splitWith [n] xs = [xs]

splitWith (n:ns) xs = firsts:splitWith ns rest

where (firsts,rest) = splitAt n xs

Note that we do not need to change any other definition of the previous skeleton. In particular, the
definition of process psoP is exactly the same.

Let us consider another alternative skeleton. In this case, we are interested in providing a version
where the number of iterations to be performed in each parallel step is variable. Note that, during
the first phases of the computation, the global optimum changes faster than during the last iterations.
Thus, during the last phases we could use a larger number of independent parallel iterations, as the
synchronization seems to be less important when the global optimum does not change significantly. In
order to do that, we need to modify function psoPAR (or psoPARh) to change the previous parameters
pit and it by a new parameter containing a list of integers. The first element of this list contains
the number of iterations to be performed in parallel before the first global synchronization, the second
element represents the number of parallel iterations before the second synchronization, and so on.

Algorithms 2014, 7 571

Note that this modification can be done in both the skeleton shown in the previous section and the
new skeleton shown in this section, where the relative speed of processors is taken into account. We
only show how to do it in the new skeleton, as the other one is modified analogously. The new type of
function psoPARvh is the following:

psoPARvh :: RandomGen a => a --Random generator

-> WPGparams --ω, φp and φr

-> Int --Number of particles

-> [Int] --Iterations in each parallel step

-> [Double] --Speed of processors

-> (Position -> Double) --Fitness function

-> Boundaries --Search space bounds

-> (Double,Position) --Result: Best fitness and position

and its new definition only has to appropriately compute the previous parameter it (number of global
synchronizations) and pass the new list parameter pits to a new process psoPv:

psoPARvh sg wpg np pits speeds f bo = last bests

where ...

it = length pits

pouts=[process (psoPv (sgs!!i) wpg pits f bo)#(pass!!i,bests1)

|i<-[0..nPE-1]] ‘using‘ spine

...

Regarding the new process psoPv, it is a very simple modification with respect to the previous
process psoP. Now, instead of using always the same value pit as the number of iterations to be used
by function pso’, in each step we take a new value pit from list pits:

psoPv sg wpg (pit:pits) f bo (pas,newBest:newBests)

= newOut : psoPv sg2 wpg pits f bo (newPas,newBests)

where ...

newPas = pso’ rss wpg pit f bo pas’

...

Note again that, once these skeletons are defined, the user does not need to know their internal
definition in order to use them. It is only necessary to understand their external interface.

6. Experimental Results

In this section we present our experiments and report their results. In order to test the suitability of
our PSO parallel approach, we develop the following methodology. First, we execute our PSO skeletons
where the population of particles is split into islands. Particles within each island evolve independently
and update their global optimum every n steps, as described in previous sections. This experiment allows
us to study the effect of islands on the optimality of solutions. In order to perform this comparison, we
use some known benchmark functions, in particular several functions studied in [39]. Second, after

Algorithms 2014, 7 572

analyzing the influence of using islands, we analyze the speedup of our parallel schemes for the hardest
problem considered in [39].

6.1. Experimental Setup

In our experiments, our implementations of PSO will be used to minimize the following functions,
taken from [39]:

• Sphere Model: f1(x) =
∑n

i=1 x
2
i

• Schwefel’s Problem 2.22: f2(x) =
∑n

i=1 |xi|+
∏n

i=1 |xi|
• Schwefel’s Problem 1.2: f3(x) =

∑n
i=1(
∑i

j=1 xj)
2

• Schwefel’s Problem 2.21: f4(x) = maxi{|xi|, 1 ≤ i ≤ n}
• Generalized Rosenbrock’s Function: f5(x) =

∑n−1
i=1 [100(xi+1 − x2i)2 + (xi − 1)2]

• Step Function: f6(x) =
∑n

i=1(bxi + 0.5c)2

• Generalized Schwefel’s Problem 2.26: f8(x) =
∑n

i=1−xi sin(
√
|xi|)

• Generalized Rastrigin’s Function: f9(x) =
∑n

i=1[x
2
i − 10 cos(2πxi) + 10]

• Ackley’s Function: f10(x) = −20 exp
(
−0.2

√
1
n

∑n
i=1 x

2
i

)
− exp

(
1
n

∑n
i=1 cos 2πxi

)
+ 20 + e

• Generalized Griewank Function: f11(x) = 1
4000

∑n
i=1 x

2
i −

∏n
i=1 cos

(
xi√
i

)
+ 1

• Generalized Penalized Function I:
f12(x) =

π
n

{
10 sin2(πyi)+

∑n−1
i=1 (yi−1)2[1+10 sin2(πyi+1)]+(yn−1)2

}
+
∑n

i=1 u(xi, 10, 100, 4),

yi = 1 + 1
4
(xi + 1),

u(xi, a, k,m) =


k(xi − a)m, xi > a

0, −a ≤ xi ≤ a

k(−xi − a)m, xi < −a
• Generalized Penalized Function II:
f13(x) = 0.1

{
sin2(3πx1) +

∑n−1
i=1 (xi − 1)2[1 + sin2(3πxi+1)] + (xn − 1)2[1 + sin2(2πxn)]

}
+∑n

i=1 u(xi, 5, 100, 4)

• Shekel’s Foxholes Function: f14(x) =
[

1
500

+
∑25

j=1
1

j+
∑2

i=1(xi−aij)6

]
• Kowalik’s Function: f15(x) =

∑11
i=1

[
ai − x1(b2i+bix2)

b2i+bix3+x4

]2
• Six-Hump Camel-Back Function: f16(x) = 4x21 − 2.1x41 +

1
3
x61 + x1x2 − 4x22 + 4x42

• Branin Function: f17(x) =
(
x2 − 5.1

4π2x
2
1 +

5
π
x1 − 6

)2
+ 10

(
1− 1

8π

)
cosx1 + 10

The most relevant features of these functions are depicted in Table 1. For each function, we show
the number of dimensions, the boundaries of the solutions space, the value of the optimal solution, and
the asymmetric initialization range used in the experiments. The first six functions are relatively simple,
whereas finding the minimum value of functions f8 − f13 is harder. The reason is that there are more
local minima in these functions. In fact, the number of local minima is exponential with respect to the
number of dimensions of these problems. Functions f14−f17 are low-dimensional functions which have
only a few local minima.

Algorithms 2014, 7 573

Table 1. Benchmark functions.

Function Dimensions (n) [min,max]n f(x)min Asym. Init. Range

f1(x) 30 [−100, 100]n 0 [−100,−33.3]n

f2(x) 30 [−10, 10]n 0 [−10,−3.3]n

f3(x) 30 [−100, 100]n 0 [−100,−33.3]n

f4(x) 30 [−100, 100]n 0 [−100,−33.3]n

f5(x) 30 [−30, 30]n 0 [−30,−10]n

f6(x) 30 [−100, 100]n 0 [−100,−33.3]n

f8(x) 30 [−500, 500]n −12569.5 [−500, 500]n

f9(x) 30 [−5.12, 5.12]n 0 [−5.12,−1.7]n

f10(x) 30 [−32, 32]n 0 [−32,−10.7]n

f11(x) 30 [−600, 600]n 0 [−600,−200]n

f12(x) 30 [−50, 50]n 0 [−50,−16.7]n

f13(x) 30 [−50, 50]n 0 [−50,−16.7]n

f14(x) 2 [−65.536, 65.536]n 1 [−65.536,−21.84]n

f15(x) 4 [−5, 5]n 0.0003075 [−5,−1.67]n

f16(x) 2 [−5, 5]n −1.0316285 [−5,−1.67]n

f17(x) 2 [−5, 10]× [0, 15] 0.398 [−5,−1.67]× [0, 5]

In our experiments, values ω, φp, and φr are set as proposed in [29]. For each function, the
number of iterations is the same as the number of algorithm iterations performed in [39], while the
number of particles is 100. Following the asymmetric initialization approach given in [40], particles are
asymmetrically distributed for all problems but f8, which is appointed as specially hard for using an
asymmetric initialization in that work. In this special case we use an homogeneous distribution, as it is
done in [40].

6.2. Analyzing the Influence of Using Islands

We start studying the effect on the quality of solutins of using islands. Note that splitting particles into
sets which independently evolve and update the global optimum only from time to time has two effects.
On the one hand, enabling such an independent evolution of particles helps to preserve the diversity
of solutions. On the other hand, out-of-date global optima may prevent particles from searching for
solutions in more interesting areas for a while, until the global optimum is updated again. In order to
obtain results that are statistically relevant, for each function and number of islands, we perform 50

executions and we compute the corresponding averages. In Table 2 we depict the results of our PSO
skeleton for 1, 2, 3, and 4 islands (note that using 1 island is the same as not considering islands at all).

Algorithms 2014, 7 574

Table 2. Average optimality comparison with different number of islands.

Function 1 Island 2 Islands 3 Islands 4 Islands

f1(x) 1.02× 10−4 2.91× 10−4 9.54× 10−4 1.22× 10−3

f2(x) 8.29× 10−3 1.15× 10−2 1.18× 10−2 1.47× 10−2

f3(x) 1.93× 10−5 5.40× 10−5 6.55× 10−5 1.57× 10−4

f4(x) 1.45× 10−3 1.69× 10−3 1.57× 10−3 1.60× 10−3

f5(x) 26.57 8.56 12.96 14.01

f6(x) 0 0 0 0

f8(x) −9686.99 −9699.22 −9892.67 −10, 126.50
f9(x) 6.97× 10−8 2.28× 10−7 1.19× 10−6 2.04× 10−6

f10(x) 2.41× 10−3 3.98× 10−3 3.98× 10−3 6.65× 10−3

f11(x) 4.69× 10−3 5.59× 10−3 5.88× 10−3 5.86× 10−3

f12(x) 6.33× 10−3 2.52× 10−4 5.05× 10−4 8.24× 10−4

f13(x) 0.04 0.05 0.04 0.06

f14(x) 1.65 1.69 1.41 1.48

f15(x) 1.22× 10−3 1.20× 10−3 1.22× 10−3 1.20× 10−3

f16(x) −1.03 −1.03 −1.03 −1.03
f17(x) 0.398 0.398 0.398 0.398

In order to statistically analyze the influence of using islands on the optimality of the solutions,
we use [41] to perform a statistical test of the mean results given in Table 2. In general, a Friedman
test [42,43] can be used to check whether the hypothesis that all methods behave similarly (the null
hypothesis) holds or not. However, since the number of variables (methods) under consideration is low,
using a Friedman aligned ranks test [44] or a Quade test [45] is more recommended in this case (see
e.g., [46]). These tests do not rank methods for each problem separately (as Friedman test does), but
construct a global ranking where values of all methods and problems are ranked together. In Friedman
aligned ranks test, for each problem the difference of each method with respect to the average value
for all methods is considered, and next all values of all problems are ranked together. In Quade test,
problems where the difference between the best result and the worst result is high are given more weight
in the comparison. Let us consider α = 0.05, a standard significance level. From results given in
Table 2, we calculate that the p-value for aligned Friedman is 0.0049, which allows to reject the null
hypothesis with a high level of significance (the p-value is much lower than 0.05). So, the test concludes
that methods using 1, 2, 3 and 4 islands are not considered similar. That is, algorithms using different
numbers of islands are not considered equivalent. Since the null hypothesis was rejected, we can apply
a post-hoc analysis to compare the control method with the other three. Ranks assigned by this test
to these methods are 33.1563, 33.8750, 28.3438 and 34.6250, respectively. Thus, the control method
consists in using 3 islands. The p-values of the comparison of the 3-island method with respect to 4, 2,
and 1 islands respectively are 0.3400, 0.4008, 0.4647 respectively, and Holm’s procedure requires that
these values are iteratively lower than 0.0167, 0.0250 and 0.0500, respectively. Since the condition does
not hold for the first comparison, the three null hypotheses are accepted, so all methods with 4, 2, and 1
islands are pairwise considered equivalent to using 3 islands. Note that, although we cannot find relevant

Algorithms 2014, 7 575

differences when comparing them pairwise, when we consider the four methods together the differences
are found by the test.

Now we consider the Quade test. This time the p-value is 0.0228, so the test concludes that using
1, 2, 3 or 4 islands is not (globally) equivalent. The ranks given by Quade test to these methods are
2.3125, 2.4522, 2.3346 and 2.9007, respectively. Thus, the control method is 1 island. The p-values
of the comparison of 1 island with 4, 3, and 2 islands are 0.3550, 0.8261 and 0.9723, and Holm’s
procedure requires that these values are lower than 0.0167, 0.0250 and 0.0500, respectively. Again, the
first comparison fails, so all null hypotheses are accepted. Thus, methods with 4, 3 and 2 islands are
pairwise considered equivalent to using 1 island.

6.3. Speedup Analysis

Let us note that, after executing our PSO skeletons for the same number of iterations as those
used in [39], there is still margin for improving results further, specially for the hardest problem (f8).
In Table 3 we depict results for f8 for higher numbers of iterations. They illustrate that better solutions
are found after iteration 9000 indeed.

Table 3. Solutions found with different number of iterations.

Function Iterations Best Sol Arith Mean Std Dev

f8(x) 9000 −12, 095.73 −9686.99 1362.44

f8(x) 50, 000 −12, 214.17 −10, 339.49 1062.38

f8(x) 200, 000 −12, 569.48 −11, 091.23 1011.68

Next we present the speedups obtained by using our skeletons. In order to analyze their parallel
performance, we use two computers which are connected through the intranet of our university and are
physically located in different buildings. Both computers use the same Linux distribution (Debian), the
same MPI library (OpenMPI 1.4.2), and have analogous Intel Core i3 Duo processors. Thus, we perform
parallel experiments with up to four cores.

Among the 16 problems presented in our previous experiments, we select the hardest one (f8) because
it requires the longest execution time to obtain good solutions. Thus, it is more likely to improve its time
performance by taking advantage of a parallel execution. We conducted two experiments. In the first
one, algorithms are run for 50,000 iterations, and in the second they are executed for 200,000 iterations.
For each case, we use two different skeletons: the one presented in Section 5.2 (FPS A, standing for
Functional Particle Swarm), and the final modified version presented in Section 5.3 (FPS B). Since
the parallel environment is homogeneous, trying to take advantage of the first skeleton implemented in
Section 5.3 to compensate different processors speed would not provide any advantage in this case. In
experiments with 50,000 iterations, FPS A updates the global optimum every 500 iterations and does so
100 times, whereas FPS B updates the global optimum every 500 steps for the first 10 times, and next
it updates it every 5000 iterations 9 times. In experiments with 200,000 iterations, FPS A updates the
optimum every 5000 iterations and does it 40 times, whereas FPS B updates the global optimum every
5000 steps for the first 10 times, and next it updates it every 50,000 steps 3 times.

Algorithms 2014, 7 576

Each parallel skeleton is executed for up to four processors, and the speedup is computed by
comparing its execution time with the time of the sequential version. Table 4 summarizes the execution
time (in seconds) and the speedup obtained for each input problem and for each skeleton. As it can be
expected, FPS B obtains better results than FPS A, as it reduces the communications among processes.
The difference between both skeletons is small in the case of the largest execution (3.78 vs. 3.76 speedup
with 4 processors), but it is more significant in the case of the shortest one (3.29 vs. 2.93). The reason is
that the impact of communications in the largest execution is already small in FPS A, so there is small
room for improvement for FPS B. However, in the case of the shortest execution, communications take
place more often (in relative terms) so their impact is higher. The speedup of experiments is graphically
compared in Figure 3.

Table 4. Times and speedups comparison.

Version Iterations Processors Time Speedup

FPS 50, 000 1 113.45 1

FPS A 50, 000 2 58.73 1.93

FPS B 50, 000 2 58.71 1.93

FPS A 50, 000 3 43.13 2.63

FPS B 50, 000 3 42.66 2.66

FPS A 50, 000 4 38.69 2.93

FPS B 50, 000 4 34.50 3.29

FPS 200, 000 1 429.17 1

FPS A 200, 000 2 216.96 1.98

FPS B 200, 000 2 216.30 1.98

FPS A 200, 000 3 151.26 2.84

FPS B 200, 000 3 150.79 2.85

FPS A 200, 000 4 114.21 3.76

FPS B 200, 000 4 113.56 3.78

Figure 3. Speedup comparison.

Algorithms 2014, 7 577

Let us remark that, once the skeletons were written, the programming effort needed to use them was
negligible. We only needed to decide the number of iterations to be performed in parallel before each
global synchronization. However, observed speedups (specially for FPS B) are satisfactory.

7. Conclusions and Future Work

We have shown how to use the parallel functional language Eden to provide parallel versions of
PSO algorithms by means of Eden skeletons. The programmer only has to provide an appropriate fitness
function and adjust parameters, whereas all low-level details of the parallelization are done automatically
by the skeleton and the underlying runtime system. Moreover, different parallel implementations of PSO
can be provided to the user (in the paper we have shown four of them) so that he can select the one that
better fits his necessities.

It is worth pointing out that the source code used to develop the skeletons is highly reusable. First,
any programmer can use it by just defining an appropriate fitness function, while the whole parallel
machinery is done automatically by the provided skeleton. Second, it is simple to modify the skeleton to
obtain alternative parallel versions of it. In particular, we have shown how to modify psoPAR to obtain
a different version called psoPARh to deal with heterogeneous processors, and we have also shown
how to modify such version to obtain another version psoPARhv where the number of iterations to
be performed in each parallel step is variable. In both cases, it was only necessary to modify a couple
of lines of the source code to obtain the alternative version, keeping unmodified the main part of the
source code.

Our experiments have shown that the programmer does not need much work to adjust a skeleton to his
concrete problem, but achieved speedups are good enough. Note that we do not claim to obtain optimal
speedups but reasonable speedups—at low programmer effort.

In our previous work [31], we showed how to use Eden skeletons to deal with the parallelization
of genetic algorithms. In fact, our aim is to provide a library of generic Haskell versions of the most
common bioinspired metaheuristics, as well as a library containing the corresponding Eden skeletons for
each metaheuristic. By doing so, we will simplify the task of using these metaheuristics in functional
settings, and we will also simplify the task of improving their performance by means of parallelizing
them. Moreover, as several metaheuristics will be provided in the same environment, the programmer
will be able to check more easily what metaheuristics fits better for each concrete problem.

In addition to extending our library to deal with other swarm metaheuristics (like Ant Colony Optimization
or River Formation Dynamics), as future work we are particularly interested in studying hybrid systems
combining different metaheuristics.

Acknowledgments

This research has been partially supported by project TIN2012-39391-C04-04.

Algorithms 2014, 7 578

Author Contributions

The contributions of all of the authors have been similar. All of them have worked together to develop
the library and to design the experiments to be performed.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Eiben, A.; Smith, J. Introduction to Evolutionary Computing; Springer: Heidelberg,
Germany, 2003.

2. Chiong, R. Nature-Inspired Algorithms for Optimisation; Chiong, R., Ed.; Springer: Heidelberg,
Germany, 2009; Volume 193.

3. Kennedy, J.; Eberhart, R. Swarm Intelligence; The Morgan Kaufmann Publishers: San Francisco,
USA, 2001.

4. Kennedy, J. Swarm Intelligence. In Handbook of Nature-Inspired and Innovative Computing;
Zomaya, A., Ed.; Springer: New York, USA, 2006; pp. 187–219.

5. Dorigo, M.; Maniezzo, V.; Colorni, A. Ant system: Optimization by a colony of cooperating
agents. IEEE Trans. Syst. Man Cybern. Part B 1996, 26, 29–41.

6. Rabanal, P.; Rodríguez, I.; Rubio, F. Using River Formation Dynamics to Design Heuristic
Algorithms. In Unconventional Computation, Proceedings of the 6th International Conference,
UC 2007, Kingston, ON, Canada, 13–17 Augurst 2007; Springer: Heidelberg, Germany, 2007;
pp. 163–177.

7. Civicioglu, P.; Besdok, E. A conceptual comparison of the Cuckoo-search, particle swarm
optimization, differential evolution and artificial bee colony algorithms. Artif. Intell. Rev. 2013,
39, 315–346.

8. Cantú-Paz, E. A Survey of Parallel Genetic Algorithms. Calc. Parall. Reseaux Syst. Repartis
1998, 10, 141–171.

9. Alba, E. Parallel evolutionary algorithms can achieve super-linear performance. Inf. Process. Lett.
2002, 82, 7–13.

10. Randall, M.; Lewis, A. A Parallel Implementation of Ant Colony Optimization. J. Parallel Distrib.
Comput. 2002, 62, 1421–1432.

11. Nedjah, N.; de Macedo-Mourelle, L.; Alba, E. Parallel Evolutionary Computations;
Nedjah, N.; de Macedo-Mourelle, L.; Alba, E., Eds.; Studies in Computational Intelligence,
Springer: Heidelberg, Germany, 2006; Volume 22.

12. Zhou, Y.; Tan, Y. GPU-based parallel particle swarm optimization. In Proceedings of the Eleventh
Conference on Congress on Evolutionary Computation, Trondheim, Norway, 18–21 May 2009;
IEEE Press: Piscataway, USA, 2009; pp. 1493–1500.

13. Mussi, L.; Daolio, F.; Cagnoni, S. Evaluation of parallel particle swarm optimization algorithms
within the CUDA (TM) architecture. Inf. Sci. 2011, 181, 4642–4657.

Algorithms 2014, 7 579

14. Achten, P.; van Eekelen, M.; Koopman, P.; Morazán, M. Trends in Trends in Functional
Programming 1999/2000 versus 2007/2008. High.-Order Symb. Comput. 2010, 23, 465–487.

15. Cole, M. Bringing Skeletons out of the Closet: A Pragmatic Manifesto for Skeletal Parallel
Programming. Parallel Comput. 2004, 30, 389–406.

16. Trinder, P.W.; Hammond, K.; Loidl, H.W.; Peyton Jones, S.L. Algorithm + Strategy = Parallelism.
J. Funct. Programm. 1998, 8, 23–60.

17. Klusik, U.; Loogen, R.; Priebe, S.; Rubio, F. Implementation Skeletons in Eden: Low-Effort
Parallel Programming. In Proceedings of the 12th International Workshop on the Implementation of
Functional Languages, IFL 2000, Aachen, Germany, 4–7 September 2000; Springer: Heidelberg,
Germany, 2001; pp. 71–88.

18. Scaife, N.; Horiguchi, S.; Michaelson, G.; Bristow, P. A Parallel SML Compiler Based on
Algorithmic Skeletons. J. Funct. Programm. 2005, 15, 615–650.

19. Marlow, S.; Peyton Jones, S.L.; Singh, S. Runtime Support for Multicore Haskell. In Proceedings
of the International Conference on Functional Programming, ICFP’09, Edinburgh, Scotland,
31 August–2 September 2009; pp. 65–78.

20. Keller, G.; Chakravarty, M.; Leshchinskiy, R.; Peyton Jones, S.; Lippmeier, B. Regular,
shape-polymorphic, parallel arrays in Haskell. In Proceedings of the International Conference on
Functional Programming (ICFP’10), Baltimore, Maryland, 27–29 September 2010; pp. 261–272.

21. Marlow, S. Parallel and Concurrent Programming in Haskell: Techniques for Multicore and
Multithreaded Programming; O’Reilly Media, Inc.: Sebastopol, USA, 2013.

22. Loogen, R.; Ortega-Mallén, Y.; Peña, R.; Priebe, S.; Rubio, F. Parallelism Abstractions in Eden.
In Patterns and Skeletons for Parallel and Distributed Computing; Rabhi, F.A., Gorlatch, S., Eds.;
Springer: London, UK, 2002; pp. 95–128.

23. Peyton Jones, S.L.; Hughes, J. Report on the Programming Language Haskell 98. Technical report,
Microsoft Research (Cambridge) and Chalmers University of Technology, 1999. Available online:
http://www.haskell.org (accessed on 22 October 2014).

24. Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the IEEE International
Conference on Neural Networks; IEEE Computer Society Press: Piscataway, USA, 1995;
Volume 4, pp. 1942–1948.

25. Shi, Y.; Eberhart, R. A modified particle swarm optimizer. In Proceedings of the IEEE International
Conference on Evolutionary Computation; IEEE Computer Society Press: Piscataway, USA, 1998;
pp. 69–73.

26. Clerc, M.; Kennedy, J. The particle swarm—Explosion, stability, and convergence in a
multidimensional complex space. IEEE Trans. Evolut. Comput. 2002, 6, 58–73.

27. Parsopoulos, K.; Vrahatis, M. Recent approaches to global optimization problems through Particle
Swarm Optimization. Nat. Comput. 2002, 1, 235–306.

28. Zhan, Z.H.; Zhang, J.; Li, Y.; Chung, H.H. Adaptive Particle Swarm Optimization. IEEE Trans.
Syst. Man Cybern. 2009, 39, 1362 –1381.

29. Pedersen, M. Tuning & Simplifying Heuristical Optimization. PhD Thesis, University of
Southampton, Southampton, UK, 2010.

Algorithms 2014, 7 580

30. Abido, M. Multiobjective particle swarm optimization with nondominated local and global sets.
Nat. Comput. 2010, 9, 747–766.

31. Encina, A.V.; Hidalgo-Herrero, M.; Rabanal, P.; Rubio, F. A Parallel Skeleton for Genetic
Algorithms. In Proceedings of the International Work-Conference on Artificial Neural Networks,
IWANN 2011; Springer: Heidelberg, Germany, 2011; pp. 388–395.

32. Goldberg, D. Genetic Algorithms in Search, Optimisation and Machine Learning; Addison-Wesley:
Boston, USA, 1989.

33. Hidalgo-Herrero, M.; Ortega-Mallén, Y.; Rubio, F. Analyzing the influence of mixed evaluation on
the performance of Eden skeletons. Parallel Comput. 2006, 32, 523–538.

34. Eberhart, R.; Simpson, P.; Dobbins, R. Computational Intelligence PC Tools; Academic Press
Professional: San Diego, USA, 1996.

35. Kennedy, J. Small worlds and mega-minds: Effects of neighborhood topology on particle swarm
performance. Congress on Evolutionary Computation; IEEE Computer Society Press: Piscataway,
USA, 1999; Volume 3, pp. 1931–1938.

36. Shi, Y.; Eberhart, R. Parameter Selection in Particle Swarm Optimization. Evolutionary
Programming; LNCS; Springer: Heidelberg, Germany, 1998; Voloume1447, pp. 591–600.

37. Beielstein, T.; Parsopoulos, K.; Vrahatis, M. Tuning PSO parameters through sensitivity analysis.
Technical report, Universität Dortmund, Germany, 2002.

38. Laskari, E.C.; Parsopoulos, K.E.; Vrahatis, M.N. Particle Swarm Optimization for Integer
Programming. In IEEE Congress on Evolutionary Computation; IEEE Computer Society Press:
Piscataway, USA, 2002; pp. 1576–1581.

39. Yao, X.; Liu, Y.; Lin, G. Evolutionary programming made faster. IEEE Trans. Evolut. Comput.
1999, 3, 82–102.

40. Worasucheep, C. A particle swarm optimization for high-dimensional function optimization.
In Proceedings of the International Conference on Electrical Engineering/Electronics Computer
Telecommunications and Information Technology (ECTI-CON’10); IEEE Computer Society Press:
Piscataway, USA, 2010; pp. 1045–1049.

41. Parejo-Maestre, J.; García-Gutiérrez, J.; Ruiz-Cortés, A.; Riquelme-Santos, J. STATService.
Available online: http://moses.us.es/statservice/ (accessed on 22 October 2014).

42. Friedman, M. The use of ranks to avoid the assumption of normality implicit in the analysis of
variance. J. Am. Stat. Assoc. 1937, 32, 674–701.

43. Friedman, M. A comparison of alternative tests of significance for the problem of m rankings.
Ann. Math. Stat. 1940, 11, 86–92.

44. Hodges, J.; Lehmann, E. Ranks methods for combination of independent experiments in analysis
of variance. Ann. Math. Stat. 1962, 33, 482–497.

45. Quade, D. Using weighted rankings in the analysis of complete blocks with additive block effects.
J. Am. Stat. Assoc. 1979, 74, 680–683.

Algorithms 2014, 7 581

46. Derrac, J.; García, S.; Molina, D.; Herrera, F. A practical tutorial on the use of nonparametric
statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms.
Swarm Evol. Comput. 2011, 1, 3–18.

c© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).

	Introduction
	Functional Languages under Consideration
	Brief Introduction to Haskell
	Introduction to Eden
	Eden Skeletons

	Introduction to Particle Swarm Optimization
	Generic PSO Algorithms in Haskell
	PSO Parallel Skeletons in Eden
	A Simple Parallel Skeleton
	A Parallel Skeleton Reducing Communications
	Alternative Skeletons

	Experimental Results
	Experimental Setup
	Analyzing the Influence of Using Islands
	Speedup Analysis

	Conclusions and Future Work
	Author Contributions

