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Abstract: This paper focuses on the parameter identification problem for Wiener nonlinear
dynamic systems with moving average noises. In order to improve the convergence
rate, the gradient-based iterative algorithm is presented by replacing the unmeasurable
variables with their corresponding iterative estimates, and to compute iteratively the noise
estimates based on the obtained parameter estimates. The simulation results show that the
proposed algorithm can effectively estimate the parameters of Wiener systems with moving
average noises.
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1. Introduction

In actual industry processes, block-oriented nonlinear systems are often introduced to model nonlinear
systems. Block-oriented nonlinear systems can be commonly divided into Hammerstein systems and
Wiener systems [1–3]. Hammerstein systems consist of a linear block following a static nonlinear
block [4–6]. Wiener systems are composed of a linear block preceding a static nonlinear block [7–9]. The
output of Wiener systems is nonlinear, so the modeling for Wiener systems is more sophisticated than
that for Hammerstein systems. Differing from the work in [8,9], this paper focuses on the identification
problem for Wiener nonlinear systems with moving average noises which are called Wiener output error
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moving average (OEMA) systems. In most existing works, the nonlinear part of Wiener systems is
assumed a linear combination or a piecewise-linear function [10], or has a invertible and monotone
function representation over the operating range [11,12]. Wang and Ding derived a least squares-based
and a gradient-based iterative identification algorithms for Wiener nonlinear systems by separating one
bilinear cost function into two linear cost functions [13]. Hagenblad et al. presented a maximum
likelihood method to identify Wiener models [14].

The stochastic gradient (SG) algorithm has less computational burden and slower convergence
rate than the recursive least squares algorithm [15–17]. Some new algorithms were presented to
improve the convergence rate of the SG algorithm [18–20]. For example, Ding et al. introduced the
convergence index to the SG algorithm and obtained a faster convergence rate than stochastic gradient
algorithm [21]; Liu et al. derived the multi-innovation extended stochastic gradient algorithm for
controlled autoregressive moving average models by expanding the scalar innovation to an innovation
vector and analyzed its performance in detail [22]. Recently, the gradient-based iterative (GI) algorithm
was also presented to improve the convergence rate of the SG algorithm [23–25]. By making sufficient
use of all the measured information, the GI algorithm can obtain a faster convergence rate than the SG
algorithm. Wang et al. presented a gradient-based iterative identification algorithms for Box-Jenkins
systems with finite measurement input-output data [26]. Li et al. proposed a gradient based iterative
algorithm to determine the parameters of a nonlinear system by using the negative gradient search [27].
Zhang et al. derived a hierarchical gradient based iterative estimation algorithm for multivariable output
error moving average systems using the hierarchical identification principle [28].

To the best of our knowledge, few contributions have addressed the modeling and estimation issues
for Wiener nonlinear OEMA systems, which are the focus of this work. For Wiener nonlinear OEMA
systems, our objectives are as follows:

• To establish the identification model of the Wiener nonlinear OEMA system from input to output.

• To present a gradient-based iterative identification algorithm for the Wiener nonlinear
OEMA model.

• To analyze the performances of the proposed algorithm using a numerical simulation, including
the convergence rates and the estimation errors of this algorithm.

The rest of this paper is organized as follows. Section 2 establishes the identification model of the
Wiener nonlinear OEMA system. Section 3 presents a gradient-based iterative identification algorithm
for the Wiener nonlinear OEMA model. Section 4 provides an example to illustrate the effectiveness of
the proposed algorithm. The conclusions of the paper are summarized in Section 5.

2. The Derivation of the Wiener OEMA Model

Let us firstly introduce some notations. The superscript T denotes the matrix transpose; 1n

represents an n-dimensional column vector whose elements are 1; the norm of a matrix X is defined
by ‖X‖2 = tr[XXT].
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Figure 1. The Wiener nonlinear OEMA system.

Consider a Wiener nonlinear OEMA system shown in Figure 1:

m(t) =
B(z)

A(z)
u(t) (1)

y(t) = f(m(t)) +D(z)v(t) (2)

where u(t) is the system input, y(t) is the system output and v(t) is an additive noise with zero mean;
the inner variable m(t)(namely, the output of the linear block) is unmeasurable; A(z), B(z) and D(z)

are polynomials in the shift operator z−1[z−1y(t) = y(t− 1)] with

A(z) := 1 + a1z
−1 + a2z

−2 + · · ·+ anaz
−na

B(z) := b1z
−1 + b2z

−2 + · · ·+ bnbz
−nb

D(z) := 1 + d1z
−1 + d2z

−2 + · · ·+ dndz
−nd

The nonlinear part f(·) in the Wiener system is a polynomial of a known order as follows:

f(m(t)) = γ1m(t) + γ2m
2(t) + · · ·+ γnγm

nγ (t) (3)

where nγ is the polynomial orders.
Equation (1) can be rewritten to

m(t) = [1− A(z)]m(t) +B(z)u(t) (4)

In order to get unique parameter estimates, we introduce the key term separation technique presented
in [7,29] and let the first coefficient of the nonlinear part be unity, i.e., γ1 = 1. Then, we have

y(t) = m(t) +

nγ∑
i=2

γim
i(t) +D(z)v(t) (5)

Here m(t) in Equation (5) is called as the key term. Substituting Equation (4) into Equation (5) gives

y(t) = [1− A(z)]m(t) +B(z)u(t) +

nγ∑
i=2

γim
i(t) +D(z)v(t) (6)

Define the information vectors and the parameter vectors

φs(t) := [−m(t− 1),−m(t− 2), · · · ,−m(t− na), u(t− 1), u(t− 2), · · · , u(t− nb)]T ∈ Rna+nb

φγ(t) := [m2(t),m3(t), · · · ,mnγ (t)]T ∈ Rnγ−1

φn(t) := [v(t− 1), v(t− 2), · · · , v(t− nd)]T ∈ Rnd
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φ(t) :=

φs(t)φγ(t)

φn(t)

 ∈ Rna+nb+nγ+nd−1

ϑs := [a1, a2, · · · , ana , b1, b2, · · · , bnb ]T ∈ Rna+nb

ϑγ := [γ2, γ3, · · · , γnγ ]T ∈ Rnγ−1

ϑn := [d1, d2, · · · , dnd ]T ∈ Rnd

ϑ :=

ϑsϑγ
ϑn

 ∈ Rna+nb+nγ+nd−1

Thus, Equation (4) can be written in a vector form

m(t) = φT
s(t)ϑs (7)

Combining Equations (6) and (7), we can obtain the following identification model:

y(t) =φT
s(t)ϑs + φT

γ(t)ϑγ + φT
n(t)ϑn + v(t)

=φT(t)ϑ+ v(t) (8)

The objective of this paper is to present a gradient based iterative identification algorithm to estimate
the parameters ai, bi, γi and di for the Wiener nonlinear OEMA model using the auxiliary model
identification idea in [23].

3. The Gradient-Based Iterative Algorithm

This section derives the gradient-based iterative identification algorithm for the Wiener nonlinear
OEMA model.

Define the stacked output vector Y (N), the stacked information vector Ψ(N) and the white noise
vector V (N) as

Y (N) := [y(N), y(N − 1), · · · , y(1)]T ∈ RN (9)

Ψ(N) := [φ(N), φ(N − 1), · · · , φ(1)]T ∈ RN×n0 (10)

V (N) := [v(N), v(N − 1), · · · , v(1)]T ∈ RN (11)

n0 :=na + nb + nγ + nd − 1

From Equations (8) to (11), we have

Y (N) = Ψ(N)ϑ+ V (N) (12)

Define a quadratic criterion function

J(ϑ) := ‖Y (N)−Ψ(N)ϑ‖2 (13)

Let k = 1, 2, 3, · · · be an iteration variable, and ϑ̂k be the iterative estimate of ϑ.
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Using the negative gradient search for the optimization problem in Equation (13), we obtain the
iterative algorithm of computing ϑ̂k as follows:

ϑ̂k = ϑ̂k−1 −
1

rk
grad[J(ϑ̂k−1)]

= ϑ̂k−1 +
1

rk
ΨT(N)[Y (N)−Ψ(N)ϑ̂k−1] (14)

rk = rk−1 + ‖ΨT(N)Ψ(N)‖2 (15)

However, Ψ(N) in Equations (14) and (15) containing unknown inner variable m(t) and the
unmeasurable noise term v(t) lead to a difficulty that the iterative solution ϑ̂k of ϑ is impossible to
be computed. In order to solve this difficulty, the approach here is based on the auxiliary model idea.
Let m̂k(t) and v̂k(t) be the estimate of m(t) and v(t) at iteration k, respectively, and define

φ̂k(t) :=

 φ̂s,k(t)φ̂γ,k(t)

φ̂n,k(t)

 (16)

where

φ̂s,k(t) = [−m̂k−1(t− 1),−m̂k−1(t− 2), · · · ,−m̂k−1(t− na), u(t− 1), u(t− 2), · · · , u(t− nb)]T

φ̂γ,k(t) = [m̂2
k−1(t), m̂

3
k−1(t), · · · , m̂

nγ
k−1(t)]

T

φ̂n,k(t) = [v̂k−1(t− 1), v̂k−1(t− 2), · · · , v̂k−1(t− nd)]T

Replacing φs(t) and ϑs in Equation (7) with φ̂s,k(t) and ϑ̂s,k, respectively, the iterative estimate m̂k(t)

can be obtained by the following auxiliary model:

m̂k(t) = φ̂T
s,k(t)ϑ̂s,k, t = 1, 2, · · · , N (17)

Similarly, from Equation (8), the estimate vk(t) can be computed by

v̂k(t) = y(t)− φ̂T
k(t)ϑ̂k (18)

Define

Ψ̂k(N) :=


φ̂T
k(N)

φ̂T
k(N − 1)

...
φ̂T
k(1)

 ∈ RN×n0 (19)

Let ϑ̂k =

 ϑ̂s,kϑ̂γ,k

ϑ̂n,k

 be the estimate of ϑ =

ϑsϑγ
ϑn

 at iteration k. Using Ψ̂k(N) in place of Ψ(N) in

Equations (14) and (15), we have

ϑ̂k = ϑ̂k−1 +
1

rk
Ψ̂T
k(N)[Y (N)− Ψ̂k(N)ϑ̂k−1] (20)
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rk = rk−1 + ‖Ψ̂T
k(N)Ψ̂k(N)‖2 (21)

Equations (14)–(21) form the gradient-based iterative (GI) identification algorithm for the Wiener
nonlinear OEMA model, which can be summarized as follows:

ϑ̂k = ϑ̂k−1 +
1

rk
Ψ̂T
k(N)[Y (N)− Ψ̂k(N)ϑ̂k−1] (22)

rk = rk−1 + ‖Ψ̂T
k(N)Ψ̂k(N)‖2 (23)

Ψ̂k(N) =


φ̂T
k(N)

φ̂T
k(N − 1)

...
φ̂T
k(1)

 (24)

Y (N) = [y(N), y(N − 1), · · · , y(1)]T (25)

ϑ̂k = [ϑ̂s,k, ϑ̂γ,k, ϑ̂n,k]
T (26)

φ̂k(t) = [φ̂s,k(t), φ̂γ,k(t), φ̂n,k(t)]
T (27)

φ̂s,k(t) = [−m̂k−1(t− 1),−m̂k−1(t− 2), · · · ,−m̂k−1(t− na),
u(t− 1), u(t− 2), · · · , u(t− nb)]T (28)

φ̂γ,k(t) = [m̂2
k−1(t), m̂

3
k−1(t), · · · , m̂

nγ
k−1(t)]

T (29)

φ̂n,k(t) = [v̂k−1(t− 1), v̂k−1(t− 2), · · · , v̂k−1(t− nd)]T (30)

m̂k(t) = φ̂T
s,k(t)ϑ̂s,k, t = 1, 2, · · · , N (31)

v̂k(t) = y(t)− φ̂T
k(t)ϑ̂k (32)

The steps involved in computing the parameter estimate ϑ̂k in the GI algorithm are listed as follows:

1. Collect the input-output data {u(t), y(t) : t = 1, 2, · · · , N} and form Y (N) by Equation (25).

2. To initialize, let k = 1, r0 = 1, ϑ̂0 = 10−61n0 , m̂0(t) = 10−6, form φ̂1(t) by Equations (27) to (30)
and Ψ̂1(t) by Equation (24).

3. Form φ̂k(t) by Equations (27) to (30) and Ψ̂k(t) by Equation (24).

4. Compute rk by Equation (23) and update the estimate ϑ̂k by Equation (22).

5. Compute m̂k(t) and v̂k(t) by Equations (31) and (32), respectively.

6. Compare ϑ̂k with ϑ̂k−1: if ‖ϑ̂k − ϑ̂k−1‖2 6 ε, then terminate the procedure and obtain the iterative
times k and estimate ϑk; otherwise, increment k by 1 and go to step 3.

4. Example

An example is given to demonstrate the feasibility of the proposed algorithm. Consider the following
Wiener nonlinear OEMA system:

y(t) = [1− A(z)]m(t) +B(z)u(t) + γ2m
2(t) + γ3m

3(t) +D(z)v(t)
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A(z) = 1 + a1z
−1 + a2z

−2 = 1 + 0.20z−1 + 0.44z−2

B(z) = b1z
−1 + b2z

−2 = 0.99z−1 + 0.30z−2

D(z) = 1 + d1z
−2 = 1 + 0.21z−1

ϑ= [a1, a2, b1, b2, γ2, γ3, d1]
T = [0.20, 0.44, 0.99, 0.30, 0.50, 0.25, 0.21]
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Figure 2. The GI estimation error δ versus k.
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Figure 3. The GI and NI estimation error δ versus k (σ2 = 0.202).

For this example system, {u(t)} is taken as persistent excitation signal with zero mean and unit
variance, and {v(t)} as a white noise process with zero mean and constant variance σ2 = 0.202 and
0.402. Here, we take the whole data lengths N = 1000, and then apply the proposed GI algorithm in
Equations (22)–(32) to estimate the unknown parameters (ai, bi, γi, di) of this nonlinear system. The
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parameter estimates and their errors with different noise variances are shown in Tables 1 and 2, and the
parameter estimation errors δ versus k are shown in Figure 2, where δ := ‖ϑ̂k(t)− ϑ‖/‖ϑ‖.

For the sake of performance comparison, we apply the Newton iterative (NI) algorithm in [30] to
estimate the unknown parameters of the proposed Wiener nonlinear system. The parameter estimation
errors δ versus k are shown in Figure 3.

From Tables 1 and 2, and Figures 2 and 3, we can draw the following conclusions:

• It is clear that the estimation errors become smaller (in general) as k increases: see the error curves
in Figure 2 and the estimation errors of the last columns of Tables 1 and 2.

• A lower noise level results in a faster rate of convergence of the parameter estimates to the true
parameters: see the error curves in Figure 2 and the estimation errors in Tables 1 and 2.

• The NI algorithm has a faster convergence rate than the GI algorithm, but the GI algorithm can
generate more accurate parameter estimates than the NI algorithm: see the error curves in Figure 3.

Table 1. The parameter estimates (ai, bi, γi, di) and their errors (σ2 = 0.402).

k a1 a2 b1 b2 γ2 γ3 d1 δ(%)

10 0.02215 0.40793 1.00446 0.11168 0.49314 0.27343 0.15400 20.88476
50 0.14113 0.43950 0.97319 0.23592 0.53438 0.27736 0.17933 8.15348

100 0.19382 0.44038 0.97556 0.29595 0.52870 0.26852 0.21157 3.04925
200 0.21402 0.44122 0.99065 0.32470 0.50913 0.24897 0.23549 2.97170
300 0.21692 0.44127 0.99601 0.33017 0.50279 0.24304 0.24145 3.59966
400 0.21757 0.44127 0.99744 0.33149 0.50114 0.24152 0.24314 3.79156
500 0.21773 0.44127 0.99780 0.33182 0.50071 0.24112 0.24364 3.84560

True values 0.20000 0.44000 0.99000 0.30000 0.50000 0.25000 0.21000

Table 2. The parameter estimates (ai, bi, γi, di) and their errors (σ2 = 0.202).

k a1 a2 b1 b2 γ2 γ3 d1 δ (%)

10 0.02115 0.40802 1.02095 0.10735 0.47432 0.25670 0.12715 21.79777
50 0.13019 0.43964 0.98093 0.22118 0.52043 0.27002 0.12067 11.04223

100 0.18373 0.43985 0.97722 0.28055 0.52339 0.26897 0.13687 6.58059
200 0.20564 0.44044 0.98854 0.30949 0.50892 0.25355 0.16558 3.61544
300 0.20865 0.44051 0.99326 0.31470 0.50328 0.24815 0.18529 2.28582
400 0.20927 0.44054 0.99454 0.31591 0.50170 0.24670 0.19970 1.57463
500 0.20943 0.44057 0.99489 0.31622 0.50122 0.24628 0.21044 1.39000

True values 0.20000 0.44000 0.99000 0.30000 0.50000 0.25000 0.21000
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5. Conclusions

In this paper we have derived the gradient-based iterative identification algorithm for Wiener nonlinear
OEMA systems. The proposed algorithm can simultaneously estimate the parameters of the linear and
nonlinear parts of Wiener nonlinear OEMA systems. The simulation results showed the parameters of
Wiener nonlinear OEMA systems can be estimate effectively by the proposed algorithm. The method in
the paper can be applied to study identification problems for other linear or nonlinear systems.
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