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Abstract: In this paper, we propose a novel definition of opposite path. Its core feature is 

that the sequence of candidate paths and the distances between adjacent nodes in the tour 

are considered simultaneously. In a sense, the candidate path and its corresponding 

opposite path have the same (or similar at least) distance to the optimal path in the current 

population. Based on an accepted framework for employing opposition-based learning, 

Oppositional Biogeography-Based Optimization using the Current Optimum, called 

COOBBO algorithm, is introduced to solve traveling salesman problems. We demonstrate 

its performance on eight benchmark problems and compare it with other optimization 

algorithms. Simulation results illustrate that the excellent performance of our proposed 

algorithm is attributed to the distinct definition of opposite path. In addition, its great 

strength lies in exploitation for enhancing the solution accuracy, not exploration for 

improving the population diversity. Finally, by comparing different version of COOBBO, 

another conclusion is that each successful opposition-based soft computing algorithm needs to 

adjust and remain a good balance between backward adjacent node and forward adjacent node. 

Keywords: biogeography-based optimization; opposition-based learning; traveling 

salesman problems; discrete domain; opposite path; population diversity 
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1. Introduction 

An opposition concept is both familiar and mysterious at the same time to ordinary mortals like us. 

It is familiar in that it is unconsciously or consciously applied in our regular life. That said, the 

opposition concept is also mysterious, in that it has different meaning and name for different academic 

disciplines. Over the last 2500 years, the study of opposites has attracted the attention of countless 

experts and scholars in various fields. Perhaps it is only because opposite terms and the nature of 

opposites intrigue and fascinate us. However, due to the lack of an accepted mathematical or 

computational model, until recently it has not been explicitly investigated to any great length in the 

fields outside of philosophy and logic [1]. 

Obviously, this awkward situation has changed in the last decade under the unremitting efforts of 

computer scientists. The basic concept of Opposition-Based Learning (OBL) was original introduced 

in 2005 by Tizhoosh [2]. Soon after, some new varieties of opposition-based learning were proposed 

for use: Quasi-Opposition-Based Learning (QOBL) [3], Quasi-Reflection Opposition-Based Learning 

(QROBL) [4], Center-based Sampling [5], Generalized Opposition-Based Learning (GOBL) [6] and 

Opposition-Based Learning using the Current Optimum (COOBL) [7]. The essential idea of these 

optimization strategies is the serious consideration of an estimate and its corresponding opposite 

estimate simultaneously to achieve an optimal approximation of the current candidate solutions. 

Nevertheless, a major distinction between these technologies lies in how to define the concept of 

opposite estimate as a part of enhancing population diversity. From the perspective of algorithm 

design, mathematical and experimental comparison between opposition-based sampling and random 

sampling is one of the most widely used techniques for continuous space. Recently, some 

mathematical proofs were explored independently in order to show why the opposition-based learning 

is beneficial when no preliminary knowledge about the solution is available [8–10]. 

It is amazing that they have been utilized in a vast majority of soft computing areas over a very 

short period of time. These simple and efficient meta-heuristic methods mainly include Differential 

Evolution (DE) [3,6,7,11,12], Particle Swarm Optimization (PSO) [13–15], Reinforcement Learning 

(RL) [2,16], Biogeography-Based Optimization (BBO) [4,17], Artificial Neural Network (ANN) [18,19], 

Harmony Search (HS) [20,21], Ant Colony System (ACS) [22,23] and Artificial Bee Colony  

(ABC) [24,25]. At present, the most successful applications of the ideas of OBL and its variants focus 

on traditional optimization fields, such as large-scale unconstrained optimization problem, constrained 

optimization problem, multi-objective optimization problem, and optimization problem in noisy 

environment. For a detailed overview of a range of opposition-based learning and its typical 

applications, we recommend a recent review article by Xu, etc., entitled “A review of opposition-based 

learning from 2005 to 2012” [26]. 

Unfortunately, until now, opposition-based soft computing algorithms are rarely designed and 

applied to classical discrete optimization problems such as the minimum spanning tree problem, 

knapsack problem or scheduling problem. As far as we know, [22,27,28] are the few published papers 

for solving successfully the Traveling Salesman Problem (TSP), a famous combinatorial problem. The 

goal of this paper is to define a novel opposite numbers in discrete domain and then compare it with 

other acknowledged definitions of opposite solution. Furthermore, what deserves special note here is 

that, although the proposed scheme is embedded in the classical Biogeography-Based Optimization 
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(BBO) algorithm in this paper, in practice it is general enough to be applied to almost all soft 

computing algorithms to improve its performance. In a way, this paper is only the beginning of what 

you can do with the novel opposite numbers in discrete domain. 

The general thinking of BBO, TSP and the well-known definition of OBL in continuous and 

discrete domain are introduced briefly in Section 2. In Section 3, an optimization method, Oppositional 

Biogeography-Based Optimization using the Current Optimum (COOBBO), for TSP problems, is 

proposed based on a new definition of opposite path in discrete domain. The simulation results comparing 

COOBBO with some other optimization methods and detailed discussion are given in Section 4. 

Finally, some concluding remarks and suggestions for further research are presented in Section 5. 

It is important to mention that this work is a revised and expanded version of a paper entitled “A 

novel oppositional biogeography-based optimization for combinatorial problems” presented at the 

2014 10th International Conference on Natural Computation (ICNC 2014), Xiamen, China,  

19–21 August 2014 [29]. The present paper extends the previous research work by the following 

important contributions. (1) At the beginning of Section 3, the full details and motivation of proposed 

scheme is clearly stated to make it easier to understand. (2) The other two definitions of opposite path 

are proposed in the similar way as the previous one in [29]. Then the three definitions of opposite path 

are compared carefully in order to show their own advantages and disadvantages, and further to sum 

up experience conscientiously about new idea and design of opposite path. (3) In the part of results and 

discussions, a new comparison criteria, population diversity, is introduced and then it is analyzed for 

all tested algorithms. Later, a random version of OBBO is also introduced and compared with original 

OBBO algorithm in this paper. In addition, all experimental results of computation time are fitted, and 

then relative fitting errors are computed to support our previous guess in [29]. 

2. Background 

2.1. Biogeography-Based Optimization 

As a relatively young evolutionary algorithm, Biogeography-Based Optimization was first 

introduced in 2008 by Simon [30]. It is inspired by the science of biogeography which studies the 

distribution of species and ecosystems amongst islands in geographic space and through geological time. 

In BBO, a population of candidate solutions is generated randomly, each candidate representing an 

island. These islands are then assigned, based on their fitness, immigration and emigration rates 

respectively, which are the important features of BBO that distinguish it from other evolutionary 

algorithms. The emigration rate indicates how likely a solution is to share its features with other 

solutions, and the immigration rate indicates how likely a solution is to accept features from other 

solutions. For example, a candidate solution with higher fitness for optimization problem will have a 

higher emigration rate and lower immigration rate, so that it can share its features with less fit islands 

and it is less likely to be spoiled by migrations from less fit islands. In contrast, a worse solution 

candidate will be assigned a high immigration rate and accept a lot of new features from relative good 

solutions. This addition of new features to the poor solution will, inevitably, enrich the fitness of the 

island. Throughout a lot of iterations, biological species migrate among different islands based on the 

immigration and emigration rates to find a better habitat. For further details please carefully read the 

reference cited at the beginning of the subsection. 
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2.2. Traveling Salesman Problems 

It is well known that the combinatorial problems are not new to heuristic algorithms and have 

fascinated many scientists and engineers over the past few decades. As a matter of fact, they are 

considered as standard benchmarks for heuristic algorithms. For example, TSP is a well-known and 

ancient combinatorial problem since being defined in the 1800s by the Irish mathematician Hamilton 

and by the British mathematician Kirkman [31]. To summarize, there are three major reasons that the 

TSP has become a standard benchmark for soft computing algorithms [32]. First, the TSP is very 

intuitive and quite easy to state in terms of the complete graph on N vertices, and it is similar to many 

practical problems such as automatic assembly and configuration planning, sensor selection and power 

allocation over wireless networks, robotic path planning, and many others. Second, the TSP can easily 

be modified to become a multi-objective problem and solving multi-objective problems is a practical 

challenge but perhaps not insurmountable in many areas of engineering and industry. Third, an optimal 

TSP solution is extremely hard to obtain by using analytical methods. Even using numerical methods, 

it is still quite a challenge on a large number of real problem instances. The running time for brute-force 

search approach lies within a polynomial factor of O(n!). For instance, for a problem with 20 cities by 

brute force searching, it would be (20 − 1)!/2 possible tours, so this solution becomes impractical 

within limited computing time and memory space. 

Because of the reasons above, many TSP problems with different diversities (even over 80,000) are 

formed to challenge the performance of existing heuristic algorithms, and many new algorithms 

inspired by nature and biological processes are specially proposed to conquer the TSP more efficiently. 

It is believed that our work in this paper is a useful attempt following this way, though we have not yet 

found the optimal solutions for symmetric TSP. 

2.2. Oppositional Biogeography-Based Optimization for Combinatorial Problems 

When dealing with D dimensional vectors in continuous domain (the space would be RD), the 

definition of opposite numbers is first given by Tizhoosh as follows [2]. 

Definition 1. Let P = (x1, x2, ..., xD) be a point in D-dimensional space, where x1, x2, …, xD   R  
and xi   [ai, bi],   i   {1, 2, …, D}. The opposite point P


 = ( 1x


, 2x


, …, Dx


) is completely defined 

by its coordinates 

ix


 = ai + bi – xi (1)

Figure 1 illustrates the opposite point P


 in one dimensional case. 

Figure 1. Opposite point defined in domain [a, b]. x is a candidate solution and x


 is the opposite of x. 

x


 

To the best of our knowledge, the great majority of published research papers on opposition-based 

learning are for solving continuous domain optimization problems. Recently, more and more researchers 

gradually realized that opposition-based learning, originally introduced for accelerating a continuous search 

space, can also be modified to be used alongside BBO to solve combinatorial problems, including TSP. 
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Obviously, wherein the main difficulty of these algorithm extensions is that how to define and evaluate 

opposite numbers in discrete domain [26]. For instance, given a candidate path, the attempting to apply 

opposition concept by simply reversing its order of the nodes is meaningless because the reversed path will 

yield the same cost as the original path in a TSP problem. For example, a tour (1, 2, 3, 4, 1) and its opposite 

tour, (1, 4, 3, 2, 1), have the same cost values because all of the cities preserve their neighbors. As a result, 

based on superficial analysis above, a new definition of opposition for TSP is needed and it should be 

different appreciably from that for continuous domain problems. In [28], an opposite path as following was 

defined as a candidate path that maximizes the distance between the adjacent vertices in the original path. 

Definition 2. Let n be the number of nodes in a graph and P = [1, 2, …, n] be an even node cycle. 
The clockwise opposite path, CW

oP , is defined as 

],
2

,1,1
2

,,
2

2,2,
2

1,1[ n
n

n
nnn

PCW
o    (2)

It is notice that, the opposite point cannot be assigned as defined in (2) if n is odd. Since the number 

of nodes in a graph is odd, a possible and simple way to implement the clockwise opposition is to add 

an auxiliary node (denoted by “n + 1”) to the end of the path and then complete the city count to an 

even number. Using the definition 2, we can work out the clockwise opposite path of candidate 

solution and then remove the auxiliary city “n + 1” from the end of opposite path. 

On the basis of classical BBO and the definition of opposite path, the original OBBO algorithm was 

proposed by Ergezer and Simon [28]. The basic procedure of OBBO algorithm is presented as follows 

in Algorithm 1. It is noticeable that the classical BBO algorithm is enhanced using the scheme of the 

Opposition-based Differential Evolution [12], namely, opposition-based population initialization 

(Rows 2–4 in Algorithm 1) and opposition-based generation jumping (Rows 9–13 in Algorithm 1). As 

far as we know, this exact scheme seems to be a generally-accepted and widely used mode in many 

opposition-based soft computing algorithms. 

Algorithm 1. Original OBBO algorithm. 
1: procedure OBBO (Problem, Opposition method) 
2: Randomly generate initial population, P 
3: Generate the opposite of initial population, OP 
4: Maintain the fittest amongst P and OP 
5: while Generation ≤ gen limit do 
6: Perform BBO Migration 
7: Remove duplicates from population 
8: Calculate the fitness of P 
9: if random ≤ Opposition Jumping Rate then 
10: Create the opposite population, OP 
11: Calculate the fitness of OP 
12: Maintain the fittest amongst P and OP 
13: end if 
14: Restore Elite individuals 
15: end while 
16: return Best Individual 
17: end procedure 
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3. Proposed Algorithm 

3.1. Motivation 

Simulation results on several symmetric TSP benchmarks in [28] illustrate that OBBO seems to be 

relatively good at optimal solutions when compared with BBO. However, these experiments expose 

two serious problems, which may indicate that the initial conclusion is questionable. 

Although the terminal condition is set as a constant generation maximum for different comparison 

algorithms, such as 500 in that paper, the number of candidate solutions explored in a search space by 

different algorithms may be well-distinguished between each other. It is intuitively obvious that some 

opposite paths are explored and then considered in each generation for OBBO algorithm, but not for 

BBO algorithm. Obviously, to compare the performance of BBO and OBBO algorithm, it is unfair and 

inadvisable scheme, which instead by our termination criterion in Section 4.1. 

The other problem, hidden behind OBBO for TSP problems, is that the definition of opposite path is 

too simple to embody some important characteristics of the candidate path. According to our 

observations and understanding, the city sequences and the distances between adjacent cities are both 

the two most core features of a TSP path. It is to be noted clearly that the city sequences here means 

the relative order in TSP path alone. For example, we only concerned that city 25 is former than city 

49, and latter than city 12 in a given TSP path (…, 12, 25, 49, …). However, we do not care about the 

coordinate of the cities 25, 49 and 12, not to mention the Euclidean distances between them. 

Furthermore, the Euclidean distance is directly computed based on the geometric coordinates of the 

nodes of the graph, and yet these TSP paths are differentiated by the sequences when only a graph is 

given. However, the authors used the former feature (city sequences) and ignored the latter one 

(distances between adjacent cities) unconsciously or consciously, when they defined the opposite path 

in [28]. Usually, using the original definition of opposite path presented in [28] will lead inevitably to 

the low utilization rate of opposite paths as shown in Section 4.2. 

It is obvious that the definition of opposite path can be considered as a key to promote the 

opposition-based soft computing for solving TSP problem. Therefore, an initial motivation of this 

paper is to further amend the definition of opposite path with the help of the Euclidean distances and 

city sequences in the graph. 

Therefore, the next question is that how to use together with Euclidean distances and city sequences 

of a candidate path. We think Opposition-Based Learning using the Current Optimum, a significant 

important variation of OBL in continuous domain, might be a good choice by careful observation of 

these definitions. As mentioned previously, it was first proposed for function optimization as follows [7]. 

Definition 3. Let P = (x1, x2, ..., xD) be a point in D-dimensional space, where x1, x2, …, xD   R and 
xi  [ai, bi],   i   {1, 2, …, D}. The opposite point using the current optimum coP


 = ( 1cox


, 2cox


, …, 

coDx


) is completely defined by its coordinates 

coix


 = 2xco – xi (3)

where xco is the optimum solution in the current population. 

This definition has similarity, in style, with definition 1 proposed by Tizhoosh, but you will find 

that the opposite point using the current optimum may be outside the range of valid numbers defined 
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by [ai, bi] if you analyze it carefully. Therefore, the possible solutions include recomputing based on 

Equation (3) until the new one falls in the range of valid numbers, reproducing a random point, and 

even using the left or right boundary of valid numbers as an alternative. 
Figure 2 illustrates the opposite point using the current optimum coP


 in one dimensional case. 

Figure 2. Opposite point using the current optimum defined in domain [a, b]. x is a 
candidate solution, x


 is the opposite of x and cox


 is its opposite using the current optimum. 

x


 

The core idea of COOBL may be summarized as that the optimum solution in the current 

population, replacing the midpoint in a range of variables’ current interval, is used as symmetry point 

of the points and their opposite points. As a result, the opposite points using the current optimum will 

be in the neighborhood of the global optimum during the process of evolution, especially in the later stage. 

In this paper, to redefine the opposite path in discrete domain, the candidate solution and the 

optimum solution in the current population will be also taken into consideration simultaneity in the 

similar way. 

3.2. Definition of Opposite Path using the Current Optimum 

In order to achieve a better solution of TSP efficiently, we modify the definition of opposite path  

as follows. 

As in Figure 3, it is supposed that, n is the number of nodes in a graph and m is the population size. 

In fact, this figure can decomposed into three parts to comprehend the novel definition of opposite path 

clearly, which are shown in Figure 4. The first part, the optimal path in the current population  

Pco = [A1, A2, …, A1], as seen in Figure 4a, is translated into line A1A4 in Figure 3. In addition, 

similarly, the candidate path Pi = [B1, B2, …, B1] as the second part of Figure 3 is also translated into 

line B1B3. The clearly common ground between two important parts of Figure 3 is that, they are curves 

in Figure 4, instead, they are lines in Figure 3. The only reason for the different expression of the same 

TSP paths is to simplify the most critical figure in this paper. Based on the similar reason, the third part 

of Figure 3, all cities in the graph as seen in Figure 4c, is ignored in Figure 3. Of cause, you can image 

it is ubiquity for all cities in this graph in order to understand the following procedure easily. 

Figure 3. Novel definition of opposite path (Backward Ellipse). 
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Figure 4. Component elements of opposite path (Backward Ellipse). (a) Optimal path in 

the current population. (b) Candidate path. (c) Cities in the graph. 
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Based on the preliminary and explanation above, the opposite path (Backward Ellipse), Pi
o = [O1, 

O2, …, O1], of any path Pi = [B1, B2, …, B1] can be defined according to the following procedure. 

(1) A set of remaining nodes include all nodes in the graph, and a set of visited nodes is empty in 

initialization stage. 

(2) Let k = 1. The start city, A1(B1) of optimal path Pco is also determined as the first node of path Pi and 

its opposite path Pi
o. Then A1(B1) is labeled as a visited node and deleted from the set of remaining nodes. 

(3) Let k = k + 1. An ellipse is determined and denoted by Ek, in which the (k − 1)th node and kth 

node of the optimal path Pco are the left focus and the right focus of the ellipse, respectively, and the 

kth node of Pi is on the boundary of the ellipse Ek. 

(4) The kth node Ok of opposite path Pi
o is the nearest node from the set of remaining nodes to the 

boundary of the ellipse Ek. Then the kth node is labeled as a visited node and deleted from the set of 

remaining nodes. 

(5) Steps 3 and 4 above are iterated until all nodes are included in the set of visited nodes. Then the 

opposite path, Pi
o, of any path Pi is defined well. 

As stated above, the ellipse Ek is determined by means of the (k − 1)th node, the kth node of the 

optimal path Pco and the kth node of Pi. The kth node of opposite path Pi
o is close to the boundary of 

the ellipse Ek. In other words, the kth node of Pi and the kth node of opposite path Pi
o have the same (or 

similar at least) distance from the (k − 1)th node and the kth node of the optimal path Pco. Further, the 

(k − 1)th node and the kth node of the optimal path Pco can take the place of the whole optimal path 

Pco. Then the path Pi and its corresponding opposite path Pi
o have the same (or similar at least) 

distance to the whole optimal path Pco in the current population in a sense. 

Quite similarly, we can define the other two methods, opposite path (Forward Ellipse) and opposite 

path (Circle), as shown in Figures 5 and 6, respectively. For opposite path (Forward Ellipse), the 

ellipse Ek is determined by means of the kth node, the (k + 1)th node of the optimal path Pco and the kth 

node of Pi. For instance, the second node O2 of opposite path Pi
o and node B2 of Pi have the 

same/similar distance from nodes A2 and A3 of the optimal path Pco. The third node O3 of opposite 

path Pi
o and node B3 of Pi have the same/similar distance from nodes A3 and A4 of the optimal path 

Pco, and so on. For opposite path (Circle), the ellipse Ek is degenerated into a circle Ck, in which the 

center is the kth node of the optimal path Pco and the radius is the distance between the center and the 

kth node of Pi. For instance, the node B2 of Pi is located at the boundary of the circle C2 and the second 
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node O2 of opposite path Pi
o is selected around the boundary. The node B3 is located at the boundary 

and the node O3 is selected around the boundary of the circle C3, and so on. 

Figure 5. Novel definition of opposite path (Forward Ellipse). 

 

Figure 6. Novel definition of opposite path (Circle). 

 

Without a doubt we introduce the information of the optimum solution in the current population, 

including the Euclidean distances and the node sequences, into all definitions of opposite path in this 

paper. The path and its corresponding opposite path have the similar distance to the current optimum in 

a sense. In addition, the node sequences of opposite path are nearly kept with the original path and 

optimal path in order, although the direction of opposite path may be slightly different with the original 

path. In a word, our definition method of opposite path, which is significantly different from [28], 

considers both the node sequences of candidate paths and the distances between adjacent nodes at the 

same time. In my opinion, it may be a novel and promising attempt to applying the opposition-based 

soft computing in discrete domain. 

3.3. Our Optimization Method 

The novel optimization method, Oppositional Biogeography-Based Optimization using the Current 

Optimum, for TSP problem suffers the same basic produce like OBBO as shown in Algorithm 1. 

Actually, the only difference between original OBBO and COOBBO proposed in this paper consists in 

that the definition of opposite path, which directly influences the population initialization (Row 3 in 
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Algorithm 1) and generation jumping (Row 10 in Algorithm 1). In the implementation of the 

algorithm, we should employ the opposite path (Backward Ellipse, Forward Ellipse, or Circle) using 

the current optimum given in Section 3.2, replacing the opposite path proposed in [28]. 

4. Experimental Results and Discussions 

4.1. Experimental Setup 

Here we introduce a random version of OBBO (called ROBBO in this paper) firstly. On the basis of 

original OBBO, all parts of the proposed algorithm are kept untouched. In addition, instead of using 

opposite paths for the population initialization and the generation jumping, the random paths, which 

are generated uniformly in entire search space, are employed in ROBBO algorithm. According to past 

experience, we admit that this version must be not the best one, yet it is a basic and well-known 

method, which is firstly used by Rahnamayan in [12]. 

Benchmark Functions. A comprehensive set of 8 different well-known traveling salesman 

problems has been employed for performance verification of the proposed approach. All the 

benchmarks are selected from TSPLIB [33]. The benchmarks sizes vary from small problem to extra 

large problem to cover a wide range of problem complexity based on category criteria in [32]. 

Parameter Settings. Note that the main point in this paper is to perform relative comparison among 

BBO, OBBO, ROBBO and COOBBO. In order to compare the performance without affecting other 

factors, all conducted experiments use the parameters as follows. 

 Population size: 100 

 Maximum number of cost function calls: 100,000 

 Number of elites: 3 

 Opposition jumping rate: 0.3 

The termination criterion for all tested algorithms in this paper is that the number of evaluation of 

cost function is reached the maximum number. It is obvious that, in each iteration of the loop, the 

number of function evaluation is different for different algorithms due to opposite numbers explored 

more space. Therefore, the termination criterion in this paper seems more fair and advisable, especially 

when compared with that used in [28]. 

Comparison Criteria. We compare the algorithm performance of BBO, OBBO, ROBBO and 

COOBBO with the help of four well-used criteria in this paper: best solution (BS), computation time 

(CT), utilization rate of opposite paths (UR), and population diversity (PD). From the definition and 

design goal, there is no direct relationship among these parameters. Our investigation listed later in this 

section confirms this conclusion clearly. Thus, we must check all experimental data carefully and 

discuss them depending on the situation. 

First of all, we compare the algorithm performance by measuring the best solution found at the end 

of the computation, which is the most commonly used metric in literatures. In order to minimize the 

effect of the stochastic nature of the heuristic algorithms on the measured metric, the reported results 

for each function is the average over 100 independent Monte-Carlo simulations. It is worth noting that, 

the data in the following tables are not the minimum value (best result), but rather the mean value of 

all 100 experiments. 
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Computation time, also called process time, is the amount of CPU time required for processing 

instructions of a computer program. The CPU time is usually measured in clock ticks or seconds. It is 

well known that it depends on a lot of factors such as data structure utilized by the computer program, 

programming style of programmer or author, and even performance of computer running the algorithm 

program. However, on the other hand, it also reflects the convergence speed of tested algorithm in a sense. 

Utilization rate of opposite paths is a typical comparison criterion for opposition-based soft 

computing. Refer to early definition proposed in [34], utilization rate of opposite paths is defined as 

p

res

N

OP
UR   (4) 

where OPres is the number of opposite paths reserved as offspring in the next generation, and Np is the 

size of the population including all candidate paths and their corresponding opposite paths. A larger 

UR means more effects of opposite paths during the process of evolution. Furthermore, for different 

generations, even the same number of candidate solutions (including candidate paths and their opposite 

paths) may lead to different utilization rate of opposite paths. Generally speaking, the utilization rate of 

opposite paths is relative high during the former stage, while it is relative low during the later stage. 

The reason behind this variation is that, the population of candidate solutions is evolved over time towards 

better solutions and then more and more opposite paths may not be selected into the elitist population. 

For population-based intelligent algorithms, population diversity is undoubtedly one of the most 

important indicators of a population state. Measures to evaluate the population diversity play an 

important role in adaptively changing search strategies, in analyzing the behavior of soft computing 

algorithms, and in evaluating individuals to maintain population diversity in a positive manner. In this 

paper, an edge entropy measure is used to evaluate population diversity. The edge entropy was 

proposed by Maekawa [35] firstly and defined as 





Xe pp N

eF

N

eF
H )

)(
log(

)(
 (5) 

where X is a set of edges included in the current population, Np is the size of the population, and F(e) is 

the number of edges e in the current population. 

4.2. Deeper Analysis of OBBO 

In order to intuitively show its drawbacks, the simulation of OBBO algorithm for large scale TSP, 

ch130, is firstly conducted with the setting listed in Table 1 as in [28]. We show that by using  

Monte-Carlo method. 

The optimal solutions are obtained at the end of 500 generations from both BBO and OBBO. 

Therefore, the number of candidate solutions explored by BBO is 25000 for each independent  

Monte-Carlo run. While the mean of candidate solutions explored by OBBO is 32446.5 ± 485.7132 

over 200 independent Monte-Carlo simulations. From this viewpoint, it is no surprise that compared with 

BBO algorithm, the performance of OBBO may be improved as illustrated in [28] for its larger 

possibility space explored. 

The utilization rate of opposite paths is recorded and shown. From Figure 7, we can see that it is 

decreasing from 50% to 5% sharply over 6 times. After 12 times, it is very close to zero, which means 
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the opposite paths cannot be selected as elitist solutions and then survived into the next generation. 

What deserves special mention is that the horizontal ordinate is the number of opposition-based 

generation jumping, not the number of generation (iteration). The former is almost 30% of the later 

according to the parameter, opposition jumping rate, used in this simulation. 

The utilization rate of opposite paths is recorded and shown. From Figure 7, we can see that it is 

decreasing from 50% to 5% sharply over 6 times. After 12 times, it is very close to zero, which means 

the opposite paths cannot be selected as elitist solutions and then survived into the next generation. 
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according to the parameter, opposition jumping rate, used in this simulation. 

The utilization rate of opposite paths is recorded and shown. From Figure 7, we can see that it is 

decreasing from 50% to 5% sharply over 6 times. After 12 times, it is very close to zero, which means 

the opposite paths cannot be selected as elitist solutions and then survived into the next generation. 

What deserves special mention is that the horizontal ordinate is the number of opposition-based 

generation jumping, not the number of generation (iteration). The former is almost 30% of the later 

according to the parameter, opposition jumping rate, used in this simulation. 

The utilization rate of opposite paths is recorded and shown. From Figure 7, we can see that it is 

decreasing from 50% to 5% sharply over 6 times. After 12 times, it is very close to zero, which means 

the opposite paths cannot be selected as elitist solutions and then survived into the next generation. 

What deserves special mention is that the horizontal ordinate is the number of opposition-based 

generation jumping, not the number of generation (iteration). The former is almost 30% of the later 

according to the parameter, opposition jumping rate, used in this simulation. 

Table 1. Simulation settings for TSP problem. 

Parameters Value 

Population size 50 
Generation limit 500 
Number of elites 3 
Monte Carlo runs 200 

Opposition Jumping Rate 0.3 

Figure 7. Utilization rate of opposite paths of OBBO algorithm. 
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4.3. Experiment Comparison of BBO, OBBO, ROBBO and COOBBO 

Results of applying BBO, OBBO, ROBBO and COOBBO to solve 8 benchmark functions are given 

in Table 2, in which the better results for each case are highlighted in boldface. 

Table 2. Performance comparison of BBO, OBBO, ROBBO and COOBBO. 

Benchmark 
Comparison 

Criteria 
BBO OBBO COOBBO ROBBO 

berlin52 

BS 8604.2732 ± 271.0828 8802.2257 ± 298.9179 8321.864 ± 243.0838 8816.3923 ± 310.225 

CT 16.5043 ± 0.033254 12.8949 ± 0.14883 26.0636 ± 0.40613 12.7935 ± 0.15288 

UR - 1.39 ± 0.15792 17.7021 ± 1.5387 0.98298 ± 0.13792 

PD 30.9672 ± 0.2238 32.0102 ± 0.30895 23.4455 ± 1.7748 31.8362 ± 0.29218 

bier127 

BS 224444.6936 ± 7873.8039 247079.3802 ± 8659.568 186999.418 ± 11339.7602 247017.627 ± 8644.1022

CT 36.2248 ± 0.18711 28.0967 ± 0.32596 77.5242 ± 1.7217 27.9017 ± 0.35213 

UR - 0.79193 ± 0.12519 10.0663 ± 0.94305 0.73474 ± 0.11112 

PD 37.4125 ± 0.46407 40.0844 ± 0.74797 37.8905 ± 1.7826 39.9542 ± 0.77365 

ch130 

BS 14160.151 ± 556.0656 16163.1156 ± 571.0329 10735.6857 ± 800.823 16110.5935 ± 580.3632

CT 36.8155 ± 0.041028 28.6327 ± 0.28465 80.0928 ± 1.9244 28.4332 ± 0.28853 

UR - 0.79987 ± 0.11519 11.046 ± 1.133 0.72923 ± 0.10295 

PD 37.108 ± 0.45369 39.7573 ± 0.65399 38.2925 ± 1.7171 39.6187 ± 0.6568 

kroA150 

BS 76274.6154 ± 3082.4458 86542.4877 ± 3231.4578 54089.9955 ± 4138.1095 87258.7988 ± 3590.0721

CT 42.0813 ± 0.039008 32.634 ± 0.43444 97.9435 ± 2.3961 32.4983 ± 0.39877 

UR - 0.84709 ± 0.11022 11.5362 ± 1.14 0.71816 ± 0.11195 

PD 38.4352 ± 0.49502 41.6914 ± 0.89549 43.8533 ± 2.3142 41.3216 ± 0.78642 

kroA200 

BS 121550.466 ± 3586.8735 136496.701 ± 4039.3472 79433.7261 ± 5793.0264 136436.9172 ± 4140.0182

CT 55.3055 ± 0.060966 42.9461 ± 0.60204 146.7581 ± 3.6105 42.702 ± 0.50824 

UR - 0.77342 ± 0.1136 9.8554 ± 0.92318 0.68909 ± 0.10748 

PD 40.8049 ± 0.5737 45.0263 ± 1.3084 51.4226 ± 2.5032 44.635 ± 1.2792 

kroC100 

BS 38808.7544 ± 1553.4899 43909.6763 ± 2211.9766 28786.3067 ± 2089.1848 44319.1631 ± 2033.1415

CT 28.9781 ± 0.035912 22.5343 ± 0.2427 56.7792 ± 1.2044 22.4417 ± 0.25442 

UR - 0.98634 ± 0.14493 15.161 ± 1.4206 0.75694 ± 0.10583 

PD 35.8608 ± 0.34445 38.3319 ± 0.6626 36.5919 ± 2.2458 37.8325 ± 0.59057 

lin105 

BS 28658.7352 ± 1455.8463 32433.6636 ± 1562.2038 20653.0943 ± 1528.6458 32414.3953 ± 1534.0982

CT 30.2712 ± 0.037719 23.576 ± 0.28172 60.3434 ± 1.2413 23.4203 ± 0.28112 

UR - 0.94954 ± 0.11861 14.1988 ± 1.4196 0.75923 ± 0.11967 

PD 36.3301 ± 0.34626 38.8883 ± 0.60563 38.1673 ± 2.0066 38.4409 ± 0.56284 

lin318 

BS 293943.2531 ± 6647.7388 324536.2956 ± 5997.1132 179974.0689 ± 11519.3106 325160.5952 ± 5921.0519

CT 86.5313 ± 0.095259 67.0055 ± 0.77115 298.6361 ± 8.3882 66.7332 ± 0.83632 

UR - 0.72979 ± 0.088012 7.5774 ± 0.70079 0.66951 ± 0.11773 

PD 45.9775 ± 0.93707 52.315 ± 1.9485 67.1539 ± 3.9866 51.8151 ± 1.8752 

In order to eliminate the influence of subjective and objective conditions, large scale independent 

experiments are implemented for each algorithm in this paper. As we all know, the smaller the 

variance of results is, the more stable the algorithm performance is. From Table 2, we see that BBO 

has the smallest variance for almost all experiment results, which may clearly indicate that BBO is 

reliability and robustness. 
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Based on the simulation results in Table 2, COOBBO proposed in this paper achieved the best 

solution among all. When compared with BBO, OBBO and ROBBO, the mean of the best solution by 

COOBBO algorithm is lessened, on average, almost by 35.78%, 51.27% and 51.60%, respectively. 

It is important to note that the overall performance of OBBO is getting worse than BBO, which may 

seem contradictory with the conclusion in [28]. In fact, they are not contradictory. A rational reason 

explained this phenomenon is the termination criterion is pretty different in the two papers. As 

described above, the two algorithms are not iterated until the fixed iteration is satisfied in [28], which 

means that the OBBO algorithm will explore more candidate solutions compared with BBO algorithm. 

However the same algorithms are stopped when the number of evaluation of cost function is reached 

the maximum number in this paper. In this case, it is not surprising then that OBBO’s performance is 

worse than BBO. 

From our point of view, the performance difference of two modified algorithm, OBBO and 

COOBBO, is attributed to the disparate definition of opposite path. In [28], the opposite of each city is 

furthermost in the circle. Therefore, the difference of candidate path and its corresponding opposite 

path is merely style. However, the definition of opposite path proposed in this paper is differs 

appreciably from that method. The sequence of candidate paths and the distances between adjacent 

nodes in the tour are considered simultaneously. 

As another direct result of the differences in definition of opposite path in the two papers, the 

utilization rate of opposite paths in this paper is significantly higher than it in [28]. As seen from  

Table 2, the new method is over 13 times more effective than the traditional one (12.14 vs. 0.91 in 

average). Different from Figure 7 above, the utilization rate of opposite paths in this paper decreases 

from 50% to 5% over 20 times as seen in Figure 8. Although the decline trend is inevitable, the 

utilization rate of opposite paths are expected to decrease more slowly over time. Furthermore, as for 

the great difference between Figures 7 and 8, the utilization rate is no longer decline, after reaching 

minimal value, such as 4.93% in Figure 8. What some readers will find more surprising is that it 

wanders and increases slowly with the number of opposition-based generation jumping. That is to say, 

more and more opposite paths can be survived and further being improved by our proposed algorithm. 

Using the definition of opposite path from [28], such an event would have been almost inconceivable. 

Figure 8. Utilization rate of opposite paths of COOBBO algorithm. 
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Except for the berlin52 problem, BBO has the lowest edge entropy, which indicates clearly its 

population diversity is the highest among all tested algorithms. Now, there is an interesting and 

unexpected phenomenon to us. When compared with COOBBO algorithm, BBO has both higher 

population diversity and worse solution. In accordance with a common view in the field of  

population-based search algorithms, the higher population diversity should lead to better solutions of 

many combinatorial problems. In fact, in order to be successful, a search algorithm needs to establish a 

good ratio between exploration, which is the process of visiting entirely new regions, and exploitation, 

which is the process of visiting those regions within the neighborhood of previously visited points [36]. If 

we think that BBO, to a certain degree, has already a good balance between exploration and 

exploitation, the combination of opposition-based learning and BBO will break the inherent stability 

inevitably. Several opposite paths are created based on the original paths and the optimal path in the 

current population, and then their search space are limited within the neighborhood of previously 

visited path. Therefore, in my opinion, the advantage of opposition-based learning is the in-depth 

exploitation, not extensive exploration. Furthermore, the termination criterion in this paper is that the 

evaluation number is reached the maximum number. Compared with the classical BBO, the evolution 

process of COOBBO tends to last shorter, because more candidate paths are tried in each iteration. In a 

word, the original balance between exploitation and exploration in BBO is destroyed by opposition-based 

learning, and then COOBBO suffers more exploitation, which leads to better solution convergence, 

and less exploration, which leads to lower population diversity, in the evolution process. According to 

our understanding, it is the key reason that the experiment results shown in Table 2 are not consistent 

with the common view in the field of population-based search algorithms. 

4.4. Experiment Comparison of OBBO and ROBBO 

In order to state clearly the contribution of opposite paths, ROBBO algorithm is introduced in this 

paper. Unlike the previously defined opposite paths, uniformly generated random paths are employed 

as opposite paths. As shown from Table 3, the experiment results of OBBO and ROBBO are 

rearranged and analyzed with software Statistical Product and Service Solutions (SPSS) 14.0 version 

(SPSS Inc., Chicago, IL, USA) and significance is assumed at 0.05. 

As seen from Table 3, we observe that their mainly difference is characterized by three aspects, 

which are computation time, utilization rate of opposite paths and population diversity. When 

compared with ROBBO, OBBO has higher utilization rate of opposite paths and worse population 

diversity, in the statistical sense. According to the definition of opposite path in [28], it is created based 

on the original path in a limited and controlled manner, though its object is to maximize the proximity 

between the adjacent vertices. At this time, there has been an appreciable increase in the probability of 

the opposite path selected as offspring in next iteration. In contrast, the opposite path in ROBBO 

proposed in this paper is sampled by uniformly distribution over the whole search space, and then 

ROBBO has better population diversity inevitably. 

Seen from the evaluation criterion of best solution found, no significant differences (p > 0.05) are 

observed between OBBO and ROBBO. In other words, the opposite path from [28] has the same 

contribution with random generated paths. Such being the case, it is futile to attempt to apply the 
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opposite path from [28], although it is a most plausible story. Maybe the ROBBO algorithm is a good 

choice to instead OBBO. It is another interesting and valuable conclusion in this paper. 

Table 3. Performance comparison of COOBBO and ROBBO. 

Benchmark BS CT UR PD 

berlin52 
0.743  

(8802.2257 vs. 8816.3923) 

0.000  

(12.8949 vs. 12.7935)

0.000  

(1.39 vs. 0.98298) 

0.000  

(32.0102 vs. 31.8362)

bier127 
0.960  

(247079.3802 vs. 247017.627) 

0.000  

(28.0967 vs. 27.9017)

0.001  

(0.79193 vs. 0.73474) 

0.228  

(40.0844 vs. 39.9542)

ch130 
0.520  

(16163.1156 vs. 16110.5935) 

0.000  

(28.6327 vs. 28.4332)

0.000  

(0.79987 vs. 0.72923) 

0.137  

(39.7573 vs. 39.6187)

kroA150 
0.140  

(86542.4877 vs. 87258.7988) 

0.022  

(32.634 vs. 32.4983)

0.000  

(0.84709 vs. 0.71816) 

0.002  

(41.6914 vs. 41.3216)

kroA200 
0.918  

(136496.701 vs. 136436.9172) 

0.002  

(42.9461 vs. 42.702)

0.000  

(0.77342 vs. 0.68909) 

0.034  

(45.0263 vs. 44.635)

kroC100 
0.174  

(43909.6763 vs. 44319.1631) 

0.009  

(22.5343 vs. 22.4417)

0.000  

(0.98634 vs. 0.75694) 

0.000  

(38.3319 vs. 37.8325)

lin105 
0.930  

(32433.6636 vs. 32414.3953) 

0.000  

(23.576 vs. 23.4203)

0.000  

(0.94954 vs. 0.75923) 

0.000  

(38.8883 vs. 38.4409)

lin318 
0.460  

(324536.2956 vs. 325160.5952) 

0.018  

(67.0055 vs. 66.7332)

0.000  

(0.72979 vs. 0.66951) 

0.066  

(52.315 vs. 51.8151)

4.5. Experiment Comparison of Different COOBBO 

As stated above, three methods to define the opposite paths are proposed in this paper, which are 

called opposite path (Backward Ellipse), opposite path (Forward Ellipse) and opposite path (Circle), 

respectively. In Section 4.2, opposite path (Backward Ellipse) is employed into COOBBO, and then it 

is compared with BBO, OBBO and ROBBO. As shown in Table 2, it is demonstrated that the 

proposed COOBBO algorithm can achieve near optimal performance in terms of best solution found 

and utilization rate of opposite paths. In order to design better opposite path, three different definitions 

proposed in this paper are compared in details. Experiment results of applying different version of 

COOBBO to solve those benchmark functions above are given in Table 4, in which the better results 

for each case are also highlighted in boldface. 

From Table 4, we can see that each algorithm has own unique advantages in different comparison 

criteria over other methods. For instance, COOBBO (Backward Ellipse) is the best algorithm on best 

solution found and utilization rate of opposite paths, COOBBO (Forward Ellipse) is the best one on 

population diversity, and COOBBO (Circle) is the best one on computation time. 

We believe that, the most likely reason for this is that different definition of opposite path is 

embedded into classical BBO algorithm. Here let me take opposite node O2 of node B2 for example. 

As seen from Figures 3, 5 and 6, the search process for the opposite node O2 is limited different search 

space, such as the ellipse determined by nodes A1, A2, and B2 for Backward Ellipse method, the ellipse 

determined by nodes A2, A3, and B2 for Forward Ellipse method, and the circle determined by nodes 

A2 and B2 for Circle method, respectively. Hereby we can infer that, if a backward line (such as A1B2) 

is considered to create the opposite path, the exploitation ability can be improved greatly, and the 
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better utilization rate of opposite paths and overall performance can be achieved. From another 

perspective, if forward line (such as A3B2) is considered in that process, the exploration ability and 

population diversity can be improved greatly. 

Table 4. Performance comparison of different COOBBO. 

Benchmark 
Optimal  

Solution 

Comparison  

Criteria 

COOBBO (Backward  

Ellipse) 

COOBBO (Forward  

Ellipse) 
COOBBO (Circle) 

berlin52 7542 

BS 8321.864 ± 243.0838 8305.1157 ± 241.5853 8333.591 ± 283.9502 

CT 26.0636 ± 0.40613 26.2338 ± 0.43054 24.4901 ± 0.3307 

UR 17.7021 ± 1.5387 19.4787 ± 1.7205 11.9418 ± 1.032 

PD 23.4455 ± 1.7748 20.365 ± 0.99143 31.0124 ± 0.58744 

bier127 118282 

BS 186999.418 ± 11339.7602 200390.2364 ± 9909.0866 190145.1356 ± 9264.6665

CT 77.5242 ± 1.7217 77.871 ± 1.8559 70.1001 ± 1.2754 

UR 10.0663 ± 0.94305 9.4902 ± 0.93118 5.5513 ± 0.38539 

PD 37.8905 ± 1.7826 34.7061 ± 1.3295 47.5324 ± 1.3702 

ch130 6110 

BS 10735.6857 ± 800.823 12301.3115 ± 665.8969 11071.1291 ± 602.8048 

CT 80.0928 ± 1.9244 80.2126 ± 1.7268 72.6642 ± 1.5963 

UR 11.046 ± 1.133 10.2205 ± 0.96441 6.2528 ± 0.46867 

PD 38.2925 ± 1.7171 33.9795 ± 1.2991 52.0144 ± 1.1943 

kroA150 26524 

BS 54089.9955 ± 4138.1095 62213.9641 ± 3367.083 56154.8562 ± 3199.3826

CT 97.9435 ± 2.3961 97.909 ± 2.6651 87.9529 ± 1.6593 

UR 11.5362 ± 1.14 10.7622 ± 0.91919 6.9752 ± 0.44009 

PD 43.8533 ± 2.3142 39.1721 ± 1.9173 61.6256 ± 1.7903 

kroA200 29368 

BS 79433.7261 ± 5793.0264 95434.8002 ± 4848.5489 93386.4811 ± 3698.4416

CT 146.7581 ± 3.6105 148.7677 ± 3.9271 130.3292 ± 3.1375 

UR 9.8554 ± 0.92318 9.195 ± 0.88397 5.8667 ± 0.3423 

PD 51.4226 ± 2.5032 46.2781 ± 2.5567 74.8238 ± 3.0705 

kroC100 20749 

BS 28786.3067 ± 2089.1848 32228.8304 ± 1988.7409 28124.5048 ± 1469.195 

CT 56.7792 ± 1.2044 57.3461 ± 1.2305 52.1812 ± 0.91162 

UR 15.161 ± 1.4206 14.8064 ± 1.5202 10.6852 ± 0.91019 

PD 36.5919 ± 2.2458 31.6739 ± 1.2889 48.9681 ± 1.039 

lin105 14379 

BS 20653.0943 ± 1528.6458 22392.0575 ± 1610.5752 20786.2342 ± 1077.5567

CT 60.3434 ± 1.2413 61.4 ± 1.2684 55.1161 ± 1.0321 

UR 14.1988 ± 1.4196 13.8791 ± 1.2581 10.4896 ± 0.95054 

PD 38.1673 ± 2.0066 34.3843 ± 1.4297 50.6824 ± 1.088 

lin318 42029 

BS 179974.0689 ± 11519.3106 209648.546 ± 10977.459 241710.2118 ± 9377.1761

CT 298.6361 ± 8.3882 305.7854 ± 8.8387 261.5351 ± 7.5882 

UR 7.5774 ± 0.70079 7.1332 ± 0.68193 4.073 ± 0.28234 

PD 67.1539 ± 3.9866 60.4984 ± 3.586 97.8536 ± 5.4552 

It is obvious that the method of finding opposite path (Circle) has the characteristics of simple 

process flow, less calculation and high velocity. Comparatively speaking, the overall performance of 

COOBBO (Circle) algorithm is worst on utilization rate of opposite paths and population diversity 

when solving those TSP problems. From this fact we may deduce that adjacent nodes in the optimal 

path in the current population are very necessary for each successful algorithm. The difficult issue 
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facing us all is how to establish a good ratio between backward adjacent node and forward adjacent 

node, and it is an important research effort in near future. 

4.6. More Discussion on Computation Time 

Generally speaking, intelligent heuristic algorithms are more time consuming than other algorithms. 

On the other hand, computation time of heuristic algorithms normally depend on some measure of 

problem size, such as the number of cities in TSP problem. As you can see from Figure 9, CPU time 

consumed by BBO algorithm is increasing linearly and this conclusion is equally applicable to OBBO 

and ROBBO algorithms. 

Figure 9. Comparison of computation time of BBO, OBBO, ROBBO and COOBBO algorithms. 
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Eight sets of computation time and sizes of TSP problem are carried out by least square method. 

The fitting results of all tested algorithms are given in Table 5. Herein relative error in the third row is 

the mean of differences between fitted value and experiment result and it can be defined as following 







num

i
i

exp

i
exp

i
fit

CT

CTCT
errorRelative

1

 (6) 

where i
expCT  and i

fitCT  are the experiment result and fitted value for the ith benchmark problem, and 

num is the number of benchmark problems. 

Table 5. Fitting results of BBO, OBBO, ROBBO and COOBBO algorithms. 

Algorithm Fitting line Relative error (%) 

BBO 0.26351x + 2.6561 0.26629 
OBBO 0.20365x + 2.2008 0.21228 

ROBBO 0.20297x + 2.1265 0.21109 
COOBBO 1.04751x – 49.2515 15.4708 

It can be seen from Table 5 that the relative fitting errors of BBO, OBBO and ROBBO algorithms 

are maintained at moderate rate around 0.2% to 0.3%. 

At the same time, it is unfortunate that the computation time of our proposed algorithm is a bit 

different from the three mentioned above. As can be seen from Figure 9, its computation time is 
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increased with expedition from 26s for 52 cities to 298s for 318 cities. If we fitted the experiment 

results by the same method, its relative error is around 15%, which is close to 60 times more than other 

algorithms. Therefore, we are not sure that the linear fitting is still effective to COOBBO algorithm, 

and then we surmise that it may be increased exponentially with the increase of the size of the TSP 

problem. Of course, the inference should be proved or falsified by more experiments in the future. 

Typically, the main reason for so much time of the COOBBO algorithm is the calculation of Euclidean 

distance between cities in the produce of forming opposite path. 

5. Conclusions  

In this paper, a novel oppositional BBO algorithm, called COOBBO, is introduced to solve TSP 

problems. The proposed algorithm is tested on eight benchmark problems and is found to outperform 

the standard BBO and OBBO. Further test results indicate that the excellent performance is attributed 

to the distinct definition of opposite path. The sequence of candidate paths and the distances between 

adjacent nodes in the tour are considered simultaneously, which may lead to the higher utilization rate 

of opposite paths. 

Population diversity refers to differences among individuals and is used to delimit between 

exploration and exploitation. However, we are very confused that the proposed algorithm has both 

better solution and lower population diversity. We think that opposition-based learning is good at  

in-depth exploitation, not extensive exploration. Therefore, the original balance of COOBBO is 

destroyed, in which the exploitation process is enhanced and the exploration process is weaken in 

some cases. 

Numerical results demonstrate that there is no significant difference in solution accuracy between 

OBBO and ROBBO. Considering other factors such as population diversity and computation time, we 

have abundant proof for thinking that the ROBBO algorithm is a good choice to instead OBBO. 

In this paper, we have made a preliminary investigation to define the opposite path and apply it for 

solving TSP problems. However, it is undeniable that there are many possible definitions and 

applications of opposite path. By comparing different version of COOBBO, we think that each 

successful improved algorithm needs to establish a good ratio between backward adjacent node and 

forward adjacent node. It is an important research effort for us in near future. 

Based on the experimental evidence, one of the principal disadvantages of our algorithm is too 

much long time required to perform it. Without doubt, it is intolerable that each modified algorithm waste 

so much time on the insignificant improvement. Therefore, our top task in the near future is to increase 

the efficiency of the algorithm to achieve the best balance between computation time and performance. 

It should be emphasized again that the proposed scheme of opposite path is an effective and general 

method, which can be embedded inside many soft computing algorithms, to improve its performance. 

Since the key point of this paper is the novel definition of opposite path, we will incorporate that idea 

into other soft computing approaches, including the state-of-the-art methods, to ascertain what the 

impact of the opposite path idea. In addition, a comparison to other widely recognized techniques is 

also required in order to ascertain the utility of the proposed technique. 
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