
Algorithms 2014, 7, 663-684; doi:10.3390/a7040663

algorithms
ISSN 1999-4893

www.mdpi.com/journal/algorithms

Article

COOBBO: A Novel Opposition-Based Soft Computing
Algorithm for TSP Problems

Qingzheng Xu 1,*, Lemeng Guo 1, Na Wang 2 and Yongjian He 1

1 Department of Information Service, Xi’an Communications Institute, No. 8, Zhangba East Road,

Xi’an 710106, China; E-Mails: glmdick@163.com (L.G.); heshifu@sina.com (Y.H.)
2 Department of Basic Courses, Xi’an Communications Institute, No. 8, Zhangba East Road,

Xi’an 710106, China; E-Mail: syesun@hotmail.com

* Author to whom correspondence should be addressed; E-Mail: xuqingzheng@hotmail.com;

Tel.: +86-29-8470-6536.

External editor: Toly Chen

Received: 9 October 2014; in revised form: 26 November 2014 / Accepted: 8 December 2014 /

Published: 12 December 2014

Abstract: In this paper, we propose a novel definition of opposite path. Its core feature is

that the sequence of candidate paths and the distances between adjacent nodes in the tour

are considered simultaneously. In a sense, the candidate path and its corresponding

opposite path have the same (or similar at least) distance to the optimal path in the current

population. Based on an accepted framework for employing opposition-based learning,

Oppositional Biogeography-Based Optimization using the Current Optimum, called

COOBBO algorithm, is introduced to solve traveling salesman problems. We demonstrate

its performance on eight benchmark problems and compare it with other optimization

algorithms. Simulation results illustrate that the excellent performance of our proposed

algorithm is attributed to the distinct definition of opposite path. In addition, its great

strength lies in exploitation for enhancing the solution accuracy, not exploration for

improving the population diversity. Finally, by comparing different version of COOBBO,

another conclusion is that each successful opposition-based soft computing algorithm needs to

adjust and remain a good balance between backward adjacent node and forward adjacent node.

Keywords: biogeography-based optimization; opposition-based learning; traveling

salesman problems; discrete domain; opposite path; population diversity

OPEN ACCESS

Algorithms 2014, 7 664

1. Introduction

An opposition concept is both familiar and mysterious at the same time to ordinary mortals like us.

It is familiar in that it is unconsciously or consciously applied in our regular life. That said, the

opposition concept is also mysterious, in that it has different meaning and name for different academic

disciplines. Over the last 2500 years, the study of opposites has attracted the attention of countless

experts and scholars in various fields. Perhaps it is only because opposite terms and the nature of

opposites intrigue and fascinate us. However, due to the lack of an accepted mathematical or

computational model, until recently it has not been explicitly investigated to any great length in the

fields outside of philosophy and logic [1].

Obviously, this awkward situation has changed in the last decade under the unremitting efforts of

computer scientists. The basic concept of Opposition-Based Learning (OBL) was original introduced

in 2005 by Tizhoosh [2]. Soon after, some new varieties of opposition-based learning were proposed

for use: Quasi-Opposition-Based Learning (QOBL) [3], Quasi-Reflection Opposition-Based Learning

(QROBL) [4], Center-based Sampling [5], Generalized Opposition-Based Learning (GOBL) [6] and

Opposition-Based Learning using the Current Optimum (COOBL) [7]. The essential idea of these

optimization strategies is the serious consideration of an estimate and its corresponding opposite

estimate simultaneously to achieve an optimal approximation of the current candidate solutions.

Nevertheless, a major distinction between these technologies lies in how to define the concept of

opposite estimate as a part of enhancing population diversity. From the perspective of algorithm

design, mathematical and experimental comparison between opposition-based sampling and random

sampling is one of the most widely used techniques for continuous space. Recently, some

mathematical proofs were explored independently in order to show why the opposition-based learning

is beneficial when no preliminary knowledge about the solution is available [8–10].

It is amazing that they have been utilized in a vast majority of soft computing areas over a very

short period of time. These simple and efficient meta-heuristic methods mainly include Differential

Evolution (DE) [3,6,7,11,12], Particle Swarm Optimization (PSO) [13–15], Reinforcement Learning

(RL) [2,16], Biogeography-Based Optimization (BBO) [4,17], Artificial Neural Network (ANN) [18,19],

Harmony Search (HS) [20,21], Ant Colony System (ACS) [22,23] and Artificial Bee Colony

(ABC) [24,25]. At present, the most successful applications of the ideas of OBL and its variants focus

on traditional optimization fields, such as large-scale unconstrained optimization problem, constrained

optimization problem, multi-objective optimization problem, and optimization problem in noisy

environment. For a detailed overview of a range of opposition-based learning and its typical

applications, we recommend a recent review article by Xu, etc., entitled “A review of opposition-based

learning from 2005 to 2012” [26].

Unfortunately, until now, opposition-based soft computing algorithms are rarely designed and

applied to classical discrete optimization problems such as the minimum spanning tree problem,

knapsack problem or scheduling problem. As far as we know, [22,27,28] are the few published papers

for solving successfully the Traveling Salesman Problem (TSP), a famous combinatorial problem. The

goal of this paper is to define a novel opposite numbers in discrete domain and then compare it with

other acknowledged definitions of opposite solution. Furthermore, what deserves special note here is

that, although the proposed scheme is embedded in the classical Biogeography-Based Optimization

Algorithms 2014, 7 665

(BBO) algorithm in this paper, in practice it is general enough to be applied to almost all soft

computing algorithms to improve its performance. In a way, this paper is only the beginning of what

you can do with the novel opposite numbers in discrete domain.

The general thinking of BBO, TSP and the well-known definition of OBL in continuous and

discrete domain are introduced briefly in Section 2. In Section 3, an optimization method, Oppositional

Biogeography-Based Optimization using the Current Optimum (COOBBO), for TSP problems, is

proposed based on a new definition of opposite path in discrete domain. The simulation results comparing

COOBBO with some other optimization methods and detailed discussion are given in Section 4.

Finally, some concluding remarks and suggestions for further research are presented in Section 5.

It is important to mention that this work is a revised and expanded version of a paper entitled “A

novel oppositional biogeography-based optimization for combinatorial problems” presented at the

2014 10th International Conference on Natural Computation (ICNC 2014), Xiamen, China,

19–21 August 2014 [29]. The present paper extends the previous research work by the following

important contributions. (1) At the beginning of Section 3, the full details and motivation of proposed

scheme is clearly stated to make it easier to understand. (2) The other two definitions of opposite path

are proposed in the similar way as the previous one in [29]. Then the three definitions of opposite path

are compared carefully in order to show their own advantages and disadvantages, and further to sum

up experience conscientiously about new idea and design of opposite path. (3) In the part of results and

discussions, a new comparison criteria, population diversity, is introduced and then it is analyzed for

all tested algorithms. Later, a random version of OBBO is also introduced and compared with original

OBBO algorithm in this paper. In addition, all experimental results of computation time are fitted, and

then relative fitting errors are computed to support our previous guess in [29].

2. Background

2.1. Biogeography-Based Optimization

As a relatively young evolutionary algorithm, Biogeography-Based Optimization was first

introduced in 2008 by Simon [30]. It is inspired by the science of biogeography which studies the

distribution of species and ecosystems amongst islands in geographic space and through geological time.

In BBO, a population of candidate solutions is generated randomly, each candidate representing an

island. These islands are then assigned, based on their fitness, immigration and emigration rates

respectively, which are the important features of BBO that distinguish it from other evolutionary

algorithms. The emigration rate indicates how likely a solution is to share its features with other

solutions, and the immigration rate indicates how likely a solution is to accept features from other

solutions. For example, a candidate solution with higher fitness for optimization problem will have a

higher emigration rate and lower immigration rate, so that it can share its features with less fit islands

and it is less likely to be spoiled by migrations from less fit islands. In contrast, a worse solution

candidate will be assigned a high immigration rate and accept a lot of new features from relative good

solutions. This addition of new features to the poor solution will, inevitably, enrich the fitness of the

island. Throughout a lot of iterations, biological species migrate among different islands based on the

immigration and emigration rates to find a better habitat. For further details please carefully read the

reference cited at the beginning of the subsection.

Algorithms 2014, 7 666

2.2. Traveling Salesman Problems

It is well known that the combinatorial problems are not new to heuristic algorithms and have

fascinated many scientists and engineers over the past few decades. As a matter of fact, they are

considered as standard benchmarks for heuristic algorithms. For example, TSP is a well-known and

ancient combinatorial problem since being defined in the 1800s by the Irish mathematician Hamilton

and by the British mathematician Kirkman [31]. To summarize, there are three major reasons that the

TSP has become a standard benchmark for soft computing algorithms [32]. First, the TSP is very

intuitive and quite easy to state in terms of the complete graph on N vertices, and it is similar to many

practical problems such as automatic assembly and configuration planning, sensor selection and power

allocation over wireless networks, robotic path planning, and many others. Second, the TSP can easily

be modified to become a multi-objective problem and solving multi-objective problems is a practical

challenge but perhaps not insurmountable in many areas of engineering and industry. Third, an optimal

TSP solution is extremely hard to obtain by using analytical methods. Even using numerical methods,

it is still quite a challenge on a large number of real problem instances. The running time for brute-force

search approach lies within a polynomial factor of O(n!). For instance, for a problem with 20 cities by

brute force searching, it would be (20 − 1)!/2 possible tours, so this solution becomes impractical

within limited computing time and memory space.

Because of the reasons above, many TSP problems with different diversities (even over 80,000) are

formed to challenge the performance of existing heuristic algorithms, and many new algorithms

inspired by nature and biological processes are specially proposed to conquer the TSP more efficiently.

It is believed that our work in this paper is a useful attempt following this way, though we have not yet

found the optimal solutions for symmetric TSP.

2.2. Oppositional Biogeography-Based Optimization for Combinatorial Problems

When dealing with D dimensional vectors in continuous domain (the space would be RD), the

definition of opposite numbers is first given by Tizhoosh as follows [2].

Definition 1. Let P = (x1, x2, ..., xD) be a point in D-dimensional space, where x1, x2, …, xD  R
and xi  [ai, bi],  i  {1, 2, …, D}. The opposite point P


 = (1x


, 2x


, …, Dx


) is completely defined

by its coordinates

ix


 = ai + bi – xi (1)

Figure 1 illustrates the opposite point P


 in one dimensional case.

Figure 1. Opposite point defined in domain [a, b]. x is a candidate solution and x


 is the opposite of x.

x


To the best of our knowledge, the great majority of published research papers on opposition-based

learning are for solving continuous domain optimization problems. Recently, more and more researchers

gradually realized that opposition-based learning, originally introduced for accelerating a continuous search

space, can also be modified to be used alongside BBO to solve combinatorial problems, including TSP.

Algorithms 2014, 7 667

Obviously, wherein the main difficulty of these algorithm extensions is that how to define and evaluate

opposite numbers in discrete domain [26]. For instance, given a candidate path, the attempting to apply

opposition concept by simply reversing its order of the nodes is meaningless because the reversed path will

yield the same cost as the original path in a TSP problem. For example, a tour (1, 2, 3, 4, 1) and its opposite

tour, (1, 4, 3, 2, 1), have the same cost values because all of the cities preserve their neighbors. As a result,

based on superficial analysis above, a new definition of opposition for TSP is needed and it should be

different appreciably from that for continuous domain problems. In [28], an opposite path as following was

defined as a candidate path that maximizes the distance between the adjacent vertices in the original path.

Definition 2. Let n be the number of nodes in a graph and P = [1, 2, …, n] be an even node cycle.
The clockwise opposite path, CW

oP , is defined as

],
2

,1,1
2

,,
2

2,2,
2

1,1[n
n

n
nnn

PCW
o   (2)

It is notice that, the opposite point cannot be assigned as defined in (2) if n is odd. Since the number

of nodes in a graph is odd, a possible and simple way to implement the clockwise opposition is to add

an auxiliary node (denoted by “n + 1”) to the end of the path and then complete the city count to an

even number. Using the definition 2, we can work out the clockwise opposite path of candidate

solution and then remove the auxiliary city “n + 1” from the end of opposite path.

On the basis of classical BBO and the definition of opposite path, the original OBBO algorithm was

proposed by Ergezer and Simon [28]. The basic procedure of OBBO algorithm is presented as follows

in Algorithm 1. It is noticeable that the classical BBO algorithm is enhanced using the scheme of the

Opposition-based Differential Evolution [12], namely, opposition-based population initialization

(Rows 2–4 in Algorithm 1) and opposition-based generation jumping (Rows 9–13 in Algorithm 1). As

far as we know, this exact scheme seems to be a generally-accepted and widely used mode in many

opposition-based soft computing algorithms.

Algorithm 1. Original OBBO algorithm.
1: procedure OBBO (Problem, Opposition method)
2: Randomly generate initial population, P
3: Generate the opposite of initial population, OP
4: Maintain the fittest amongst P and OP
5: while Generation ≤ gen limit do
6: Perform BBO Migration
7: Remove duplicates from population
8: Calculate the fitness of P
9: if random ≤ Opposition Jumping Rate then
10: Create the opposite population, OP
11: Calculate the fitness of OP
12: Maintain the fittest amongst P and OP
13: end if
14: Restore Elite individuals
15: end while
16: return Best Individual
17: end procedure

Algorithms 2014, 7 668

3. Proposed Algorithm

3.1. Motivation

Simulation results on several symmetric TSP benchmarks in [28] illustrate that OBBO seems to be

relatively good at optimal solutions when compared with BBO. However, these experiments expose

two serious problems, which may indicate that the initial conclusion is questionable.

Although the terminal condition is set as a constant generation maximum for different comparison

algorithms, such as 500 in that paper, the number of candidate solutions explored in a search space by

different algorithms may be well-distinguished between each other. It is intuitively obvious that some

opposite paths are explored and then considered in each generation for OBBO algorithm, but not for

BBO algorithm. Obviously, to compare the performance of BBO and OBBO algorithm, it is unfair and

inadvisable scheme, which instead by our termination criterion in Section 4.1.

The other problem, hidden behind OBBO for TSP problems, is that the definition of opposite path is

too simple to embody some important characteristics of the candidate path. According to our

observations and understanding, the city sequences and the distances between adjacent cities are both

the two most core features of a TSP path. It is to be noted clearly that the city sequences here means

the relative order in TSP path alone. For example, we only concerned that city 25 is former than city

49, and latter than city 12 in a given TSP path (…, 12, 25, 49, …). However, we do not care about the

coordinate of the cities 25, 49 and 12, not to mention the Euclidean distances between them.

Furthermore, the Euclidean distance is directly computed based on the geometric coordinates of the

nodes of the graph, and yet these TSP paths are differentiated by the sequences when only a graph is

given. However, the authors used the former feature (city sequences) and ignored the latter one

(distances between adjacent cities) unconsciously or consciously, when they defined the opposite path

in [28]. Usually, using the original definition of opposite path presented in [28] will lead inevitably to

the low utilization rate of opposite paths as shown in Section 4.2.

It is obvious that the definition of opposite path can be considered as a key to promote the

opposition-based soft computing for solving TSP problem. Therefore, an initial motivation of this

paper is to further amend the definition of opposite path with the help of the Euclidean distances and

city sequences in the graph.

Therefore, the next question is that how to use together with Euclidean distances and city sequences

of a candidate path. We think Opposition-Based Learning using the Current Optimum, a significant

important variation of OBL in continuous domain, might be a good choice by careful observation of

these definitions. As mentioned previously, it was first proposed for function optimization as follows [7].

Definition 3. Let P = (x1, x2, ..., xD) be a point in D-dimensional space, where x1, x2, …, xD  R and
xi  [ai, bi],  i  {1, 2, …, D}. The opposite point using the current optimum coP


 = (1cox


, 2cox


, …,

coDx


) is completely defined by its coordinates

coix


 = 2xco – xi (3)

where xco is the optimum solution in the current population.

This definition has similarity, in style, with definition 1 proposed by Tizhoosh, but you will find

that the opposite point using the current optimum may be outside the range of valid numbers defined

Algorithms 2014, 7 669

by [ai, bi] if you analyze it carefully. Therefore, the possible solutions include recomputing based on

Equation (3) until the new one falls in the range of valid numbers, reproducing a random point, and

even using the left or right boundary of valid numbers as an alternative.
Figure 2 illustrates the opposite point using the current optimum coP


 in one dimensional case.

Figure 2. Opposite point using the current optimum defined in domain [a, b]. x is a
candidate solution, x


 is the opposite of x and cox


 is its opposite using the current optimum.

x


The core idea of COOBL may be summarized as that the optimum solution in the current

population, replacing the midpoint in a range of variables’ current interval, is used as symmetry point

of the points and their opposite points. As a result, the opposite points using the current optimum will

be in the neighborhood of the global optimum during the process of evolution, especially in the later stage.

In this paper, to redefine the opposite path in discrete domain, the candidate solution and the

optimum solution in the current population will be also taken into consideration simultaneity in the

similar way.

3.2. Definition of Opposite Path using the Current Optimum

In order to achieve a better solution of TSP efficiently, we modify the definition of opposite path

as follows.

As in Figure 3, it is supposed that, n is the number of nodes in a graph and m is the population size.

In fact, this figure can decomposed into three parts to comprehend the novel definition of opposite path

clearly, which are shown in Figure 4. The first part, the optimal path in the current population

Pco = [A1, A2, …, A1], as seen in Figure 4a, is translated into line A1A4 in Figure 3. In addition,

similarly, the candidate path Pi = [B1, B2, …, B1] as the second part of Figure 3 is also translated into

line B1B3. The clearly common ground between two important parts of Figure 3 is that, they are curves

in Figure 4, instead, they are lines in Figure 3. The only reason for the different expression of the same

TSP paths is to simplify the most critical figure in this paper. Based on the similar reason, the third part

of Figure 3, all cities in the graph as seen in Figure 4c, is ignored in Figure 3. Of cause, you can image

it is ubiquity for all cities in this graph in order to understand the following procedure easily.

Figure 3. Novel definition of opposite path (Backward Ellipse).

Algorithms 2014, 7 670

Figure 4. Component elements of opposite path (Backward Ellipse). (a) Optimal path in

the current population. (b) Candidate path. (c) Cities in the graph.

33 34 35 36 37 38 39 40 41 42
-10

-5

0

5

10

15

20

25

30

33 34 35 36 37 38 39 40 41 42

-10

-5

0

5

10

15

20

25

30

33 34 35 36 37 38 39 40 41 42
-10

-5

0

5

10

15

20

25

30

(a) (b) (c)

Based on the preliminary and explanation above, the opposite path (Backward Ellipse), Pi
o = [O1,

O2, …, O1], of any path Pi = [B1, B2, …, B1] can be defined according to the following procedure.

(1) A set of remaining nodes include all nodes in the graph, and a set of visited nodes is empty in

initialization stage.

(2) Let k = 1. The start city, A1(B1) of optimal path Pco is also determined as the first node of path Pi and

its opposite path Pi
o. Then A1(B1) is labeled as a visited node and deleted from the set of remaining nodes.

(3) Let k = k + 1. An ellipse is determined and denoted by Ek, in which the (k − 1)th node and kth

node of the optimal path Pco are the left focus and the right focus of the ellipse, respectively, and the

kth node of Pi is on the boundary of the ellipse Ek.

(4) The kth node Ok of opposite path Pi
o is the nearest node from the set of remaining nodes to the

boundary of the ellipse Ek. Then the kth node is labeled as a visited node and deleted from the set of

remaining nodes.

(5) Steps 3 and 4 above are iterated until all nodes are included in the set of visited nodes. Then the

opposite path, Pi
o, of any path Pi is defined well.

As stated above, the ellipse Ek is determined by means of the (k − 1)th node, the kth node of the

optimal path Pco and the kth node of Pi. The kth node of opposite path Pi
o is close to the boundary of

the ellipse Ek. In other words, the kth node of Pi and the kth node of opposite path Pi
o have the same (or

similar at least) distance from the (k − 1)th node and the kth node of the optimal path Pco. Further, the

(k − 1)th node and the kth node of the optimal path Pco can take the place of the whole optimal path

Pco. Then the path Pi and its corresponding opposite path Pi
o have the same (or similar at least)

distance to the whole optimal path Pco in the current population in a sense.

Quite similarly, we can define the other two methods, opposite path (Forward Ellipse) and opposite

path (Circle), as shown in Figures 5 and 6, respectively. For opposite path (Forward Ellipse), the

ellipse Ek is determined by means of the kth node, the (k + 1)th node of the optimal path Pco and the kth

node of Pi. For instance, the second node O2 of opposite path Pi
o and node B2 of Pi have the

same/similar distance from nodes A2 and A3 of the optimal path Pco. The third node O3 of opposite

path Pi
o and node B3 of Pi have the same/similar distance from nodes A3 and A4 of the optimal path

Pco, and so on. For opposite path (Circle), the ellipse Ek is degenerated into a circle Ck, in which the

center is the kth node of the optimal path Pco and the radius is the distance between the center and the

kth node of Pi. For instance, the node B2 of Pi is located at the boundary of the circle C2 and the second

Algorithms 2014, 7 671

node O2 of opposite path Pi
o is selected around the boundary. The node B3 is located at the boundary

and the node O3 is selected around the boundary of the circle C3, and so on.

Figure 5. Novel definition of opposite path (Forward Ellipse).

Figure 6. Novel definition of opposite path (Circle).

Without a doubt we introduce the information of the optimum solution in the current population,

including the Euclidean distances and the node sequences, into all definitions of opposite path in this

paper. The path and its corresponding opposite path have the similar distance to the current optimum in

a sense. In addition, the node sequences of opposite path are nearly kept with the original path and

optimal path in order, although the direction of opposite path may be slightly different with the original

path. In a word, our definition method of opposite path, which is significantly different from [28],

considers both the node sequences of candidate paths and the distances between adjacent nodes at the

same time. In my opinion, it may be a novel and promising attempt to applying the opposition-based

soft computing in discrete domain.

3.3. Our Optimization Method

The novel optimization method, Oppositional Biogeography-Based Optimization using the Current

Optimum, for TSP problem suffers the same basic produce like OBBO as shown in Algorithm 1.

Actually, the only difference between original OBBO and COOBBO proposed in this paper consists in

that the definition of opposite path, which directly influences the population initialization (Row 3 in

Algorithms 2014, 7 672

Algorithm 1) and generation jumping (Row 10 in Algorithm 1). In the implementation of the

algorithm, we should employ the opposite path (Backward Ellipse, Forward Ellipse, or Circle) using

the current optimum given in Section 3.2, replacing the opposite path proposed in [28].

4. Experimental Results and Discussions

4.1. Experimental Setup

Here we introduce a random version of OBBO (called ROBBO in this paper) firstly. On the basis of

original OBBO, all parts of the proposed algorithm are kept untouched. In addition, instead of using

opposite paths for the population initialization and the generation jumping, the random paths, which

are generated uniformly in entire search space, are employed in ROBBO algorithm. According to past

experience, we admit that this version must be not the best one, yet it is a basic and well-known

method, which is firstly used by Rahnamayan in [12].

Benchmark Functions. A comprehensive set of 8 different well-known traveling salesman

problems has been employed for performance verification of the proposed approach. All the

benchmarks are selected from TSPLIB [33]. The benchmarks sizes vary from small problem to extra

large problem to cover a wide range of problem complexity based on category criteria in [32].

Parameter Settings. Note that the main point in this paper is to perform relative comparison among

BBO, OBBO, ROBBO and COOBBO. In order to compare the performance without affecting other

factors, all conducted experiments use the parameters as follows.

 Population size: 100

 Maximum number of cost function calls: 100,000

 Number of elites: 3

 Opposition jumping rate: 0.3

The termination criterion for all tested algorithms in this paper is that the number of evaluation of

cost function is reached the maximum number. It is obvious that, in each iteration of the loop, the

number of function evaluation is different for different algorithms due to opposite numbers explored

more space. Therefore, the termination criterion in this paper seems more fair and advisable, especially

when compared with that used in [28].

Comparison Criteria. We compare the algorithm performance of BBO, OBBO, ROBBO and

COOBBO with the help of four well-used criteria in this paper: best solution (BS), computation time

(CT), utilization rate of opposite paths (UR), and population diversity (PD). From the definition and

design goal, there is no direct relationship among these parameters. Our investigation listed later in this

section confirms this conclusion clearly. Thus, we must check all experimental data carefully and

discuss them depending on the situation.

First of all, we compare the algorithm performance by measuring the best solution found at the end

of the computation, which is the most commonly used metric in literatures. In order to minimize the

effect of the stochastic nature of the heuristic algorithms on the measured metric, the reported results

for each function is the average over 100 independent Monte-Carlo simulations. It is worth noting that,

the data in the following tables are not the minimum value (best result), but rather the mean value of

all 100 experiments.

Algorithms 2014, 7 673

Computation time, also called process time, is the amount of CPU time required for processing

instructions of a computer program. The CPU time is usually measured in clock ticks or seconds. It is

well known that it depends on a lot of factors such as data structure utilized by the computer program,

programming style of programmer or author, and even performance of computer running the algorithm

program. However, on the other hand, it also reflects the convergence speed of tested algorithm in a sense.

Utilization rate of opposite paths is a typical comparison criterion for opposition-based soft

computing. Refer to early definition proposed in [34], utilization rate of opposite paths is defined as

p

res

N

OP
UR  (4)

where OPres is the number of opposite paths reserved as offspring in the next generation, and Np is the

size of the population including all candidate paths and their corresponding opposite paths. A larger

UR means more effects of opposite paths during the process of evolution. Furthermore, for different

generations, even the same number of candidate solutions (including candidate paths and their opposite

paths) may lead to different utilization rate of opposite paths. Generally speaking, the utilization rate of

opposite paths is relative high during the former stage, while it is relative low during the later stage.

The reason behind this variation is that, the population of candidate solutions is evolved over time towards

better solutions and then more and more opposite paths may not be selected into the elitist population.

For population-based intelligent algorithms, population diversity is undoubtedly one of the most

important indicators of a population state. Measures to evaluate the population diversity play an

important role in adaptively changing search strategies, in analyzing the behavior of soft computing

algorithms, and in evaluating individuals to maintain population diversity in a positive manner. In this

paper, an edge entropy measure is used to evaluate population diversity. The edge entropy was

proposed by Maekawa [35] firstly and defined as





Xe pp N

eF

N

eF
H)

)(
log(

)(
 (5)

where X is a set of edges included in the current population, Np is the size of the population, and F(e) is

the number of edges e in the current population.

4.2. Deeper Analysis of OBBO

In order to intuitively show its drawbacks, the simulation of OBBO algorithm for large scale TSP,

ch130, is firstly conducted with the setting listed in Table 1 as in [28]. We show that by using

Monte-Carlo method.

The optimal solutions are obtained at the end of 500 generations from both BBO and OBBO.

Therefore, the number of candidate solutions explored by BBO is 25000 for each independent

Monte-Carlo run. While the mean of candidate solutions explored by OBBO is 32446.5 ± 485.7132

over 200 independent Monte-Carlo simulations. From this viewpoint, it is no surprise that compared with

BBO algorithm, the performance of OBBO may be improved as illustrated in [28] for its larger

possibility space explored.

The utilization rate of opposite paths is recorded and shown. From Figure 7, we can see that it is

decreasing from 50% to 5% sharply over 6 times. After 12 times, it is very close to zero, which means

Algorithms 2014, 7 674

the opposite paths cannot be selected as elitist solutions and then survived into the next generation.

What deserves special mention is that the horizontal ordinate is the number of opposition-based

generation jumping, not the number of generation (iteration). The former is almost 30% of the later

according to the parameter, opposition jumping rate, used in this simulation.

The utilization rate of opposite paths is recorded and shown. From Figure 7, we can see that it is

decreasing from 50% to 5% sharply over 6 times. After 12 times, it is very close to zero, which means

the opposite paths cannot be selected as elitist solutions and then survived into the next generation.

What deserves special mention is that the horizontal ordinate is the number of opposition-based

generation jumping, not the number of generation (iteration). The former is almost 30% of the later

according to the parameter, opposition jumping rate, used in this simulation.

The utilization rate of opposite paths is recorded and shown. From Figure 7, we can see that it is

decreasing from 50% to 5% sharply over 6 times. After 12 times, it is very close to zero, which means

the opposite paths cannot be selected as elitist solutions and then survived into the next generation.

What deserves special mention is that the horizontal ordinate is the number of opposition-based

generation jumping, not the number of generation (iteration). The former is almost 30% of the later

according to the parameter, opposition jumping rate, used in this simulation.

The utilization rate of opposite paths is recorded and shown. From Figure 7, we can see that it is

decreasing from 50% to 5% sharply over 6 times. After 12 times, it is very close to zero, which means

the opposite paths cannot be selected as elitist solutions and then survived into the next generation.

What deserves special mention is that the horizontal ordinate is the number of opposition-based

generation jumping, not the number of generation (iteration). The former is almost 30% of the later

according to the parameter, opposition jumping rate, used in this simulation.

Table 1. Simulation settings for TSP problem.

Parameters Value

Population size 50
Generation limit 500
Number of elites 3
Monte Carlo runs 200

Opposition Jumping Rate 0.3

Figure 7. Utilization rate of opposite paths of OBBO algorithm.

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

Numbers

U
til

iz
at

io
n

R
at

e
of

 O
pp

os
ite

 P
at

hs
 (

%
)

Algorithms 2014, 7 675

4.3. Experiment Comparison of BBO, OBBO, ROBBO and COOBBO

Results of applying BBO, OBBO, ROBBO and COOBBO to solve 8 benchmark functions are given

in Table 2, in which the better results for each case are highlighted in boldface.

Table 2. Performance comparison of BBO, OBBO, ROBBO and COOBBO.

Benchmark
Comparison

Criteria
BBO OBBO COOBBO ROBBO

berlin52

BS 8604.2732 ± 271.0828 8802.2257 ± 298.9179 8321.864 ± 243.0838 8816.3923 ± 310.225

CT 16.5043 ± 0.033254 12.8949 ± 0.14883 26.0636 ± 0.40613 12.7935 ± 0.15288

UR - 1.39 ± 0.15792 17.7021 ± 1.5387 0.98298 ± 0.13792

PD 30.9672 ± 0.2238 32.0102 ± 0.30895 23.4455 ± 1.7748 31.8362 ± 0.29218

bier127

BS 224444.6936 ± 7873.8039 247079.3802 ± 8659.568 186999.418 ± 11339.7602 247017.627 ± 8644.1022

CT 36.2248 ± 0.18711 28.0967 ± 0.32596 77.5242 ± 1.7217 27.9017 ± 0.35213

UR - 0.79193 ± 0.12519 10.0663 ± 0.94305 0.73474 ± 0.11112

PD 37.4125 ± 0.46407 40.0844 ± 0.74797 37.8905 ± 1.7826 39.9542 ± 0.77365

ch130

BS 14160.151 ± 556.0656 16163.1156 ± 571.0329 10735.6857 ± 800.823 16110.5935 ± 580.3632

CT 36.8155 ± 0.041028 28.6327 ± 0.28465 80.0928 ± 1.9244 28.4332 ± 0.28853

UR - 0.79987 ± 0.11519 11.046 ± 1.133 0.72923 ± 0.10295

PD 37.108 ± 0.45369 39.7573 ± 0.65399 38.2925 ± 1.7171 39.6187 ± 0.6568

kroA150

BS 76274.6154 ± 3082.4458 86542.4877 ± 3231.4578 54089.9955 ± 4138.1095 87258.7988 ± 3590.0721

CT 42.0813 ± 0.039008 32.634 ± 0.43444 97.9435 ± 2.3961 32.4983 ± 0.39877

UR - 0.84709 ± 0.11022 11.5362 ± 1.14 0.71816 ± 0.11195

PD 38.4352 ± 0.49502 41.6914 ± 0.89549 43.8533 ± 2.3142 41.3216 ± 0.78642

kroA200

BS 121550.466 ± 3586.8735 136496.701 ± 4039.3472 79433.7261 ± 5793.0264 136436.9172 ± 4140.0182

CT 55.3055 ± 0.060966 42.9461 ± 0.60204 146.7581 ± 3.6105 42.702 ± 0.50824

UR - 0.77342 ± 0.1136 9.8554 ± 0.92318 0.68909 ± 0.10748

PD 40.8049 ± 0.5737 45.0263 ± 1.3084 51.4226 ± 2.5032 44.635 ± 1.2792

kroC100

BS 38808.7544 ± 1553.4899 43909.6763 ± 2211.9766 28786.3067 ± 2089.1848 44319.1631 ± 2033.1415

CT 28.9781 ± 0.035912 22.5343 ± 0.2427 56.7792 ± 1.2044 22.4417 ± 0.25442

UR - 0.98634 ± 0.14493 15.161 ± 1.4206 0.75694 ± 0.10583

PD 35.8608 ± 0.34445 38.3319 ± 0.6626 36.5919 ± 2.2458 37.8325 ± 0.59057

lin105

BS 28658.7352 ± 1455.8463 32433.6636 ± 1562.2038 20653.0943 ± 1528.6458 32414.3953 ± 1534.0982

CT 30.2712 ± 0.037719 23.576 ± 0.28172 60.3434 ± 1.2413 23.4203 ± 0.28112

UR - 0.94954 ± 0.11861 14.1988 ± 1.4196 0.75923 ± 0.11967

PD 36.3301 ± 0.34626 38.8883 ± 0.60563 38.1673 ± 2.0066 38.4409 ± 0.56284

lin318

BS 293943.2531 ± 6647.7388 324536.2956 ± 5997.1132 179974.0689 ± 11519.3106 325160.5952 ± 5921.0519

CT 86.5313 ± 0.095259 67.0055 ± 0.77115 298.6361 ± 8.3882 66.7332 ± 0.83632

UR - 0.72979 ± 0.088012 7.5774 ± 0.70079 0.66951 ± 0.11773

PD 45.9775 ± 0.93707 52.315 ± 1.9485 67.1539 ± 3.9866 51.8151 ± 1.8752

In order to eliminate the influence of subjective and objective conditions, large scale independent

experiments are implemented for each algorithm in this paper. As we all know, the smaller the

variance of results is, the more stable the algorithm performance is. From Table 2, we see that BBO

has the smallest variance for almost all experiment results, which may clearly indicate that BBO is

reliability and robustness.

Algorithms 2014, 7 676

Based on the simulation results in Table 2, COOBBO proposed in this paper achieved the best

solution among all. When compared with BBO, OBBO and ROBBO, the mean of the best solution by

COOBBO algorithm is lessened, on average, almost by 35.78%, 51.27% and 51.60%, respectively.

It is important to note that the overall performance of OBBO is getting worse than BBO, which may

seem contradictory with the conclusion in [28]. In fact, they are not contradictory. A rational reason

explained this phenomenon is the termination criterion is pretty different in the two papers. As

described above, the two algorithms are not iterated until the fixed iteration is satisfied in [28], which

means that the OBBO algorithm will explore more candidate solutions compared with BBO algorithm.

However the same algorithms are stopped when the number of evaluation of cost function is reached

the maximum number in this paper. In this case, it is not surprising then that OBBO’s performance is

worse than BBO.

From our point of view, the performance difference of two modified algorithm, OBBO and

COOBBO, is attributed to the disparate definition of opposite path. In [28], the opposite of each city is

furthermost in the circle. Therefore, the difference of candidate path and its corresponding opposite

path is merely style. However, the definition of opposite path proposed in this paper is differs

appreciably from that method. The sequence of candidate paths and the distances between adjacent

nodes in the tour are considered simultaneously.

As another direct result of the differences in definition of opposite path in the two papers, the

utilization rate of opposite paths in this paper is significantly higher than it in [28]. As seen from

Table 2, the new method is over 13 times more effective than the traditional one (12.14 vs. 0.91 in

average). Different from Figure 7 above, the utilization rate of opposite paths in this paper decreases

from 50% to 5% over 20 times as seen in Figure 8. Although the decline trend is inevitable, the

utilization rate of opposite paths are expected to decrease more slowly over time. Furthermore, as for

the great difference between Figures 7 and 8, the utilization rate is no longer decline, after reaching

minimal value, such as 4.93% in Figure 8. What some readers will find more surprising is that it

wanders and increases slowly with the number of opposition-based generation jumping. That is to say,

more and more opposite paths can be survived and further being improved by our proposed algorithm.

Using the definition of opposite path from [28], such an event would have been almost inconceivable.

Figure 8. Utilization rate of opposite paths of COOBBO algorithm.

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

Numbers

U
til

iz
at

io
n

R
at

e
of

 O
pp

os
ite

 P
at

hs
 (

%
)

Algorithms 2014, 7 677

Except for the berlin52 problem, BBO has the lowest edge entropy, which indicates clearly its

population diversity is the highest among all tested algorithms. Now, there is an interesting and

unexpected phenomenon to us. When compared with COOBBO algorithm, BBO has both higher

population diversity and worse solution. In accordance with a common view in the field of

population-based search algorithms, the higher population diversity should lead to better solutions of

many combinatorial problems. In fact, in order to be successful, a search algorithm needs to establish a

good ratio between exploration, which is the process of visiting entirely new regions, and exploitation,

which is the process of visiting those regions within the neighborhood of previously visited points [36]. If

we think that BBO, to a certain degree, has already a good balance between exploration and

exploitation, the combination of opposition-based learning and BBO will break the inherent stability

inevitably. Several opposite paths are created based on the original paths and the optimal path in the

current population, and then their search space are limited within the neighborhood of previously

visited path. Therefore, in my opinion, the advantage of opposition-based learning is the in-depth

exploitation, not extensive exploration. Furthermore, the termination criterion in this paper is that the

evaluation number is reached the maximum number. Compared with the classical BBO, the evolution

process of COOBBO tends to last shorter, because more candidate paths are tried in each iteration. In a

word, the original balance between exploitation and exploration in BBO is destroyed by opposition-based

learning, and then COOBBO suffers more exploitation, which leads to better solution convergence,

and less exploration, which leads to lower population diversity, in the evolution process. According to

our understanding, it is the key reason that the experiment results shown in Table 2 are not consistent

with the common view in the field of population-based search algorithms.

4.4. Experiment Comparison of OBBO and ROBBO

In order to state clearly the contribution of opposite paths, ROBBO algorithm is introduced in this

paper. Unlike the previously defined opposite paths, uniformly generated random paths are employed

as opposite paths. As shown from Table 3, the experiment results of OBBO and ROBBO are

rearranged and analyzed with software Statistical Product and Service Solutions (SPSS) 14.0 version

(SPSS Inc., Chicago, IL, USA) and significance is assumed at 0.05.

As seen from Table 3, we observe that their mainly difference is characterized by three aspects,

which are computation time, utilization rate of opposite paths and population diversity. When

compared with ROBBO, OBBO has higher utilization rate of opposite paths and worse population

diversity, in the statistical sense. According to the definition of opposite path in [28], it is created based

on the original path in a limited and controlled manner, though its object is to maximize the proximity

between the adjacent vertices. At this time, there has been an appreciable increase in the probability of

the opposite path selected as offspring in next iteration. In contrast, the opposite path in ROBBO

proposed in this paper is sampled by uniformly distribution over the whole search space, and then

ROBBO has better population diversity inevitably.

Seen from the evaluation criterion of best solution found, no significant differences (p > 0.05) are

observed between OBBO and ROBBO. In other words, the opposite path from [28] has the same

contribution with random generated paths. Such being the case, it is futile to attempt to apply the

Algorithms 2014, 7 678

opposite path from [28], although it is a most plausible story. Maybe the ROBBO algorithm is a good

choice to instead OBBO. It is another interesting and valuable conclusion in this paper.

Table 3. Performance comparison of COOBBO and ROBBO.

Benchmark BS CT UR PD

berlin52
0.743

(8802.2257 vs. 8816.3923)

0.000

(12.8949 vs. 12.7935)

0.000

(1.39 vs. 0.98298)

0.000

(32.0102 vs. 31.8362)

bier127
0.960

(247079.3802 vs. 247017.627)

0.000

(28.0967 vs. 27.9017)

0.001

(0.79193 vs. 0.73474)

0.228

(40.0844 vs. 39.9542)

ch130
0.520

(16163.1156 vs. 16110.5935)

0.000

(28.6327 vs. 28.4332)

0.000

(0.79987 vs. 0.72923)

0.137

(39.7573 vs. 39.6187)

kroA150
0.140

(86542.4877 vs. 87258.7988)

0.022

(32.634 vs. 32.4983)

0.000

(0.84709 vs. 0.71816)

0.002

(41.6914 vs. 41.3216)

kroA200
0.918

(136496.701 vs. 136436.9172)

0.002

(42.9461 vs. 42.702)

0.000

(0.77342 vs. 0.68909)

0.034

(45.0263 vs. 44.635)

kroC100
0.174

(43909.6763 vs. 44319.1631)

0.009

(22.5343 vs. 22.4417)

0.000

(0.98634 vs. 0.75694)

0.000

(38.3319 vs. 37.8325)

lin105
0.930

(32433.6636 vs. 32414.3953)

0.000

(23.576 vs. 23.4203)

0.000

(0.94954 vs. 0.75923)

0.000

(38.8883 vs. 38.4409)

lin318
0.460

(324536.2956 vs. 325160.5952)

0.018

(67.0055 vs. 66.7332)

0.000

(0.72979 vs. 0.66951)

0.066

(52.315 vs. 51.8151)

4.5. Experiment Comparison of Different COOBBO

As stated above, three methods to define the opposite paths are proposed in this paper, which are

called opposite path (Backward Ellipse), opposite path (Forward Ellipse) and opposite path (Circle),

respectively. In Section 4.2, opposite path (Backward Ellipse) is employed into COOBBO, and then it

is compared with BBO, OBBO and ROBBO. As shown in Table 2, it is demonstrated that the

proposed COOBBO algorithm can achieve near optimal performance in terms of best solution found

and utilization rate of opposite paths. In order to design better opposite path, three different definitions

proposed in this paper are compared in details. Experiment results of applying different version of

COOBBO to solve those benchmark functions above are given in Table 4, in which the better results

for each case are also highlighted in boldface.

From Table 4, we can see that each algorithm has own unique advantages in different comparison

criteria over other methods. For instance, COOBBO (Backward Ellipse) is the best algorithm on best

solution found and utilization rate of opposite paths, COOBBO (Forward Ellipse) is the best one on

population diversity, and COOBBO (Circle) is the best one on computation time.

We believe that, the most likely reason for this is that different definition of opposite path is

embedded into classical BBO algorithm. Here let me take opposite node O2 of node B2 for example.

As seen from Figures 3, 5 and 6, the search process for the opposite node O2 is limited different search

space, such as the ellipse determined by nodes A1, A2, and B2 for Backward Ellipse method, the ellipse

determined by nodes A2, A3, and B2 for Forward Ellipse method, and the circle determined by nodes

A2 and B2 for Circle method, respectively. Hereby we can infer that, if a backward line (such as A1B2)

is considered to create the opposite path, the exploitation ability can be improved greatly, and the

Algorithms 2014, 7 679

better utilization rate of opposite paths and overall performance can be achieved. From another

perspective, if forward line (such as A3B2) is considered in that process, the exploration ability and

population diversity can be improved greatly.

Table 4. Performance comparison of different COOBBO.

Benchmark
Optimal

Solution

Comparison

Criteria

COOBBO (Backward

Ellipse)

COOBBO (Forward

Ellipse)
COOBBO (Circle)

berlin52 7542

BS 8321.864 ± 243.0838 8305.1157 ± 241.5853 8333.591 ± 283.9502

CT 26.0636 ± 0.40613 26.2338 ± 0.43054 24.4901 ± 0.3307

UR 17.7021 ± 1.5387 19.4787 ± 1.7205 11.9418 ± 1.032

PD 23.4455 ± 1.7748 20.365 ± 0.99143 31.0124 ± 0.58744

bier127 118282

BS 186999.418 ± 11339.7602 200390.2364 ± 9909.0866 190145.1356 ± 9264.6665

CT 77.5242 ± 1.7217 77.871 ± 1.8559 70.1001 ± 1.2754

UR 10.0663 ± 0.94305 9.4902 ± 0.93118 5.5513 ± 0.38539

PD 37.8905 ± 1.7826 34.7061 ± 1.3295 47.5324 ± 1.3702

ch130 6110

BS 10735.6857 ± 800.823 12301.3115 ± 665.8969 11071.1291 ± 602.8048

CT 80.0928 ± 1.9244 80.2126 ± 1.7268 72.6642 ± 1.5963

UR 11.046 ± 1.133 10.2205 ± 0.96441 6.2528 ± 0.46867

PD 38.2925 ± 1.7171 33.9795 ± 1.2991 52.0144 ± 1.1943

kroA150 26524

BS 54089.9955 ± 4138.1095 62213.9641 ± 3367.083 56154.8562 ± 3199.3826

CT 97.9435 ± 2.3961 97.909 ± 2.6651 87.9529 ± 1.6593

UR 11.5362 ± 1.14 10.7622 ± 0.91919 6.9752 ± 0.44009

PD 43.8533 ± 2.3142 39.1721 ± 1.9173 61.6256 ± 1.7903

kroA200 29368

BS 79433.7261 ± 5793.0264 95434.8002 ± 4848.5489 93386.4811 ± 3698.4416

CT 146.7581 ± 3.6105 148.7677 ± 3.9271 130.3292 ± 3.1375

UR 9.8554 ± 0.92318 9.195 ± 0.88397 5.8667 ± 0.3423

PD 51.4226 ± 2.5032 46.2781 ± 2.5567 74.8238 ± 3.0705

kroC100 20749

BS 28786.3067 ± 2089.1848 32228.8304 ± 1988.7409 28124.5048 ± 1469.195

CT 56.7792 ± 1.2044 57.3461 ± 1.2305 52.1812 ± 0.91162

UR 15.161 ± 1.4206 14.8064 ± 1.5202 10.6852 ± 0.91019

PD 36.5919 ± 2.2458 31.6739 ± 1.2889 48.9681 ± 1.039

lin105 14379

BS 20653.0943 ± 1528.6458 22392.0575 ± 1610.5752 20786.2342 ± 1077.5567

CT 60.3434 ± 1.2413 61.4 ± 1.2684 55.1161 ± 1.0321

UR 14.1988 ± 1.4196 13.8791 ± 1.2581 10.4896 ± 0.95054

PD 38.1673 ± 2.0066 34.3843 ± 1.4297 50.6824 ± 1.088

lin318 42029

BS 179974.0689 ± 11519.3106 209648.546 ± 10977.459 241710.2118 ± 9377.1761

CT 298.6361 ± 8.3882 305.7854 ± 8.8387 261.5351 ± 7.5882

UR 7.5774 ± 0.70079 7.1332 ± 0.68193 4.073 ± 0.28234

PD 67.1539 ± 3.9866 60.4984 ± 3.586 97.8536 ± 5.4552

It is obvious that the method of finding opposite path (Circle) has the characteristics of simple

process flow, less calculation and high velocity. Comparatively speaking, the overall performance of

COOBBO (Circle) algorithm is worst on utilization rate of opposite paths and population diversity

when solving those TSP problems. From this fact we may deduce that adjacent nodes in the optimal

path in the current population are very necessary for each successful algorithm. The difficult issue

Algorithms 2014, 7 680

facing us all is how to establish a good ratio between backward adjacent node and forward adjacent

node, and it is an important research effort in near future.

4.6. More Discussion on Computation Time

Generally speaking, intelligent heuristic algorithms are more time consuming than other algorithms.

On the other hand, computation time of heuristic algorithms normally depend on some measure of

problem size, such as the number of cities in TSP problem. As you can see from Figure 9, CPU time

consumed by BBO algorithm is increasing linearly and this conclusion is equally applicable to OBBO

and ROBBO algorithms.

Figure 9. Comparison of computation time of BBO, OBBO, ROBBO and COOBBO algorithms.

50 100 150 200 250 300 350
0

50

100

150

200

250

300

Size of the TSP problem

C
om

pu
ta

tio
n

tim
e

(s
)

BBO

OBBO

ROBBO

COOBBO

Eight sets of computation time and sizes of TSP problem are carried out by least square method.

The fitting results of all tested algorithms are given in Table 5. Herein relative error in the third row is

the mean of differences between fitted value and experiment result and it can be defined as following







num

i
i

exp

i
exp

i
fit

CT

CTCT
errorRelative

1

 (6)

where i
expCT and i

fitCT are the experiment result and fitted value for the ith benchmark problem, and

num is the number of benchmark problems.

Table 5. Fitting results of BBO, OBBO, ROBBO and COOBBO algorithms.

Algorithm Fitting line Relative error (%)

BBO 0.26351x + 2.6561 0.26629
OBBO 0.20365x + 2.2008 0.21228

ROBBO 0.20297x + 2.1265 0.21109
COOBBO 1.04751x – 49.2515 15.4708

It can be seen from Table 5 that the relative fitting errors of BBO, OBBO and ROBBO algorithms

are maintained at moderate rate around 0.2% to 0.3%.

At the same time, it is unfortunate that the computation time of our proposed algorithm is a bit

different from the three mentioned above. As can be seen from Figure 9, its computation time is

Algorithms 2014, 7 681

increased with expedition from 26s for 52 cities to 298s for 318 cities. If we fitted the experiment

results by the same method, its relative error is around 15%, which is close to 60 times more than other

algorithms. Therefore, we are not sure that the linear fitting is still effective to COOBBO algorithm,

and then we surmise that it may be increased exponentially with the increase of the size of the TSP

problem. Of course, the inference should be proved or falsified by more experiments in the future.

Typically, the main reason for so much time of the COOBBO algorithm is the calculation of Euclidean

distance between cities in the produce of forming opposite path.

5. Conclusions

In this paper, a novel oppositional BBO algorithm, called COOBBO, is introduced to solve TSP

problems. The proposed algorithm is tested on eight benchmark problems and is found to outperform

the standard BBO and OBBO. Further test results indicate that the excellent performance is attributed

to the distinct definition of opposite path. The sequence of candidate paths and the distances between

adjacent nodes in the tour are considered simultaneously, which may lead to the higher utilization rate

of opposite paths.

Population diversity refers to differences among individuals and is used to delimit between

exploration and exploitation. However, we are very confused that the proposed algorithm has both

better solution and lower population diversity. We think that opposition-based learning is good at

in-depth exploitation, not extensive exploration. Therefore, the original balance of COOBBO is

destroyed, in which the exploitation process is enhanced and the exploration process is weaken in

some cases.

Numerical results demonstrate that there is no significant difference in solution accuracy between

OBBO and ROBBO. Considering other factors such as population diversity and computation time, we

have abundant proof for thinking that the ROBBO algorithm is a good choice to instead OBBO.

In this paper, we have made a preliminary investigation to define the opposite path and apply it for

solving TSP problems. However, it is undeniable that there are many possible definitions and

applications of opposite path. By comparing different version of COOBBO, we think that each

successful improved algorithm needs to establish a good ratio between backward adjacent node and

forward adjacent node. It is an important research effort for us in near future.

Based on the experimental evidence, one of the principal disadvantages of our algorithm is too

much long time required to perform it. Without doubt, it is intolerable that each modified algorithm waste

so much time on the insignificant improvement. Therefore, our top task in the near future is to increase

the efficiency of the algorithm to achieve the best balance between computation time and performance.

It should be emphasized again that the proposed scheme of opposite path is an effective and general

method, which can be embedded inside many soft computing algorithms, to improve its performance.

Since the key point of this paper is the novel definition of opposite path, we will incorporate that idea

into other soft computing approaches, including the state-of-the-art methods, to ascertain what the

impact of the opposite path idea. In addition, a comparison to other widely recognized techniques is

also required in order to ascertain the utility of the proposed technique.

Algorithms 2014, 7 682

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China

(Nos. 61304082 and 61305083), Shaanxi Province Natural Science Foundation (No. 2012JQ8052) and

the Project of Department of Education Science Research of Shaanxi Province (Grant No. 11JK0918).

Author Contributions

Qingzheng Xu and Na Wang designed the research and wrote the paper, Qingzheng Xu and

Lemeng Guo performed the simulation experiments, Lemeng Guo and Yongjian He collected and

analyzed the data.

Conflicts of Interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

References

1. Tizhoosh, H.R.; Ventresca, M. Studies in Computational Intelligence: Oppositional Concepts in

Computational Intelligence; Springer-Verlag: Berlin, Germany, 2008.

2. Tizhoosh, H.R. Opposition-based learning: A new scheme for machine intelligence. In

Proceedings of International Conference on Computational Intelligence for Modelling, Control

and Automation, and International Conference on Intelligent Agents, Web Technologies and

Internet Commerce, Vienna, Austria, 28–30 November 2005; pp. 695–701.

3. Rahnamayan, S.; Tizhoosh, H.R.; Salama, M.M.A. Quasi-oppositional differential evolution. In

Proceedings of IEEE Congress on Evolutionary Computation, Singapore, 25–28 September 2007;

pp. 2229–2236.

4. Ergezer, M.; Simon, D.; Du, D.W. Oppositional biogeography-based optimization. In Proceedings

of IEEE International Conference on Systems, Man and Cybernetics, San Antonio, TX, USA,

11–14 October 2009; pp. 1009–1014.

5. Rahnamayan, S.; Wang, G.G. Center-based sampling for population-based algorithms. In

Proceedings of IEEE Congress on Evolutionary Computation, Trondheim, Norway, 18–21 May 2009;

pp. 933–938.

6. Wang, H.; Wu, Z.J.; Liu, Y.; Wang, J.; Jiang, D.Z.; Chen, L.L. Space transformation search: A

new evolutionary technique. In Proceedings of ACM/SIGEVO Summit on Genetic and

Evolutionary Computation, Shanghai, China, 12–14 June 2009; pp. 537–544.

7. Xu, Q.Z.; Wang, L.; He, B.M.; Wang, N. Opposition-based differential evolution using the current

optimum for function optimization. J. Appl. Sci. 2011, 29, 308–315. (In Chinese)

8. Rahnamayan, S.; Tizhoosh, H.R.; Salama, M.M.A. Opposition versus randomness in soft

computing techniques. Appl. Soft Comput. 2008, 8, 906–918.

9. Rahnamayan, S.; Wang, G.G.; Ventresca, M. An intuitive distance-based explanation of

opposition-based sampling. Appl. Soft Comput. 2012, 12, 2828–2839.

10. Seif, Z.; Ahmadi, M.B. Opposition versus randomness in binary spaces. Appl. Soft Comput. 2015,

27, 28–37.

Algorithms 2014, 7 683

11. Rahnamayan, S.; Tizhoosh, H.R.; Salama, M.M.A. Opposition-based differential evolution

algorithms. In Proceedings of IEEE Congress on Evolutionary Computation, Vancouver, Canada,

16–21 July 2006; pp. 2010–2017.

12. Rahnamayan, S.; Tizhoosh, H.R.; Salama, M.M.A. Opposition-based differential evolution. IEEE

Trans. Evolut. Comput. 2008, 12, 64–79.

13. Han, L.; He, X.S. A novel opposition-based particle swarm optimization for noisy problems. In

Proceedings of International Conference on Natural Computation, Haikou, China, 24–27 August

2007; pp. 624–629.

14. Omran, M.G.H.; Al-Sharhan, S. Using opposition-based learning to improve the performance of

particle swarm optimization. In Proceedings of IEEE Swarm Intelligence Symposium, St. Louis,

MO, USA, 21–23 September 2008; pp. 1–6.

15. Kaucic, M. A multi-start opposition-based particle swarm optimization algorithm with adaptive

velocity for bound constrained global optimization. J. Glob. Optim. 2013, 55, 165–188.

16. Shokri, M. Knowledge of opposite actions for reinforcement learning. Appl. Soft Comput. 2011,

11, 4097–4109.

17. Ergezer, M.; Sikder, I. Survey of oppositional algorithms. In Proceedings of International

Conference on Computer and Information Technology, Dhaka, Bangladesh, 22–24 December

2011; pp. 623–628.

18. Ventresca, M.; Tizhoosh, H.R. Improving the convergence of backpropagation by opposite

transfer functions. In Proceedings of International Joint Conference on Neural Networks,

Vancouver, Canada, 16–21 July 2006; pp. 4777–4784.

19. Ventresca, M.; Tizhoosh, H.R. Improving gradient-based learning algorithms for large scale

feedforward networks. In Proceedings of International Joint Conference on Neural Networks,

Atlanta, USA, 14–19 June 2009; pp. 3212–3219.

20. Gao, X.Z.; Wang, X.; Ovaska, S.J. A hybrid harmony search method based on OBL. In

Proceedings of IEEE International Conference on Computational Science and Engineering,

Hong Kong, China, 11–13 December 2010; pp. 140–145.

21. Qin, A.K.; Forbes, F. Dynamic regional harmony search with opposition and local learning. In

Proceedings of 13th Annual Conference on Genetic and Evolutionary Computation, Dublin,

Ireland, 12–16 July 2011; pp. 53–54.

22. Malisia, A.R.; Tizhoosh, H.R. Applying opposition-based ideas to the ant colony system. In

Proceedings of IEEE Swarm Intelligence Symposium, Honolulu, USA, 1–5 April 2007;

pp. 182–189.

23. Banerjee, S.; Tizhoosh, H.R. Visualization of hidden structures in corporate failure prediction

using opposite pheromone per node model. In Proceedings of IEEE Congress on Evolutionary

Computation, Barcelona, Spain, 18–23 July 2010; pp. 1–5.

24. El-Abd, M. Opposition-based artificial bee colony algorithm. In Proceedings of 13th Annual

Conference on Genetic and Evolutionary Computation, Dublin, Ireland, 12–16 July 2011;

pp. 109–115.

25. Yang, X.J.; Huang, Z.G. Opposition-based artificial bee colony with dynamic cauchy mutation for

function optimization. Int. J. Adv. Comput. Technol. 2012, 4, 56–62.

Algorithms 2014, 7 684

26. Xu, Q.Z.; Wang, L.; Wang, N.; Hei, X.H.; Zhao, L. A review of opposition-based learning from

2005 to 2012. Eng. Appl. Artif. Intell. 2014, 29, 1–12.

27. Ventresca, M.; Tizhoosh, H.R. A diversity maintaining population-based incremental learning

algorithm. Inf. Sci. 2008, 178, 4038–4056.

28. Ergezer, M.; Simon, D. Oppositional biogeography-based optimization for combinatorial

problems. In Proceedings of IEEE Congress on Evolutionary Computation, New Orleans,

5–8 June 2011; pp. 1496–1503.

29. Xu, Q.Z.; Guo, L.M.; Wang, N.; Pan, J.; Wang, L. A novel oppositional biogeography-based

optimization for combinatorial problems. In Proceedings of International Conference on Natural

Computation, Xiamen, China, 19–21 August 2014; pp. 414–420.

30. Simon, D. Biogeography-based optimization. IEEE Trans. Evolut. Comput. 2008, 12, 702–713.

31. Wikipedia Website, Travelling Salesman Problem. Available online: http://en.wikipedia.org/wiki/

Travelling_salesman_problem (accessed on 26 November 2014).

32. Du, D.; Simon, D. Biogeography-based optimization for large scale combinatorial problems. In

Efficiency and Scalability Methods for Computational Intellect, Igelnik, B.; Zurada, J.M. Eds.; IGI

Global: Hershey, PA, USA, 2013; pp. 197–217.

33. Reinelt, G. TSPLIB—A traveling salesman problem library. ORSA J. Comput. 1991, 3, 376–384.

34. Xu, Q.Z.; Wang, L.; He, B.M.; Wang, N. Modified opposition-based differential evolution for

function optimization. J. Comput. Inf. Syst. 2011, 7, 1582–1591.

35. Maekawa, K.; Mori, N.; Kita, H.; Nishikawa, H. A genetic solution for the traveling salesman

problem by means of a thermodynamical selection rule. In Proceedings of IEEE International

Conference on Evolutionary Computation, Nagoya, Japan, 20–22 May 1996; pp. 529–534.

36. Crepinsek, M.; Liu, S.H.; Mearnik, M. Exploration and exploitation in evolutionary algorithms: A

survey. ACM Comput. Surv. 2013, 45, 35–50.

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/4.0/).

