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Abstract:

 In this work we generate the numerical solutions of Burgers’ equation by applying the Crank-Nicholson method and different schemes for solving nonlinear systems, instead of using Hopf-Cole transformation to reduce Burgers’ equation into the linear heat equation. The method is analyzed on two test problems in order to check its efficiency on different kinds of initial conditions. Numerical solutions as well as exact solutions for different values of viscosity are calculated, concluding that the numerical results are very close to the exact solution.
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1. Introduction

The numerical solution of nonlinear equations and systems is widely used in different branches of Science and Technology, as in the analysis of diffusion phenomena (see, for example, [1,2]), the study of dynamical models of chemical reactors [3], the numerical computing of the dominant eigenvalue of the neutron transport criticality problem (see [4]), the study of radioactive transfer [5], or in the orbit determination of artificial satellites (see [6]), among others.

Burgers’ equation arises in the theory of shock waves, in turbulence problems and in continuous stochastic processes. It has a large variety of applications: modeling of water in unsaturated oil, gas dynamics, heat conduction, elasticity, statics of flow problems, mixing and turbulent diffusion, cosmology, seismology, etc. (see [7] and the references therein).

We consider the one-dimensional Burgers’ equation



[image: there is no content]−1[image: there is no content][image: there is no content]+u[image: there is no content]=0,a<x<b,t>0



(1)




with initial condition [image: there is no content], [image: there is no content], and boundary conditions [image: there is no content], [image: there is no content], [image: there is no content]; where [image: there is no content] is the Reynolds number of the viscous fluid flow problem and [image: there is no content], [image: there is no content] and [image: there is no content] are given functions. Usually ε instead of 1[image: there is no content] is used, for simplicity. Numerical difficulties have been experienced in getting the solution of Burgers’ equation for big values of ε.
This problem shows a roughly similar structure to that of Navier-Stokes equations due to the form of the nonlinear convection term and the occurrence of the viscosity term. So, this can be considered as a simplified form of the Navier-Stokes equation. In recent years, many researchers have used different numerical methods specially based on finite difference, finite element boundary techniques and direct variational methods to solve this problem (see, for example, [7,8,9] and the references therein). It has been shown by Hopf and Cole that Burgers’ equation can be solved exactly for an arbitrary initial function [image: there is no content]. The transformation



[image: there is no content]



(2)




relates [image: there is no content] and [image: there is no content], and if ϕ is a solution of the linear diffusion equation


[image: there is no content]



(3)




then u is a solution of the quasilinear Burgers’ Equation (1). This transformation let us obtain the exact values of [image: there is no content] because Equation (3) has a Fourier series solution, however its computational cost is very high and we only use it for comparing the precision of our results (as we will see in the Numerical Section, the integrals of the Fourier coefficients must be calculated). As we can see in [7], some researchers have taken advantage of this transformation and have applied the Crank-Nicolson scheme to the linear Equation (3) in order to obtain the values of [image: there is no content] and after it the values of [image: there is no content]. Other authors have used the implicit scheme, where [image: there is no content] is approximated by backward differences, however, due to its truncation error has order one, the precision of the results decreases.
In this paper, we apply a particular difference scheme called Crank-Nicolson type method, obtained by applying divided differences directly on the nonlinear Equation (1), needing to solve a nonlinear system of equations for obtaining the solution in each value of t. These nonlinear systems are solved by using fixed point iterative methods. In particular, we are going to use the classical Newton’s method of order two,



[image: there is no content]



(4)




Traub’s method of order three (see [10])


[image: there is no content]



(5)
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and the method denoted by M5 (see [11]) of fifth order of convergence, whose expression is reminded in the following


[image: there is no content]



(6)
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In these iterative expressions, [image: there is no content] denotes the vectorial real function that describes the nonlinear system and [image: there is no content] is the associated Jacobian matrix.
The stability of the method is numerically analyzed and found to be unconditionally stable. The presented method has the accuracy of second order in space and time. We test our method by using several values of ε and different initial conditions in order to analyze its stability and consistence, and for doing this it is compared with other known methods and with the exact solution. From these numerical results several interesting conclusions are obtained.



2. Development of the Procedure

The easiest way to discretize a partial differential equation problem (like we have on Equation (1)) consist on reducing the continuous domain into an equispaced finite number of points [image: there is no content] located on the nodes of a uniform rectangular mesh. The partial derivatives of u can be estimated now by the following difference quotients



∂u([image: there is no content],[image: there is no content])∂x≈ui+1,j−[image: there is no content]h,∂u([image: there is no content],[image: there is no content])∂t≈ui,j+1−[image: there is no content]k



(7)




which are called forward differences and have a truncation error of order 1. The partial derivatives of u can also be obtained by


∂u([image: there is no content],[image: there is no content])∂x≈[image: there is no content]−ui−1,jh,∂u([image: there is no content],[image: there is no content])∂t≈[image: there is no content]−ui,j−1k



(8)




which are backward differences and have also a truncation error of order 1. Finally the partial derivatives of u can also be obtained by the following


∂u([image: there is no content],[image: there is no content])∂x≈ui+1,j−ui−1,j2h,∂u([image: there is no content],[image: there is no content])∂t≈ui,j+1−ui,j−12k



(9)






∂2u[image: there is no content]∂x2≈ui+1,j−2[image: there is no content]+ui−1,jh2,∂2u[image: there is no content]∂t2≈ui,j+1−2[image: there is no content]+ui,j−1k2



(10)




which are called central differences and have a truncation error of order 2. In these expressions, [image: there is no content] denotes the approximated value of the unknown u function on [image: there is no content], [image: there is no content] and [image: there is no content] are respectively the space and time step on the mesh and n and m are respectively the space and time amount of subintervals to be considered. Then, we consider [image: there is no content] and [image: there is no content], where [image: there is no content] and [image: there is no content].
Let us apply Crank-Nicolson difference scheme, which consists of discretizing Equation (1) in two consecutive time instants of j and average them. In the first instant [image: there is no content] we approximate [image: there is no content] by the forward difference described on Equation (7) and in the second instant [image: there is no content] we do it by the backward one. At both instants we approximate [image: there is no content] and [image: there is no content] by using the central differences (described by Equations (9) and (10) respectively). By means of this procedure we get, for the first instant,



ui,j+1−[image: there is no content]k−εui+1,j−2[image: there is no content]+ui−1,jh2+[image: there is no content]ui+1,j−ui−1,j2h=0



(11)




and for the second one,


ui,j+1−[image: there is no content]k−εui+1,j+1−2ui,j+1+ui−1,j+1h2+ui,j+1ui+1,j+1−ui−1,j+12h=0



(12)




After averaging both expressions, it results


Bui,j+1ui+1,j+1−Bui,j+1ui−1,j+1−Cui+1,j+1+2Cui,j+1−Cui−1,j+1+Aui,j+1=Cui+1,j+(A−2C)[image: there is no content]+Cui−1,j+B[image: there is no content]ui+1,j−B[image: there is no content]ui−1,j



(13)




where [image: there is no content], [image: there is no content], [image: there is no content] and the range of indices is [image: there is no content] and [image: there is no content]. This expression (which has a truncation error of order 2) results on a m nonlinear systems of [image: there is no content] unknowns and [image: there is no content] equations. Each one of these systems comes after considering that we already know the value of [image: there is no content] and [image: there is no content], [image: there is no content] (from the boundary conditions) and [image: there is no content], [image: there is no content] from the initial condition. Let us notice that the values corresponding to the j subindex have been calculated on the previous systems and the only unknowns will be those with the [image: there is no content] subindex.


3. Numerical Results

We are comparing our results with the exact solution, which can be obtained by the Hopf-Cole transformation mentioned on Equations (2) and (3). For doing this, we first calculate



[image: there is no content]=[image: there is no content]+∑p=1∞Ape−p2επ2tcos(pπx)








and after it, by Equation (2), we obtain


u(x,t)=2πε∑p=1∞Ape−p2επ2tpsin(pπx)[image: there is no content]+∑p=1∞Ape−p2επ2tcos(pπx)



(14)




where


[image: there is no content]










Ap=2∫abe−12ε∫axu(ξ,0)dξcos(pπx)dx,p=1,2,...








Our goal is to obtain at least five exact decimals from the exact solution in order to prove the precision of our results, and for that we have seen that it is enough with two summands of the Fourier series, thereby only [image: there is no content], [image: there is no content] and [image: there is no content] will have to be calculated.
In the following examples we consider that the boundary conditions are zero, so we have that [image: there is no content] and [image: there is no content], what means that [image: there is no content]=0 and [image: there is no content]=0, [image: there is no content]. We can compare our results with the exact solution in this case, however our method has been found numerically to be unconditionally stable whatever the boundary conditions are. We use the R2013a version of Matlab with double precision for obtaining both approximated and exact solutions. The stopping criterion used is



∥u(k+1)(x,[image: there is no content])−u(k)(x,[image: there is no content])∥+∥F(u(k+1)(x,[image: there is no content]))|<10−15








Example 1. The initial and boundary conditions of Burgers’ equation for this example are


u(x,0)=2εβπsin(πx)α+βcos(πx),0≤x≤2








and [image: there is no content] where [image: there is no content] and [image: there is no content].
In the following tables we show, for different values of n, m and ε, the average number of iterations by using Newton’, Traub’s and M5 methods. We also show the greatest error, GE, that we obtain for every value of [image: there is no content] and [image: there is no content], where [image: there is no content] and [image: there is no content]. The initial approximation of each nonlinear system to be solved is the solution of the previous one (and for the first system the initial approximation is the exact value of the initial condition). After that, we obtain the matrix of errors as the absolute difference between the approximated solution and the exact solution on each node, finally we call the greatest error as the greatest element from that matrix. While other authors prefer to only compare and give the value of the error in some points of the mesh we have preferred a more rigorous criterium, it consists on comparing all the error values from the matrix of errors and giving the value of GE, in this way we get a better idea about how bad is the worst possible situation and we know for sure that the error of the rest of the points will always be below this GE, the other way we can not know if there is some point that has a greater one.

An interesting result emerges from that error matrix if we consider a sufficiently high upper bound of the studied time. If we obtain the GE between all values of x on each time we observe that the GE increase really fast at first but after the peak is reached it starts to decrease. This result can be seen on the Figure 1.

Figure 1. Solution (a–c) and error progression curve (d–f) for different times and ε values, with [image: there is no content] and [image: there is no content].



[image: Algorithms 08 00224 g001 1024]





In Table 1 we set the maximum time of the study, the number of time nodes and the Reynolds constant as [image: there is no content], [image: there is no content] and ε=1[image: there is no content]=0.1 and we try different amount of space nodes. In each case we obtain the already mentioned GE and the average number of iterations (Avg. iter.) needed to solve each nonlinear system by using Newton’, Traub’s and M5 methods.

Table 1. Comparison of the GE (greatest error) and methods iterations for different amount of space subintervals.










	
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]





	Greatest error
	0.09033
	0.029932
	0.0070658
	0.0017149
	0.00039376



	Avg. iter. Newton
	4
	4
	4
	4
	4



	Avg. iter. Traub
	3
	3
	3
	3
	3



	Avg. iter. M5
	3
	3
	3
	3
	3








From these results we observe that, in general, the more space subintervals we take (smaller space step), the less is GE.

In Table 2, we repeat the same process but in this case we set the number of space nodes and try different amount of time nodes. So [image: there is no content], [image: there is no content] and ε=1[image: there is no content]=0.1.

Table 2. Comparison of the GE and methods iterations for different amount of time subintervals.










	
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]





	Greatest error
	0.0043069
	0.00015291
	0.00083542
	0.0010565
	0.0011128



	Avg. iter. Newton
	4.4
	4.15
	4
	4
	4



	Avg. iter. Traub
	3.4
	3.1
	3
	3
	3



	Avg. iter. M5
	3
	3
	3
	3
	3








As we can observe, at first it seems that the more time subintervals we take, the less is GE (similarly as it happened with the previous table, where we tried different amount of space subintervals) however there is a limit for this which if we exceed the error starts to increase again. In this case, the minimum error is obtained for [image: there is no content].







In Table 3, we repeat the process again, however now we study the effect of choosing a small, regular or big value of the Reynolds constant ([image: there is no content]), although we actually use ε=1[image: there is no content] for simplicity. For doing this, we set the number of space and time nodes and the maximum time of study, so [image: there is no content], [image: there is no content] and [image: there is no content].

Table 3. Comparison of the GE and methods iterations for different values of ε.
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	Greatest error
	0.22216
	0.0068572
	0.0035207
	0.0021242
	0.0014188
	0.000708
	0.000296



	Avg. iter. Newton
	3.9
	4
	4
	4
	4
	3.85
	3



	Avg. iter. Traub
	3.15
	3
	3
	3
	3
	3
	3



	Avg. iter. M5
	2.8
	3
	3
	3
	3
	3
	2










First of all, it has to be said that the maximum value of ε that can be used to keep the method working properly will depend of the amount of time subintervals we take, it happens because the bigger is the attenuation, more abrupt are the curves on the time axis. For keeping the error low, a finer mesh will be needed, what can be obtained by increasing the amount of time subintervals. From Table 3 we can numerically see this phenomenon, for a fast attenuation ([image: there is no content]) the error is quite big due to the curve is very abrupt (as we said we could decrease the error of this case by taking more time subintervals), however the slower is the attenuation (lower values of ε), lower is GE. If we keep on taking lower values of attenuation (lower ε), the peak of the GE characteristic curve will not be reached and consequently the GE will be even lower (for this example it happens for [image: there is no content] and even more for [image: there is no content]). See Figure 1 for a better understanding of these different situations.

Some conclusions can be obtained from Table 1, Table 2 and Table 3: to use a higher order method (like M5) does not represent a bigger advantage compared with a typical third order method (like Traub), however there is a significant difference between using a third order method compared to a typical second order method (like Newton). The more space subintervals we take, lower is GE; however, it does not happen with the amount of time subintervals, it means that there is an optimum amount of time subintervals that reduces the GE to its minimum but after it the error starts to increase again and the computational cost of having to solve so many systems does not make any sense (due to the increasing number of floating points operations, execution time,...). As we have seen from Table 3, if we want to study a situation with a big attenuation (low [image: there is no content]), we will need a higher amount of time subintervals compared to those situations where the attenuation is lower (it means that the computational cost for having to solve more nonlinear systems will be higher), however taking more space subintervals does not seem to help.

Example 2. Let us consider now the following initial and boundary conditions for Burgers’ equation



[image: there is no content]



(15)




and [image: there is no content].
In Figure 2 we see a plot of the approximated solution by our method at different times for [image: there is no content] and for two different values of ε, and in Table 4 we show the numerical results of this solution for some values of [image: there is no content] and ε.

Figure 2. Solution for different times and ε values, both of them with [image: there is no content] and [image: there is no content]. (a) [image: there is no content]; (b) [image: there is no content].



[image: Algorithms 08 00224 g002 1024]





Table 4. Numerical results of the approximated solution for different values of [image: there is no content] and ε.








	x
	t
	[image: there is no content]
	[image: there is no content]





	1.5
	2
	0.44533
	0.63548



	
	4
	0.28961
	0.34573



	
	6
	0.20701
	0.23678



	
	8
	0.16020
	0.17999



	
	10
	0.13041
	0.14516



	3
	2
	0.02972
	0.00000



	
	4
	0.14900
	0.00470



	
	6
	0.22312
	0.47269



	
	8
	0.22501
	0.35971



	
	10
	0.20562
	0.29021



	4.5
	2
	0.00001
	0.00000



	
	4
	0.00145
	0.00000



	
	6
	0.01171
	0.00000



	
	8
	0.03557
	0.00000



	
	10
	0.06242
	0.02066












This results are very similar to those obtained for Mittal and Singhal on their paper (see [12]), where they transform Burgers’ equation into a system of nonlinear ordinary differential equations and solve it by Runge-Kutta-Chebyshev second order method. Although the techniques used to solve the problem are different, the results obtained by Mittal-Singhal and ours, showed in Table 4 and Figure 2 have the same order of magnitude. As we can see in Figure 2 it happens indeed that the lower is ε, slower is the attenuation. Although in this example we have used a piecewise initial condition, and it usually brings more problems, we still have obtained satisfactory results. Since we have considered a quite high upper bound of the studied time ([image: there is no content]) we have had to take a bigger value of m in order to keep a fine mesh size. The results obtained in both Figure 2 and Table 4 are the same regardless if we use Newton’, Traub’s or M5 method.



4. Conclusions

As we have seen from Example 1 and Example 2 our method has the same precision than those methods which apply Hopf-Cole transformation, after it obtain the solution of the linearized equation and finally apply the inverse transformation for obtaining the solution of nonlinear Burgers’ equation. Our method is more straightforward due to it does not need to apply the mentioned transformation.

We also have taken advantage of the numerical results for obtaining some conclusions about the importance of the quantity of space and time subintervals for obtaining the solution mesh as well as the dependency between the error and the value of Reynolds number: if we want to decrease the error, we can take more space subintervals, although the computational cost will raise due to then there will be more unknowns per system to be solved. Another way to decrease the error is by taking more time subintervals, however we have seen that there is a limit from where if we keep on taking bigger values of m, the error increases again. At the same time, taking more time subintervals also means to raise the computational cost since then there will be more systems to be solved. We also have seen that choosing bigger values of attenuation (ε) involve bigger errors due to the faster is the attenuation, more abrupt is the curve and worse is the approximation; for solving this, more time subintervals should be taken but there is no need to take more space subintervals.
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