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Abstract: The identification difficulties for a dual-rate Hammerstein system lie in two
aspects. First, the identification model of the system contains the products of the parameters
of the nonlinear block and the linear block, and a standard least squares method cannot be
directly applied to the model; second, the traditional single-rate discrete-time Hammerstein
model cannot be used as the identification model for the dual-rate sampled system. In order
to solve these problems, by combining the polynomial transformation technique with the key
variable separation technique, this paper converts the Hammerstein system into a dual-rate
linear regression model about all parameters (linear-in-parameter model) and proposes a
recursive least squares algorithm to estimate the parameters of the dual-rate system. The
simulation results verify the effectiveness of the proposed algorithm.
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1. Introduction

A traditional discrete-time system is called a single-rate system, in which the input refreshing
period equals the output sampling period [1,2]; In some complex nonlinear systems, the sampling
rates of the output and the input are different due to the limitation of the measurement technology and
method. The system, which has two different input-output operating frequencies, is called a dual-rate
system [3,4]. Take the dual-rate warp yarn dyeing process with indigo dye for dyeing blue denim
products as an example [5]; the measurement of leuco-indigo concentration in the process needs at least
15 min by the automatic redox titration method, while one can adjust/control the dosage of leuco-indigo
more quickly (at any time) by feeding indigo solution with different concentrations into the indigo
dyeing bath.

In the area of dual-rate/multirate sampled system identification, Chen proposed three gradient
parameter estimation methods for dual-rate sampled systems [4]; Ding et al. explored a hierarchical
least squares method for dual-rate sampled systems [6]; Liu et al. studied a hierarchical identification
method for general dual-rate sampled systems [7]. By using T-S (Takagi and Sugeno) fuzzy models,
Huang et al. proposed a filtering method for multirate nonlinear sampled-data systems [8].

The piecewise-linear characteristic is often encountered in control systems, either alone or in
cascade with linear dynamic systems to describe processes operating with different gains in different
input intervals [9–11], such as in the nonlinear servomechanism [10], in the heating and cooling
processes [11], etc. It is also well known that piecewise-linear functions can be used as a general
tool to approximate nonlinear functions [10]. In previous applications, Hammerstein systems with a
two-segment piecewise-linear nonlinearity have been studied in [12], and an extension to a discontinuous
two-segment piecewise-linearity with preloads and dead-zones nonlinearity was discussed [12]. Vörös
extended the key variable separation identification method for a Hammerstein system with a two-segment
piecewise-linear nonlinearity [13] to a Hammerstein system with a multi-segment piecewise-linear
characteristic [14] and with a time-varying backlash [15].

This paper deal with dual-rate Hammerstein systems with a two-segment piecewise-linear
nonlinearity in cascade with a linear dynamic system. In the literature of single-rate nonlinear
Hammerstein system identification, Deng and Ding studied a Newton iterative identification method
for an input nonlinear finite impulse response system with moving average noise using the key variable
separation technique [16]. Li explored a maximum likelihood estimation algorithm for Hammerstein
CARARMA systems based on the Newton iteration [17]. Wang and Tang developed an auxiliary
model-based recursive least squares algorithm for Hammerstein linear-in-parameters output error
moving average systems [18]. Salimifard et al. presented iterative algorithms to identify nonlinear
MIMO (Multi-Input Multi-Output) Hammerstein systems with moving average noises [19].

Due to the structure of a nonlinear block plus a linear block, the identification model of a Hammerstein
system naturally contains the products of the parameters of the nonlinear block and the linear block.
Moreover, the traditional single-rate discrete-time model is not suitable for the dual-rate sampled-data of
the Hammerstein system. These bring difficulties to directly using a standard least squares method.
The intent of this paper is to study identification methods of Hammerstein nonlinear systems with
dual-rate sampling period in input-output signals. The contribution of this paper is that, by combining
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the polynomial transformation technique [20] with the key variable separation technique [12], a dual-rate
linear-in-parameter identification model for the dual-rate sampled Hammerstein system is derived, which
is suitable for the dual-rate sampled-data, and it is easy to use the standard least squares method to
identify the system parameters.

The organization of this paper is as follows. Section 2 describes the problem formulation of a dual-rate
Hammerstein system. Section 3 transforms the Hammerstein system into a dual-rate linear-in-parameter
identification model using the polynomial transformation technique and the key variable separation
technique. Section 4 derives the key variable separation-based recursive least squares estimation
algorithms to estimate the parameters of the dual-rate/single-rate models. Section 5 analyzes the
convergence performance of the presented least squares algorithm. Section 6 provides an experiment
to verify the effectiveness of the proposed algorithm. Finally, some concluding remarks are summarized
in Section 7.

2. The Description of the Dual-Rate Hammerstein System

Let us introduce some notation. The symbol I stands for an identity matrix of appropriate size; the
superscript T denotes the matrix/vector transpose. x̂(t) stands for the estimate of x at time t.

A Hammerstein system with two sampling periods in input-output signals is depicted in Figure 1,
where Pc is a continuous-time Hammerstein process. Under the dual-rate framework, the discrete control
signal u(kT1) is generated by a computer; the input u(t) is produced by a zero-order holdHT1 with period
T1 = T and takes the piecewise constant values u(kT ) within the updating intervals; the output signal
y(t) is sampled by a sampler ST2 with period T2 := qT , yielding a discrete-time signal y(kqT ). That
means that the multiple of the output sampling period (T2 = qT ) to the input sampling period (T1 = T )

is q. Adopting a simple expression, u(kT ) is written as u(k), and y(kqT ) is written as y(kq).

- HT1
- Pc - ST2 -u(k) u(t) y(t) y(kq)

[u(kT ) written as u(k);y(kqT ) written as y(kq)]

Figure 1. The dual-rate Hammerstein system.

Assume that the corresponding discrete-time singe-rate Hammerstein system consists of a
two-segment piecewise-linear nonlinearity with slopes m1 and m2 and a linear model with polynomials
A(z) and B(z) as depicted in Figure 2,

x(k) =

{
m1u(k), u(k) ≥ 0,

m2u(k), u(k) < 0,
(1)

A(z)y(k) = B(z)x(k), (2)

where x(k) is the internal variable; A(z) and B(z) are defined by:

A(z) := 1 + a1z
−1 + a2z

−2 + · · ·+ anz
−n,
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B(z) := b0 + b1z
−1 + b2z

−2 + · · ·+ bnz
−n.

- �
�

�
�

m1

m2

- B(z)
A(z)

-u(k) x(k) y(k)

[u(kT )→ u(k), y(kT )→ y(k)]

Figure 2. The discrete-time Hammerstein system.

Introduce a switching function h(k) as:

h(k) = h[u(k)] = 0.5{1 + sgn[u(k)]},

where:

sgn(u) =


1, u > 0,

0, u = 0,

−1, u < 0.

Then, Equation (1) can be rewritten as:

x(k) = m2u(k) + (m1 −m2)h(k)u(k). (3)

From Equation (2), we have:

y(k) = b0x(k) + b1x(k − 1) + · · ·+ bnx(k − n)− a1y(k − 1)− a2y(k − 2)− · · · − any(k − n). (4)

Inserting Equation (3) into x(k − i) in Equation (4) gives:

y(k) =
n∑
i=0

bi[m2u(k − i) + (m1 −m2)h(k − i)u(k − i)]−
n∑
i=1

aiy(k − i).

Define:

U(k) :=


u(k) h(k)u(k)

u(k − 1) h(k − 1)u(k − 1)
...

u(k − n) h(k − n)u(k − n)

 ∈ R(n+1)×2,

φ(k) := [−y(k − 1),−y(k − 2), · · · ,−y(k − n)]T ∈ Rn,

a := [a1, a2, · · · , an]T ∈ Rn,

b̄ := [b0, b1, b2, · · · , bn]T ∈ Rn+1,

M := [m2,m1 −m2]
T ∈ R2.

Then, we have:

y(k) = b̄TU(k)M + φT(k)a,



Algorithms 2015, 8 370

Replacing k with kq gives:

y(kq) = b̄TU (kq)M + φT(kq)a. (5)

The identification problems caused by dual-rate Hammerstein systems with piecewise-linear
nonlinearity exist in two aspects.

• For the dual-rate Hammerstein system in this paper, all of the input data {u(k) : k = 0, 1, 2, · · · }
are measurable; only a part of the output data {y(kq) : k = 0, 1, 2, · · ·} can be measured, where
q ≥ 2 is a positive integer. Intersample outputs (missing outputs) {y(kq − i) : k = 0, 1, 2, · · · ,
0 < i < q} are unknown. Because there exist unavailable outputs y(kq − i) in the information
vector φ(kq), with kq − i not equaling the integer multiples of q, the single-rate model in
Equation (5) cannot be used as the identification model for the dual-rate system.
• Moreover, the single-rate model in Equation (5) contains the products of the parameters of the

nonlinear block and the linear block, i.e., the output of the model is a bilinear function about the
parameter vectors b̄ and M , and a standard least squares method cannot be directly applied to
the model.

The intent of this paper is to convert the Hammerstein system in Equations (1) and (2) into a dual-rate
linear regression model about all parameters (linear-in-parameter model), by combining the polynomial
transformation technique [20] with the key variable separation technique [12]. The obtained dual-rate
linear regression model is suitable for the dual-rate sampled data, and a standard identification technique
can be directly applied to the model to estimate the parameters of the model.

3. The Dual-Rate Identification Model of the Hammerstein System

In this section, we transform the Hammerstein system in Equations (1) and (2) into a dual-rate
linear-in-parameter identification model, which is suitable for the dual-rate sampled data, by using the
polynomial transformation technique [20] and the key variable separation technique [12].

Referring to [20], assume that the roots of A(z) are zi, i = 1, 2, · · · , n. Then, we have:

A(z) = (1− z1z−1)(1− z2z−1) · · · (1− znz−1).

Define:

ε(z) := (1 + z1z
−1 + z21z

−2 + · · ·+ zq−11 z−q+1)(1 + z2z
−1 + z22z

−2 + · · ·+ zq−12 z−q+1) · · ·
(1 + znz

−1 + z2nz
−2 + · · ·+ zq−1n z−q+1)

= 1 + ε1z
−1 + ε2z

−2 + · · ·+ εn(q−1)z
−n(q−1).

Multiplying both sides of Equation (2) by ε(z) gives:

α(z)y(k) = β(z)x(k).

Using the identity:

1− zqi z−q ≡ (1− ziz−1)(1 + ziz
−1 + z2i z

−2 + · · ·+ zq−1i z−(q−1)),
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one obtains:

α(z) := ε(z)A(z) (6)

= (1 + z1z
−1 + z21z

−2 + · · ·+ zq−11 z−(q−1))(1− z1z−1)
(1 + z2z

−1 + z22z
−2 + · · ·+ zq−12 z−(q−1))(1− z2z−1)

· · ·
(1 + znz

−1 + z2nz
−2 + · · ·+ zq−1n z−(q−1))(1− znz−1)

= (1− zq1z−q)(1− z
q
2z
−q) · · · (1− zqnz−q)

=: 1 + α1z
−q + α2z

−2q + · · ·+ αnz
−nq,

β(z) := ε(z)B(z) (7)

= (1 + ε1z
−1 + ε2z

−2 + · · ·+ εn(q−1)z
−n(q−1))(b0 + b1z

−1 + b2z
−2 + · · ·+ bnz

−n)

=: β0 + β1z
−1 + β2z

−2 + · · ·+ βnqz
−nq.

Consider a disturbance in a practical system; introducing a zero-mean random white noise v(k),
we have:

α(z)y(k) = β(z)x(k) + v(k). (8)

Substituting the polynomials α(z) and β(z) into Equation (8) gives:

y(k) = [β0 + β1z
−1 + β2z

−2 + · · ·+ βnqz
−nq]x(k)

−[α1z
−q + α2z

−2q + · · ·+ αnz
−nq]y(k) + v(k), (9)

= β0x(k) +

nq∑
i=1

βix(k − i)−
n∑
i=1

αiy(k − iq) + v(k). (10)

In order to get a unique solution, we assume that β0 = b0 = 1 [21]. The first term x(k) (its coefficient
is one) on the right-hand side is a separated key variable, and x(k−i) (i = 1, 2, · · · , nβ) are not separated
variables. Substituting (3) into the separated key variable x(k) in Equation (10) gives:

y(k) = m2u(k) + (m1 −m2)h(k)u(k) +

nq∑
i=1

βix(k − i)−
n∑
i=1

αiy(k − iq) + v(k).

Define the information vector ψ(k) and the parameter vector Θ as:

ψ(k) := [u(k), h(k)u(k), x(k − 1), x(k − 2), · · · , x(k − nq),−y(k − q),−y(k − 2q), · · · ,
−y(t− nq)]T ∈ Rnq+n+2,

Θ := [m2,m1 −m2,β1,β2, · · · ,βnq,α1,α2, · · · ,αn]T ∈ Rnq+n+2.

Then, we have:

y(k) = ψT(k)Θ + v(k).

Replacing k with kq gives the following dual-rate linear-in-parameter identification model,

y(kq) = ψT(kq)Θ + v(kq), (11)
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with:

ψ(kq) := [u(kq), h(kq)u(kq), x(kq − 1), x(kq − 2), · · · , x(kq − nq),−y(kq − q),−y(kq − 2q), · · · ,
−y(kq − nq)]T. (12)

The output of the obtained model is linear about all parameters. Note that y(kq − iq) is available by
sampling the output signal in every qT interval, and y(kq) in Equation (11) is a linear function about Θ.
Thus, it is easy to estimate the parameter vector Θ by using the standard least squares method.

4. The Dual-Rate/Single-Rate Parameter Estimation

In this section, the parameter estimates (in the following Θ̂(kq)) of the dual-rate model are computed
by a recursive least squares algorithm; then by comparing the coefficients of z−i on both sides of
a coefficient polynomial equation containing the parameters of the dual-rate/single-rate models, the
parameter estimates (in the following θ̂(kq)) of the single-rate model are derived.

Suppose that the data length N � nq + n+ 2. Define a quadratic cost function,

J(Θ) :=
N∑
k=1

[y(kq)−ψT(kq)Θ]2.

The information vector ψ(kq) in J(Θ) contains the unknown internal variables {x(kq − i),

i = 1, 2, · · · , nq}. Here, the solution is to replace x(kq − i) with its estimate x̂(kq − i); then the
estimate of ψ(kq) can be written as:

ψ̂(kq) := [u(kq), h(kq)u(kq), x̂(kq − 1), x̂(kq − 2), · · · , x̂(kq − nq),−y(kq − q),−y(kq − 2q), · · · ,
−y(kq − nq)]T. (13)

the estimate x̂(kq − i) can be computed by replacing m1 and m2 in Equation (3) with their estimates
m̂1(kq) and m̂2(kq),

x̂(kq − i) = m̂2(kq)u(kq − i) + [m̂1(kq)− m̂2(kq)]h(kq − i)u(kq − i).

Minimizing the cost functions J(Θ), replacing x(kq − i) in ψ(kq) with its estimate x̂(kq − i) and
by using the least squares method, we obtain the following key variable separation-based recursive least
squares algorithm for estimating Θ of the dual-rate Hammerstein system,

Θ̂(kq) = Θ̂(kq − q) +L(kq)[y(kq)− ψ̂
T
(kq)Θ̂(kq − q)], (14)

L(kq) =
P (kq − q)ψ̂(kq)

1 + ψ̂
T
(kq)P (kq − q)ψ̂(kq)

, (15)

P (kq) = [I −L(kq)ψ̂
T
(kq)]P (kq − q), P (0) = p0I, (16)

ψ̂(kq) = [u(kq), h(kq)u(kq), x̂(kq − 1), x̂(kq − 2), · · · , x̂(kq − nq),
−y(kq − q),−y(kq − 2q), · · · ,−y(kq − nq)]T, (17)

x̂(kq + i) = m̂2(kq)u(kq + i) + [m̂1(kq)− m̂2(kq)]h(kq + i)u(kq + i), (18)

Θ̂(kq) = [m̂2(kq), m̂1(kq)− m̂2(kq), β̂1(kq), β̂2(kq), · · · , β̂nq(kq),



Algorithms 2015, 8 373

α̂1(kq),α2(kq), · · · ,αn(kq)]T. (19)

Use the obtained Θ̂(kq) to construct the polynomials,

α̂(kq, z) = 1 + α̂1(kq)z
−q + α̂2(kq)z

−2q + · · ·+ α̂n(kq)z−nq,

β̂(kq, z) = 1 + β̂1(kq)z
−1 + β̂2(kq)z

−2 + · · ·+ β̂nq(kq)z
−nq.

From Equations (6) and (7), we can get:

α(z)

β(z)
=
A(z)

B(z)
.

Let the estimates of A(z) and B(z) at time kq be:

Â(kq, z) = 1 + â1(kq)z
−1 + â2(kq)z

−2 + · · ·+ ân(kq)z−n,

B̂(kq, z) = 1 + b̂1(kq)z
−1 + b̂2(kq)z

−2 + · · ·+ b̂n(kq)z−n.

According to the model equivalence principle, let:

α̂(kq, z)

β̂(kq, z)
=
Â(kq, z)

B̂(kq, z)
,

then we have

α̂(kq, z)B̂(kq, z) = β̂(kq, z)Â(kq, z).

By comparing the coefficients of z−i on both sides of this equation, we can establish a series of linear
equations about âi(kq) and b̂i(kq) and build a matrix equation as:

T (kq)θ̂(kq) = ρ(kq), (20)

where:

θ̂(kq) = [â1(kq), â2(kq), · · · , ân(kq), b̂1(kq), b̂2(kq), · · · , b̂n(kq)]T ∈ R2n,

ρ(kq) = [β̂1(kq)− λ1(kq), β̂2(kq)− λ2(kq), · · · , β̂nq(kq)− λnq(kq), 0, · · · , 0]T ∈ Rnq+n, (21)

T (kq) = [−Tβ(kq) Tα(kq)] ∈ R(nq+n)×2n, (22)

Tα(kq) =



1 0 · · · 0

λ1(kq) 1
...

λ2(kq) λ1(kq)
. . . 0

... λ2(kq)
. . . 1

... . . . λ1(kq)

λnq(kq) λ2(kq)

0 λnq(kq)
...

... . . . ...
0 · · · λnq(kq)



∈ R(nq+n)×n, (23)
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λi(kq) =

{
α̂j(kq), i = jq, j = 1, 2, · · · , n,
0, others,

(24)

Tβ(kq) =



1 0 · · · 0

β̂1(kq) 1 0

β̂2(kq) β̂1(kq)
...

... β̂2(kq)
. . . 1

... . . . β̂1(kq)

β̂nq(kq) β̂2(kq)

0 β̂nq(kq)
...

... . . . ...
0 · · · 0 β̂nq(kq)



∈ R(nq+n)×n. (25)

Then, the least squares solution for Equation (20) is given by:

θ̂(kq) = [T T(kq)T (kq)]−1T T(kq)ρ(kq). (26)

The computation process for estimates Θ̂(kq) and θ̂(kq) of the key variable separation-based
recursive least squares algorithm for the dual-rate Hammerstein system is summarized as follows:

Step 1. To initialize, let k = 1 and Θ̂(0) = 1nq+n+2/p0, and P (0) = p0I , x̂(kq) = 0, u(k) = 0,

y(k) = 0, for k ≤ 0, p0 = 106.
Step 2. Collect the input-output data u(k) and y(kq), and form ψ̂(kq) by Equation (17).
Step 3. Compute L(kq) by Equation (15) and P (kq) by Equation (16).
Step 4. Update the dual-rate parameter estimate Θ̂(kq) by Equation (14).
Step 5. Compute x̂(kq + i) by Equation (18).
Step 6. Form ρ(kq), Tα(kq), Tβ(kq) and T (kq) by Equation (21), Equation (23), Equation (25)

and Equation (22).
Step 7. Update the single-rate parameter estimate θ̂(kq) by Equation (26).
Step 8. Increase k by one and go to Step 2.

The procedure of computing the estimates Θ̂(kq) and θ̂(kq) of the key variable separation-based
recursive least squares algorithm is shown in Figure 3.
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Form ψ̂(kq)

?

�

Compute L(kq) and P (kq)

?

Update Θ̂(kq)

?

Compute x̂(kq + i)

?

Form Tα(kq), Tβ(kq), T (kq) and ρ(kq)

?

Update θ̂(kq)

?

k := k + 1

Figure 3. The flowchart for computing the estimates Θ̂(kq) and θ̂(kq).

5. The Convergence Analysis

The convergence analysis of the presented key variable separation-based recursive least squares
algorithm for a dual-rate Hammerstein system is simply explained as follows.

Assume that the σ algebra sequenceFkq = σ(v(kq), v(kq−1), v(kq−2), · · · ) generated by v(kq), and
{v(kq),Fkq} is a martingale difference sequence on a probability space {Ω,F , P} [22]. The sequence
{v(kq)} satisfies:

(A1) E[v(kq)|Fkq−q] = 0, a.s.

(A2) E[v2(kq)|Fkq−q] = σ2(kq) 6 σ̄2 <∞, a.s.

(A3) lim sup
t→∞

1

t

kq∑
i=q

v2(i) 6 σ̄2 <∞, a.s.

Theorem 1: For the key variable separation-based recursive least squares algorithm in this paper,
assume that (A1)–(A3) hold and that the estimated information vector ψ̂(kq) and matrix T (kq) are
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persistently exciting, i.e., there exist constants 0 < C1 ≤ C2 < ∞ and an integer N > n0

(n0 = nq + n+ 2), such that for k > n0, the following strong persistent excitation conditions hold:

(A4) C1I 6
1

N

N−1∑
k=0

ψ̂(kq)ψ̂
T
(kq) 6 C2I, a.s.

(A5) C1I 6
1

N

N−1∑
k=0

T T(kq)T (kq) 6 C2I, a.s.

Then, the parameter estimation vectors Θ̂(kq) and θ̂(kq) consistently converge to the true parameter
vectors Θ and θ.

In a similar way to the method in [23], Theorem 1 can be proven, and its proof is omitted here.

6. Experiment

Consider the following Hammerstein system:

A(z)y(k) = B(z)x(k) + v(k),

x(k) =

{
m1u(k) u(k) ≥ 0

m2u(k) u(k) < 0
,

A(z) = 1 + a1z
−1 + a2z

−2

= 1 + 0.20z−1 − 0.35z−2,

B(z) = 1 + b1z
−1 + b2z

−2

= 1 + 0.80z−1 + 0.60z−2,

m1 = 1.50, m2 = −1.00.

Suppose q = 2; then, we have:

ε(z) = 1− 0.20z−1 − 0.35z−2.

The corresponding dual-rate model can be expressed as:

α(z)y(k) = β(z)x(k),

α(z) = 1 + α1z
−2 + α2z

−4

= 1− 0.74z−2 + 0.1225z−4,

β(z) = 1 + β1z
−1 + β2z

−2 + β3z
−3 + β4z

−4

= 1 + 0.60z−1 + 0.09z−2 − 0.40z−3 − 0.21z−4,

a = [0.20, −0.35]T, b = [0.80, 0.60]T,

θ =

[
a

b

]
,

α = [−0.74, 0.1225]T, β = [0.60, 0.09, −0.40, −0.21]T,

Θ = [m2,m1 −m2,β
T,αT]T.
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In the simulation experiment, the input {u(t)} is taken as an uncorrelated persistently-excited normal
distribution signal sequence with zero mean and unit variance, and {v(t)} is taken as a white noise
sequence with zero mean and variance σ2 = 0.502 and σ2 = 1.002. Apply the proposed algorithm to
estimate the parameters of this system. The parameter estimation errors of the dual-rate model are:

δ :=

√
‖m̂1(kq)−m1‖2 + ‖m̂2(kq)−m2‖2 + ‖β̂(kq)− β‖2 + ‖α̂(kq)−α‖2

m2
1 +m2

2 + ‖β‖2 + ‖α‖2
× 100%,

the parameter estimation errors of the single-rate model are:

δ :=

√
‖m̂1(kq)−m1‖2 + ‖m̂2(kq)−m2‖2 + ‖â(kq)− a‖2 + ‖b̂(kq)− b‖2

m2
1 +m2

2 + ‖a‖2 + ‖b‖2
× 100%.

The parameter estimates and their errors are shown in Tables 1 and 2. Obviously, the parameter
estimation errors become (generally) smaller and smaller with the data length k increasing. This shows
that the proposed algorithm is effective.

Table 1. The dual-rate parameter estimates and errors.

σ2 0.502 1.002

t 100 1000 2000 3000 100 1000 2000 3000

m1= 1.5000 1.64510 1.49306 1.48069 1.48674 1.64332 1.47369 1.45489 1.46773

m2=-1.0000 −1.10137 −1.00671 −0.98836 −0.99494 −1.07085 −0.98956 -0.96557 -0.98115

β1= 0.6000 0.44924 0.56619 0.58761 0.60112 0.46040 0.54639 0.58138 0.60706

β2= 0.0900 −0.02088 0.04436 0.07612 0.08695 −0.07241 0.04529 0.09448 0.10813

β3=−0.4000 −0.10421 −0.33348 −0.35710 −0.36657 −0.13676 −0.33817 −0.35584 −0.36336

β4=−0.2100 −0.16787 −0.18590 −0.20263 −0.20855 −0.14399 −0.16044 -0.19223 -0.20651

α1=−0.7400 −0.70650 −0.75683 −0.74221 −0.73669 −0.77498 −0.75709 −0.72961 −0.72063

α2= 0.1225 0.15543 0.14357 0.12683 0.12660 0.18953 0.13963 0.11305 0.11506

δ (%)=0.0000 18.97213 4.54356 2.51473 1.76071 18.54456 5.34749 3.71454 2.84976

Table 2. The single-rate parameter estimates and errors.

σ2 0.502 1.002

t 100 1000 2000 3000 100 1000 2000 3000

m1= 1.5000 1.64332 1.47369 1.45489 1.46773 1.64510 1.49306 1.48069 1.48674

m2=−1.0000 −1.07085 -0.98956 −0.96557 −0.98115 −1.10137 −1.00671 −0.98836 −0.99494

a1= 0.2000 −0.13036 0.18131 0.18225 0.16469 −0.16282 0.13686 0.15786 0.15793

a2=−0.3500 −0.28358 −0.40123 −0.36730 −0.34446 −0.21271 −0.36634 −0.35419 −0.34545

b1= 0.8000 0.33046 0.72731 0.76196 0.77122 0.28415 0.70397 0.74542 0.75947

b2= 0.6000 0.36387 0.50014 0.56053 0.58345 0.40609 0.51357 0.55673 0.57349

δ (%)=0.0000 30.68012 6.56738 3.93705 2.92556 33.17133 6.90524 4.02630 3.13498
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7. Conclusions

The solution to overcoming the identification difficulties of the dual-rate Hammerstein system is to
derive a dual-rate identification model that must be suitable for the dual-rate sampled data, and it is easy
to use a standard least squares method. By combining the polynomial transformation technique with
the key variable separation technique, this paper converts the discrete-time Hammerstein system into a
dual-rate linear regression model about all parameters, which is suitable for the dual-rate sampled data
and presents a recursive least squares algorithm for the dual-rate linear-in-parameter model to get the
parameters of the dual-rate model. Finally, the parameters of the single-rate model are computed by a
least squares algorithm from the obtained parameters of the dual-rate model. The proposed method can
be used in the soft measurement of dual-rate nonlinear systems.
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