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Abstract: Data on molecular interactions is increasing at a tremendous pace, while the
development of solid methods for analyzing this network data is still lagging behind.
This holds in particular for the field of comparative network analysis, where one wants
to identify commonalities between biological networks. Since biological functionality
primarily operates at the network level, there is a clear need for topology-aware comparison
methods. We present a method for global network alignment that is fast and robust and
can flexibly deal with various scoring schemes taking both node-to-node correspondences
as well as network topologies into account. We exploit that network alignment is a special
case of the well-studied quadratic assignment problem (QAP). We focus on sparse network
alignment, where each node can be mapped only to a typically small subset of nodes in
the other network. This corresponds to a QAP instance with a symmetric and sparse weight
matrix. We obtain strong upper and lower bounds for the problem by improving a Lagrangian
relaxation approach and introduce the open source software tool Natalie 2.0, a publicly
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available implementation of our method. In an extensive computational study on protein
interaction networks for six different species, we find that our new method outperforms
alternative established and recent state-of-the-art methods.

Keywords: global network alignment; bioinformatics; graph matching; network analysis;
network comparison

1. Introduction

In the last decade, data on molecular interactions has increased at a tremendous pace. For instance,
the STRING database [1], which contains protein-protein interaction (PPI) data, grew from 261,033
proteins in 89 organisms in 2003 to 9,643,763 proteins in 2031 organisms in 2015, more than doubling
the number of proteins in the database every two and a half years. The same trends can be observed
for other types of biological networks, including metabolic, gene-regulatory, signal transduction and
metagenomic networks, where the latter can incorporate the excretion and uptake of organic compounds
through, for example, a microbial community [2,3]. In addition to the plethora of experimentally derived
network data for many species, the structure and behavior of molecular networks have also become
intensively studied over the last few years [4], leading to the observation of many conserved features
at the network level. However, the development of solid methods for analyzing network data is still
lagging behind, particularly in the field of comparative network analysis. Here, one wants to identify
commonalities between biological networks from different strains or species, or derived form different
conditions. Based on the assumption that evolutionary conservation implies functional significance,
comparative approaches may help (i) improve the accuracy of data; (ii) generate, investigate, and
validate hypotheses; and (iii) transfer functional annotations. Until recently, the most common way
of comparing two networks has been to solely consider node-to-node correspondences, for example
by finding homologous relationships between nodes (e.g., proteins in PPI networks) of either network,
while the topology of the two networks has not been taken into account. Since biological functionality
primarily operates at the network level, there is a clear need for topology-aware comparison methods.
In this paper, we present a network alignment method that is fast and robust, and can flexibly deal
with various scoring schemes taking both node-to-node correspondences as well as network topologies
into account.

1.1. Previous Work

Network alignment establishes node correspondences based on both node-to-node similarities and
conserved topological information. Similar to sequence alignment, local network alignment aims
at identifying one or more shared subnetworks, whereas global network alignment addresses the
overall comparison of the complete input networks. In this paper, we focus on pairwise global
network alignment.

Over the last few years, many methods have been proposed for this task. An overview of the
recent literature on global network alignment is given in [5]. Here, we shortly list the most important
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algorithms. The IsoRank algorithm by Singh et al. [6] formulates the global alignment problem
as an eigenvalue problem, which preferentially matches nodes with similar neighborhood. Klau [7]
presented Natalie, the predecessor of Natalie 2.0, which is described in detail in this paper. The
methods are based on an integer linear programming approach solved by Lagrangian relaxation.
Kuchaiev et al. [8] presented GRAAL, which matches nodes that share a similar distribution of
graphlets. Graphlets are small connected non-isomorphic induced subgraphs. Several variations
and improvements of this approach have been published since then. GHOST [9] uses spectral
signatures of node neighborhoods in a greedy approach to compute alignments. NETAL [10] is a
fast greedy aligner that also takes similar node neighborhoods into account. Another fast method is
SPINAL [11], a two-stage approach that combines elements of IsoRank with greedy and improvement
heuristics. PISwap [12] is a pure improvement heuristic that is based on 3-OPT exchange moves.
HubAlign [13] exploits the assumption that hubs in the networks tend to be topologically more
conserved. Therefore, it processes nodes in the order of decreasing degree during the heuristic alignment
process. MAGNA++ [14] and its predecessor MAGNA are genetic algorithms that aim at directly
optimizing several more recent evaluation measures such as the symmetric substructure score (S3).
Optnetalign [15] is a meta-aligner that is able to combine the results of several other methods by means
of a multi-objective memetic algorithm. L-GRAAL [16] is the latest member of the GRAAL family of
aligners. Similarly to Natalie, L-GRAAL uses Lagrangian relaxation but takes graphlets into account in
its scoring function.

1.2. Contribution

We present an algorithm for global network alignment based on an integer linear programming
(ILP) formulation. We exploit that network alignment is a special case of the well-studied quadratic
assignment problem (QAP). We focus on sparse network alignment, where each node can be mapped
only to a typically small subset of nodes in the other network. This corresponds to a QAP instance with
a symmetric and sparse weight matrix. We improve upon an existing Lagrangian relaxation approach
presented in previous work [7] to obtain strong upper and lower bounds for the problem. We exploit
the closeness to QAP and generalize a dual descent method for updating the Lagrangian multipliers to
the generalized problem. We have implemented the revised algorithm from scratch as the open source
software tool Natalie 2.0. In an extensive computational study on protein interaction networks for six
different species, we compare Natalie 2.0 to the two established methods GRAAL and IsoRank as well
as to the recent L-GRAAL method, which has been shown to perform very well in recent studies [5,16].
We evaluate the number of conserved edges in terms of edge correctness (EC), induced and symmetric
substructure scores (ICS and S3), as well as functional coherence of the modules in terms of gene
ontology (GO) annotation. We find that Natalie 2.0 outperforms the alternative methods with respect
to several quality measures and running time.

Our software tool Natalie 2.0 as well as all data sets used in this study are publicly available at [17].
Natalie 2.0 can also be run via the NatalieQ [18] web interface at [19].
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2. Preliminaries

Given two simple graphs G1 = (V1, E1) and G2 = (V2, E2), an alignment a : V1 ⇁ V2 is a partial
injective function from V1 to V2. As such, we have that an alignment relates every node in V1 to at most
one node in V2 and that conversely every node in V2 has at most one counterpart in V1. An alignment is
assigned a real-valued score using an additive scoring function s defined as follows:

s(a) =
∑

v∈V1

c(v, a(v)) +
∑

v,w∈V1
v<w

w(v, a(v), w, a(w)) (1)

where c : V1 × V2 → R is the score of aligning a pair of nodes in V1 and V2 respectively. On the other
hand, w : V1 × V2 × V1 × V2 → R allows for scoring topological similarity. The problem of global
pairwise network alignment (GNA) is to find the highest scoring alignment a∗ = argmax s(a). Figure 1
shows an example:

c(v1, v2) =





1, if v1 = A and v2 = a,

1, if v1 = B and v2 = b,

1, if v1 = C and v2 = c,

1, if v1 = D and v2 = d,

0, otherwise.

w(v1, v2, w1, w2) =





10, if (v1, w1) ∈ E1

and (v2, w2) ∈ E2,

0, otherwise.
G1 = (V1, E1) G2 = (V2, E2)

A

B

D

c

a

d

eb

C

Figure 1. Example of a network alignment. With the given scoring function, the alignment
has a score of 4 + 40 = 44.

NP-hardness of GNA follows from a simple reduction from the decision problem CLIQUE, which
asks whether there is a clique of cardinality at least k in a given simple graph G = (V,E) [20]. The
corresponding GNA instance concerns the alignment of the complete graph of k vertices Kk = (Vk, Ek)

with G using the scoring function s(a) = |{(v, w) ∈ Ek | (a(v), a(w)) ∈ E}|. Since an alignment is
injective, there is a clique of cardinality at least k if and only if the cost of the optimal alignment is

(
k
2

)
.

The close relationship of GNA with the quadratic assignment problem is more easily observed when
formulating GNA as a mathematical program. Throughout the remainder of the text, we use variables
i, j ∈ {1, . . . , |V1|} and k, l ∈ {1, . . . , |V2|} to denote nodes in V1 and V2, respectively. Let C be a
|V1| × |V2| matrix such that cik = c(i, k) and let W be a |V1| × |V2| × |V1| × |V2| matrix whose entries
wikjl correspond to interaction scores w(i, k, j, l). Now, we can formulate GNA as

max
x

∑

i,k

cikxik +
∑

i,j
i<j

∑

k,l
k 6=l

wikjlxikxjl (IQP)

s.t.
∑

l

xjl ≤ 1 ∀j (2)

∑

j

xjl ≤ 1 ∀l (3)

xik ∈ {0, 1} ∀i, k (4)
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where the decision variable xik indicates whether the i-th node in V1 is aligned with the k-th node
in V2. The above formulation shares many similarities with Lawler’s formulation [21] of the QAP.
However, instead of finding an assignment we are interested in finding a matching, which is reflected in
Constraints (2) and (3) being inequalities rather than equalities. As can be seen in Equation (1), we only
consider the upper triangle of W rather than the entire matrix. An analogous way of looking at this is
to consider W to be symmetric. This is usually not the case for QAP instances. In addition, due to the
fact that biological input graphs are typically sparse and the restriction of possible matchings to a few
candidates per node on average, we have that W is sparse as well. These differences allow us to come
up with an effective method of solving the problem as we will see in the following.

3. Methods

The relaxation presented here follows the same lines as the one given by Adams and Johnson for the
QAP [22]. We start by linearizing objective function (IQP) by introducing binary variables yikjl defined
as yikjl := xik·xjl and constraints yikjl ≤ xjl and yikjl ≤ xik for all i ≤ j and k 6= l. We focus here on the
case in which all entries inW are non-negative. Therefore, we do not need to enforce yikjl ≥ xik+xjl−1,
which would be necessary in a general linearization of a product of two binary variables. In Section 5,
we will discuss this assumption. Rather than using the aforementioned constraints, we make use of a
stronger set of constraints which we obtain by multiplying Constraints (2) and (3) by xik:

∑

l
l 6=k

yikjl =
∑

l
l 6=k

xikxjl ≤
∑

l

xikxjl ≤ xik, ∀i, j, k, i < j (5)

∑

j
j>i

yikjl =
∑

j
j>i

xikxjl ≤
∑

j

xikxjl ≤ xik, ∀i, k, l, k 6= l (6)

We proceed by splitting the variable yikjl (where i < j and k 6= l). In other words, we extend the
objective function such that the counterpart of yikjl becomes yjlik. This is accomplished by rewriting
the dummy constraint in Equation (6) to j 6= i. In addition, we split the weights: wikjl = wjlik =

(w′ikjl/2) where w′ikjl denotes the original weight. Furthermore, we require that the counterparts of the
split decision variables assume the same value, which results in the following integer linear programming
formulation:
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max
x,y

∑

i,k

cikxik +
∑

i,j
i<j

∑

k,l
k 6=l

wikjlyikjl +
∑

i,j
i>j

∑

k,l
k 6=l

wikjlyikjl (ILP)

s.t.
∑

l

xjl ≤ 1 ∀j (7)

∑

j

xjl ≤ 1 ∀l (8)

∑

l
l 6=k

yikjl ≤ xik ∀i, j, k, i 6= j (9)

∑

j
j 6=i

yikjl ≤ xik ∀i, k, l, k 6= l (10)

yikjl = yjlik ∀i, j, k, l, i < j, k 6= l (11)

yikjl ∈ {0, 1} ∀i, j, k, l, i 6= j, k 6= l (12)

xik ∈ {0, 1} ∀i, k (13)

We can solve the continuous relaxation of Equation (ILP) via its Lagrangian dual by dualizing the
linking constraints Equation (11) with multiplier λ:

min
λ

ZLD(λ) (LD)

where ZLD(λ) equals

max
x,y

∑

i,k

cikxik +
∑

i,j
i<j

∑

k,l
k 6=l

(wikjl + λikjl)yikjl +
∑

i,j
i>j

∑

k,l
k 6=l

(wikjl − λjlik)yikjl

s.t. Constraints (7)–(13)

Now that the linking constraints have been dualized, one can observe that the remaining constraints
decompose the variables into |V1||V2| disjoint groups, where variables across groups are not linked by
any constraint, and where each group contains a variable xik and variables yikjl for j 6= i and l 6= k.
Hence, we have

ZLD(λ) = max
x

∑

i,k

[cik + vik(λ)]xik (LDλ)

s.t.
∑

l

xjl ≤ 1 ∀j (14)

∑

j

xjl ≤ 1 ∀l (15)

xik ∈ {0, 1} ∀i, k (16)

which corresponds to a maximum weight bipartite matching problem on the so-called alignment graph
Gm = (V1 ∪ V2, Em). In the general case, Gm is a complete bipartite graph, i.e. Em = {(i, k) | i ∈
V1, v2 ∈ V2}. However, by exploiting biological knowledge, one can makeGm more sparse by excluding
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biologically-unlikely edges (see Section 4). For the global problem, the weight of a matching edge (i, k)
is set to cik + vik(λ), where the latter term is computed as

vik(λ) = max
y

∑

j
j>i

∑

l
l 6=k

(wikjl + λikjl)yikjl +
∑

j
j<i

∑

l
l 6=k

(wikjl − λjlik)yikjl (LDik
λ )

s.t.
∑

l
l 6=k

yikjl ≤ 1 ∀j, j 6= i (17)

∑

j
j 6=i

yikjl ≤ 1 ∀l, l 6= k (18)

yikjl ∈ {0, 1} ∀j, l (19)

Again, this is a maximum weight bipartite matching problem on the same alignment graph but
excluding edges incident to either i or k and using different edge weights: the weight of an edge (j, l)

is wikjl + λikjl if j > i, or wikjl − λjlik if j < i. So, in order to compute ZLD(λ), we need to solve a
total number of |V1||V2|+ 1 maximum weight bipartite matching problems, which, using the Hungarian
algorithm [23,24] can be done in O(n5) time, where n = max(|V1|, |V2|). In case the alignment graph is
sparse, i.e., O(|Em|) = O(n), ZLD(λ) can be computed inO(n4 log n) time using the successive shortest
path variant of the Hungarian algorithm [25]. It is important to note that for any λ, ZLD(λ) is an upper
bound on the score of an optimal alignment. This is because any alignment a is feasible to ZLD(λ) and
does not violate the original linking constraints and therefore has an objective value equal to s(a). In
particular, the optimal alignment a∗ is also feasible to ZLD(λ) and hence a∗ ≤ ZLD(λ). Since the two
sets of problems resulting from the decomposition both have the integrality property [26], the smallest
upper bound we can achieve equals the linear programming (LP) bound of the continuous relaxation of
Formulation (ILP) [27]. Given solution (x, y) to ZLD(λ), we obtain a lower bound on s(a∗), denoted
Zlb(λ), by considering the score of the alignment encoded in x.

3.1. Solving Strategies

In this section we will discuss strategies for identifying Lagrangian multipliers λ that yield an as small
as possible gap between the upper and lower bound resulting from the solution to ZLD(λ).

3.1.1. Subgradient Optimization

We start by discussing subgradient optimization, which is originally due to Held and Karp [28]. The
idea is to generate a sequence λ0, λ1, . . . of Lagrangian multiplier vectors starting from λ0 = 0 as
follows:

λt+1
ikjl = λtikjl −

α · (ZLD(λ)− Zlb(λ))

‖g(λt)‖2 g(λtikjl) ∀i, j, k, l, i < j, k 6= l (20)

where g(λtikjl) corresponds to the subgradient of multiplier λtikjl, i.e. g(λtikjl) = yikjl − yjlik, and α
is the step size parameter. Initially, α is set to 1 and it is halved if neither ZLD(λ) nor Zlb(λ) have
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improved for over N consecutive iterations. Conversely, α is doubled if M times in a row there was an
improvement in either ZLD(λ) or Zlb(λ) [29]. In case all subgradients are zero, the optimal solution has
been found and the scheme terminates. Note that this is not guaranteed to happen. Therefore, we abort
the scheme after exceeding a time limit or a pre-specified number of iterations. In addition, we terminate
if α has dropped below machine precision. Algorithm 1 gives the pseudo code of this procedure.

Algorithm 1: SUBGRADIENTOPT(λ,M,N)

1 α← 1; n← N ; m←M

2 [LB∗,UB∗]← [Zlb(λ), ZLD(λ)]

3 while g(λ) 6= 0 do
4 λ← λ− α(ZLD(λ)−Zlb(λ))

‖g(λt)‖2 g(λt)

5 if [LB∗,UB∗] \ [Zlb(λ), ZLD(λ)] = ∅ then n← n− 1 ;
6 else
7 LB∗ ← max[LB∗, Zlb(λ)]

8 UB∗ ← min[UB∗, ZLD(λ)]

9 m← m− 1

10 if n = 0 then α← α/2; n← N ;
11 if m = 0 then α← 2α; m←M ;

12 return [LB∗,UB∗]

3.1.2. Dual Descent

In this section we derive a dual descent method which is an extension of the one presented in [22].
The dual descent method takes as a starting point the dual of ZLD(λ):

ZLD(λ) = min
α,β

∑

i

αi +
∑

k

βk (21)

s.t. αi + βk ≥ cik + vik(λ) ∀i, k (22)

αi ≥ 0 ∀i (23)

βk ≥ 0 ∀k (24)

where the dual of vik(λ) is

vik(λ) = min
µ,ν

∑

j
j 6=i

µikj +
∑

l
l 6=k

νikl (25)

s.t. µikj + νikl ≥ wikjl + λikjl ∀j, l, j > i, l 6= k (26)

µikj + νikl ≥ wikjl − λjlik ∀j, l, j < i, l 6= k (27)

µikj ≥ 0 ∀j (28)

νikl ≥ 0 ∀l (29)

Suppose that for a given λt we have computed dual variables (α, β) solving Problem (21) with
objective value ZLD(λ

t), as well as dual variables (µik, νik) yielding values vik(λ) to Problems (25). The
goal now is to find λt+1 such that the resulting bound is better or just as good, i.e. ZLD(λ

t+1) ≤ ZLD(λ
t).

We prevent the bound from increasing, by ensuring that the dual variables (α, β) remain feasible for
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Problem (21). This we can achieve by considering the slacks: πik(λ) = αi + βk − cik − vik(λ). Thus,
for (α, β) to remain feasible, we can only allow every vik(λt) to increase by as much as πik(λt). We can
achieve such an increase by considering Linear Programs (25) and their slacks defined as

γikjl(λ) =




µikj + νikl − wikjl + λikjl, if j > i,

µikj + νikl − wikjl − λjlik, if j < i,
∀j, l, j 6= i, l 6= k (30)

and update the multipliers in the following way.

Lemma 1. The adjustment scheme below yields solutions to Linear Programs (25) with objective values
vik(λ

t+1) at most πik(λt) + vik(λ
t) for all i, k.

λt+1
ikjl = λtikjl + ϕikjl

[
γikjl(λ

t) + τik

(
1

2(n1 − 1)
+

1

2(n2 − 1)

)
πik(λ

t)

]

− ϕjlik
[
γjlik(λ

t) + τjl

(
1

2(n1 − 1)
+

1

2(n2 − 1)

)
πjl(λ

t)

] (31)

for all j, l, i < j, k 6= l, where n1 = |V1|, n2 = |V2|, and 0 ≤ ϕikjl, τjl ≤ 1 are parameters.

Proof. We prove the lemma by showing that for any i, k there exists a feasible solution (µ′ik, ν ′ik) to
Problem (25) whose objective value vik(λt+1) is at most πik(λt) + vik(λ

t). Let (µik, νik) be the solution
to Problem (25) given multipliers λt. We claim that setting

µ′ikj = µikj +
πik(λ

t)

2(n1 − 1)
∀j, j 6= i

ν ′ikl = νikj +
πik(λ

t)

2(n2 − 1)
∀l, l 6= k

results in a feasible solution to Problem (25) given multipliers λt+1. We start by showing that
Constraints (26) and (27) are satisfied. Equation (31) implies the following bounds on λt+1:

λtikjl − γjlik(λt)−
(

1

2(n1 − 1)
+

1

2(n2 − 1)

)
πjl(λ

t) ≤ λt+1
ikjl ∀j, l, j < i, l 6= k

λt+1
ikjl ≤ λtikjl + γikjl(λ

t) +

(
1

2(n1 − 1)
+

1

2(n2 − 1)

)
πik(λ

t) ∀j, l, j < i, l 6= k

Therefore, we have that the following inequalities imply Constraints (26) and (27) for all j, l, j > i,
l 6= k:

µ′ikj + ν ′ikl ≥ wikjl + λtikjl + γikjl(λ
t) +

(
1

2(n1 − 1)
+

1

2(n2 − 1)

)
πik(λ

t)

and for all j, l, j < i, l 6= k

µ′ikj + ν ′ikl ≥ wikjl − λtjlik + γikjl(λ
t) +

(
1

2(n1 − 1)
+

1

2(n2 − 1)

)
πik(λ

t)
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Constraints (26) and (27) are indeed implied, as, for all j, l, j > i, l 6= k,

µ′ikj + ν ′ikl = µikj + νikl +

(
1

2(n1 − 1)
+

1

2(n2 − 1)

)
πik(λ

t)

≥ wikjl + λtikjl + γikjl(λ
t) +

(
1

2(n1 − 1)
+

1

2(n2 − 1)

)
πik(λ

t)

and for all j, l, j < i, l 6= k

µ′ikj + ν ′ikl = µikj + νikl +

(
1

2(n1 − 1)
+

1

2(n2 − 1)

)
πik(λ

t)

≥ wikjl − λtjlik + γikjl(λ
t) +

(
1

2(n1 − 1)
+

1

2(n2 − 1)

)
πik(λ

t)

Since µikj , ν
ik
l ≥ 0 (∀j, l, j 6= i, l 6= k) and by definition πik(λt) ≥ 0, Constraints (28) and (29) are

satisfied as well. The objective value of (µ′ik, ν ′ik) is given by
∑

j
j 6=i

µ′ikj +
∑

l
l 6=k

ν ′ikl =
∑

j
j 6=i

µikj +
∑

l
l 6=k

νikl + πik(λ
t) = vik(λ

t) + πik(λ
t)

Since the dual Problems (25) are minimization problems and there exist, for all i, k, feasible solutions
with objective values vik(λt) + πik(λ

t), we can conclude that the objective values of the solutions are
bounded by this quantity. Hence, the lemma follows:

We use ϕ = 0.5, τ = 1, and perform the dual descent method L successive times (see Algorithm 2).

Algorithm 2: DUALDESCENT(λ, L)

1 ϕ← 0.5; [LB∗,UB∗]← [Zlb(λ), ZLD(λ)]

2 for n← 1 to L do
3 foreach i, k, j, l, i < j, k 6= l do
4 λikjl ← λikjl + ϕ(γikjl +

πik(λ)
2(n1−1) +

πik(λ)
2(n2−1)))− ϕ(γjlik +

πjl(λ)

2(n1−1) +
πjl(λ)

2(n2−1)))

5 LB∗ ← max[LB∗, Zlb(λ)]

6 UB∗ ← ZLD(λ)

7 return [LB∗,UB∗]

3.1.3. Overall Method

Our overall method combines both the subgradient optimization and dual descent method.
We do this performing the subgradient method until termination and then switching over
to the dual descent method. This procedure is repeated K times (see Algorithm 3).

Algorithm 3: NATALIE(K,L,M,N)

1 λ← 0; [LB∗,UB∗]← [0,∞]

2 for k ← 1 to K do
3 [LB∗,UB∗]← SUBGRADIENTOPT(λ,M,N) ∩ [LB∗,UB∗]

4 [LB∗,UB∗]← DUALDESCENT(λ, L) ∩ [LB∗,UB∗]

5 return [LB∗,UB∗]
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We implemented Natalie in C++ using the LEMON graph library [30]. The successive shortest
path algorithm for maximum weight bipartite matching was implemented and contributed to LEMON.
Special care was taken to deal with the inherent numerical instability of floating point numbers. Our
implementation supports both the GraphML and GML graph formats. Rather than using one big
alignment graph, we store and use a different alignment graph for every local problem (LDik

λ ). This
proved to be a significant improvement in running time, especially when the global alignment graph is
sparse. The source code of Natalie is publicly available under the MIT license at [17].

4. Experimental Evaluation

From the STRING database v8.3 [1], we obtained PPI networks for the following six species:
C. elegans (cel), S. cerevisiae (sce), D. melanogaster (dme), R. norvegicus (rno), M. musculus (mmu) and
H. sapiens (hsa). We only considered interactions that were experimentally verified. Table 1 shows the
sizes of the networks. We performed, using the BLOSUM62 matrix, an all-against-all global sequence
alignment on the protein sequences of all

(
6
2

)
= 15 pairs of networks. We used affine gap penalties with

a gap-open penalty of 10 and a gap-extension penalty of 2. The first experiment in Section 4.1 compares
the performance of IsoRank, GRAAL, L-GRAAL and Natalie 2.0 in terms of a variety of topological
measures. In Section 4.2, we evaluate the biological relevance of the alignments produced by the four
methods. All experiments were conducted on a compute cluster with 2.26 GHz processors with 24 GB
of RAM.

Table 1. Characteristics of input networks considered in this study. The columns contain
species identifier, number of nodes in the network, number of nodes annotated with at least
one gene ontology (GO) term, and number of interactions.

Species Nodes Annotated Interactions
cel (c) 5948 4694 23,496
sce (s) 6018 5703 131,701
dme (d) 7433 6006 26,829
rno (r) 8002 6786 32,527
mmu (m) 9109 8060 38,414
hsa (h) 11,512 9328 67,858

4.1. Topological Measures

A popular evaluation metric for network alignments is edge correctness (EC), which is the number
of conserved edges divided by the number of edges of the smaller network. This measure can be
directly optimized, for example in Natalie 2.0, by setting the scoring function to s(a) = |{(v, w) ∈
E1 | (a(v), a(w)) ∈ E2}|. In addition, for Natalie 2.0 and L-GRAAL, we measured the size of the
largest aligned connected component (LCC), and the recently proposed measures induced and symmetric
substructure score (ICS and S3). ICS takes also matching non-edges into account and is defined as the
number of matched edges divided by the number of edges in the subgraph of G2 that is induced by the
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matching. The asymmetry in this measure is corrected for by the S3 measure, which is the fraction of
matched edges between G1 and the subnetwork of G2 induced by the alignment. Note that it is easy to
achieve perfect ICS or S3 values when alignments are defined as partial functions. In this case, matching,
for example, two K3 subgraphs of the input graphs would give a perfect score in terms of ICS or S3. For
this reason, it is preferable to consult EC and LCC in addition.

As mentioned in Section 3, Natalie 2.0 as well as L-GRAAL can benefit greatly from using a sparse
alignment graph. To that end, we use the e-values obtained from the all-against-all sequence alignment to
prohibit biologically unlikely matchings by only considering protein-pairs whose e-value is at most 100.
Note that this only applies to Natalie and L-GRAAL as both GRAAL and IsoRank consider the complete
alignment graph. On each of the 15 instances, we ran GRAAL with three different random seeds and
sampled the input parameter which balances the contribution of the graphlets with the node degrees
uniformly within the allowed range of [0, 1]. As for IsoRank, when setting the parameter α, which
controls to what extent topological similarity plays a role, to the desired value of one, very poor results
were obtained. Therefore we also sampled this parameter within its allowed range and re-evaluated the
resulting alignments in terms of edge-correctness. Natalie was run with a time limit of 10 minutes CPU
time and the standard settings K = 3, L = 100, M = 10, N = 20. L-GRAAL was run with a CPU
time limit of 10 min as well as one hour. For both GRAAL and IsoRank, only the highest-scoring results
were considered.

(a) (b)

(c) (d)

Figure 2. Performance of the four different methods for all-against-all species comparisons
(15 alignment instances). Missing bars correspond to exceeded time/memory limits or
software crashes. For LCC, ICS and S3 only Natalie 2.0 and L-GRAAL were compared.
(a) Edge correctness (EC); (b) Size of largest connected component (LCC); (c) Induced
Substructure Score (ICS); (d) Symmetric Substructure Score (S3).
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Figure 2 shows the results. IsoRank was only able to compute alignments for three out of the
15 instances. On the other instances IsoRank crashed, which may be due to the large size of the input
networks. For GRAAL no alignments concerning sce could be computed, which is due to the large
number of edges in the network: in 12 h only for 3% of the nodes the graphlet degree vector was
computed. As for the last three instances, GRAAL crashed due to exceeding the memory limit inherent
to 32-bit processes. Unfortunately no 64-bit executable was available. On the instances for which
GRAAL could compute alignments, the alignment quality is poor when compared to the other methods.
Natalie 2.0 outperforms the other methods in terms of edge correctness and outperforms L-GRAAL in
terms of ICS and S3. The LCC values of both methods are similar.

4.2. GO Similarity

In order to measure the biological relevance of the obtained network alignments, we make use of
the Gene Ontology (GO) [31]. For every node in each of the six networks, we obtained a set of GO
annotations (see Table 1 for the exact numbers). Each annotation set was extended to a multiset by
including all ancestral GO terms for every annotation in the original set. Subsequently, we employed
a similarity measure that compares a pair of aligned nodes based on their GO annotations and also
takes into account the relative frequency of each annotation [32]. Since the similarity measure assigns
a score between 0 and 1 to every aligned node pair, the highest similarity score one can get for
any alignment is the minimum number of annotated nodes in either of the networks. We therefore
normalize the similarity scores by this quantity. Unlike the previous experiment, this time we considered
the bitscores of the pairwise global sequence alignments. Similarly to the IsoRank and L-GRAAL
parameter α, we introduced a parameter β ∈ [0, 1] such that the sequence part of the score has weight
(1 − β) and the topology part has weight β. We sampled the weight parameters uniformly in the
range [0, 1] for all methods. Figure 3 shows that on the smaller networks Natalie, L-GRAAL and IsoRank
identify functionally coherent alignments with similar GO scores. However, Natalie outfperforms the
other methods on many of the larger networks.

Figure 3. Biological relevance of the alignments measured via GO similarity.
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5. Conclusions

Inspired by results for the closely related quadratic assignment problem (QAP), we have presented
new algorithmic ideas in order to make a Lagrangian relaxation approach for global network alignment
practically useful and competitive. In particular, we have generalized a dual descent method for the
QAP. We have found that combining this scheme with the traditional subgradient optimization method
leads to fastest progress of upper and lower bounds.

Our implementation of the new method, Natalie 2.0, works well and fast when aligning biological
networks, which we have shown in an extensive study on the alignment of cross-species PPI networks.
We have compared Natalie 2.0 to the established and new state-of-the-art methods IsoRank, GRAAL
and L-GRAAL, which aim at optimizing similar scoring functions. Our experiments show that the
Lagrangian relaxation approach is a powerful method, which often outperforms the competitors in terms
of quality of the results and running time.

Currently, all methods, including Natalie 2.0, approach the global network alignment problem
heuristically, that is, the computed alignments are not guaranteed to be optimal solutions of the
problem. While some approaches are intrinsically heuristic—both IsoRank and GRAAL, for instance,
approximate the neighborhood of a node and then match it with a similar node—the inexactness in
Natalie 2.0 and also L-GRAAL has two causes that we plan to address in future work: on the one hand,
there may still be a gap between upper and lower bound of the Lagrangian relaxation approach after the
last iteration. One could use these bounds in a branch-and-bound approach that will compute provably
optimal solutions. On the other hand, we currently do not consider the complete bipartite alignment
graph and may therefore miss optimal alignments. Here, preprocessing strategies, in the spirit of [33],
which safely sparsify the input bipartite graph without violating optimality conditions, may be useful.

The independence of local problems (LDik
λ ) allows for straightforward parallelization, which

would lead to an even faster method. Another improvement in running times might be achieved
when considering more involved heuristics for computing the lower bound, such as local search.
More functionally-coherent alignments can be obtained when considering a scoring function where
node-to-node correspondences are not only scored via sequence similarity but also for instance via GO
similarity. In certain cases, even negative weights for topological interactions might be desired in which
case one needs to reconsider the assumption of entries of matrix W being positive.
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