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Abstract: Generative algorithms for random graphs have yielded insights into the structure
and evolution of real-world networks. Most networks exhibit a well-known set of
properties, such as heavy-tailed degree distributions, clustering and community formation.
Usually, random graph models consider only structural information, but many real-world
networks also have labelled vertices and weighted edges. In this paper, we present a
generative model for random graphs with discrete vertex labels and numeric edge weights.
The weights are represented as a set of Beta Mixture Models (BMMs) with an arbitrary
number of mixtures, which are learned from real-world networks. We propose a Bayesian
Variational Inference (VI) approach, which yields an accurate estimation while keeping
computation times tractable. We compare our approach to state-of-the-art random labelled
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graph generators and an earlier approach based on Gaussian Mixture Models (GMMs).
Our results allow us to draw conclusions about the contribution of vertex labels and edge
weights to graph structure.

Keywords: network models; generative algorithms; random graphs; labelled graphs;
weighted graphs; bayesian estimation; maximum likelihood estimation; beta distribution;
mixture modeling; variational inference

1. Introduction

Network analysis is concerned with finding patterns and anomalies in real-world graphs, such as social
networks, computer and communication networks, or biological and ecological processes. Real graphs
exhibit a number of interesting structural and evolutionary properties, such as the formation of a giant
component, heavy-tailed degree distribution, small diameter, shrinking diameter, and the Densification
Power Law (DPL) [1–5].

Besides discovering network properties, researchers are interested in the mechanisms of network
formation. Generative graph models provide an abstraction of how graphs form: if the model is accurate,
generated graphs will obey the same properties as real graphs. Generated graphs are also useful for
simulation experiments, hypothesis testing and making predictions about graph evolution or missing
graph elements. Most generative models are for unlabelled, unweighted graphs [1,3,4,6,7], although a
few models take discrete vertex labels into account [8–10].

In this paper, we develop a generative model for labelled, weighted graphs. Weights are commonly
used to represent the number of occurrences of each edge: e-mails sent between individuals in a social
network [11]; calls to a subroutine in a software call graph [12]; or people walking between a pair of
sensors in a building access control network [13]. In other applications, the edge weight may represent
continuous values: donation amounts in a bipartite graph of donors and political candidates [11]; distance
or speed in a transportation network [12]; or elapsed time to walk between the sensors in the building
network [13]. In some cases, the weight has more than one dimension [12,13].

Our main motivation for this work is to create “realistic” random graphs for evaluating graph mining
algorithms. Some interesting graph datasets are very small; our approach can generate large graphs with
the same characteristics as a smaller input graph. Random graphs can also ameliorate concerns about
privacy. A second motivation is to better understand the laws governing the relationship between graph
structure and attributes. Our experiments show the extent to which various graph properties are related
to labels and weights.

Our model, AGWAN (Attribute Graph: Weighted and Numeric), represents the distribution of
edge weights as Beta Mixture Models (BMMs) which are learned from weighted input graphs.
Learning BMM parameters using Bayesian estimation is analytically intractable. Numerical solutions to
simulate the posterior distribution are available, but these incur high computational cost. In Section 3, we
introduce an approximation to the prior/posterior distribution of the parameters in the beta distribution
and propose an analytically tractable (closed-form) Bayesian approach to parameter estimation, based
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on the Variational Inference (VI) framework. Following the principles of VI and utilizing the
relative convexity bound, the extended factorised approximation method is applied to approximate the
distribution of the BMM parameters. In a fully Bayesian model where all the parameters of the BMM
are considered as variables and assigned proper distributions, our approach can asymptotically find the
optimal estimate of the parameters of the posterior distribution. In addition, the model complexity
depends on the empirical distribution of the data. A closed-form solution is proposed to avoid the
need for numerical methods in each iteration. Our approach avoids the drawback of overfitting, as in
the conventional Expectation Maximisation (EM) algorithm.

This paper is arranged as follows: Section 2 is an overview of generative graph models and approaches
to estimating mixture model parameters; Section 3 presents AGWAN, our generative model for weighted
and numeric labelled graphs, including our algorithm for fitting AGWAN’s parameters to real input
graphs. Section 4 gives an overview of the datasets used in the experiments, and outlines the statistical
measures and tests used to evaluate the generated graphs. The experiments in Section 5 demonstrate
that the vertex labels and edge weights of a graph can predict the graph structure with high accuracy.
Conclusions are in Section 6.

2. Related Work

Our understanding of the mathematical properties of graph structure was pioneered by Paul Erdős
and Alfréd Rényi [3]. Graph formation is modelled as a Bernoulli process, parameterised by the
number of vertices and a wiring probability between each vertex pair. While it has been essential to our
understanding of component sizes and expected diameter, the Erdős-Rényi model does not explain other
important properties of real-world graphs such as degree distribution, transitivity and clustering [2,5].

Barabási and Albert’s Preferential Attachment model [1] uses the “rich get richer” principle to grow
graphs from a few vertices up to the desired size. The probability of an edge is proportional to the number
of edges already connected to a vertex. This generates graphs with power-law degree distributions.
A number of variants of Preferential Attachment have been proposed [2,5]. Still, Preferential Attachment
models lack some desired properties, such as community structure.

The RMat algorithm [6] solves the community structure problem with its recursive matrix approach.
RMat graphs consist of 2n vertices and E edges, with four probabilities a, b, c, d to determine in which
quadrant of the adjacency matrix each edge falls. These parameters allow the specification of power-law
or log-normal degree distributions; if a = b = c = d, the result will be an Erdős-Rényi graph.

Kronecker Graphs [7] fulfil all the properties mentioned above, as well as the DPL (Densification
Power Law) and shrinking diameter effect. The model starts with an initiator matrix.
Kronecker multipication is recursively applied to yield the final adjacency matrix of the desired size.
This work synthesises the previous work in random graphs in a very elegant way and proves that RMat
graphs are a special case of Stochastic Kronecker graphs.

The models above tend to have a small number of parameters and are analytically tractable,
with simple and elegant proofs of the desired properties. However, graph labels are not taken into
consideration. Stochastic models are another class of generative algorithm which may not be amenable
to analytical proofs but can be fit to real-world labelled graphs and used to learn the properties of
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those graphs. Models in this category include the Stochastic Block Model [10] and Latent Space
approaches [8].

The Multiplicative Attribute Graph (MAG) model [9] draws on both of the above strands of research.
MAG is parameterised by the number of vertices, a set of prior probabilities for vertex label values and a
set of affinity matrices specifying the probability of an edge conditioned on the vertex labels. The affinity
matrices can be learned from real graphs using Maximum Likelihood Estimation [14]. [9] proves that
Kronecker Graphs are a special case of MAG graphs, and that suitably-parameterised MAG graphs fulfil
all the desired properties: log-normal or power-law degree distribution, small diameter, the existence of a
unique giant component and the DPL. However, the MAG model can only generate unweighted graphs.
We believe that our method, described in the next section, is the first generative model for labelled,
weighted graphs.

The AGWAN model requires a suitable probability distribution to model the edge weights accurately
and efficiently. The Gaussian distribution is popular as it has an analytically tractable Probability Density
Function (PDF); a weighted mixture of Gaussian components provides a reasonable approximation to
any general probability distribution [15]. The resulting Gaussian Mixture Model (GMM) is quite flexible
and is used extensively in statistical pattern recognition [16]. If the number of mixture components is
known in advance, the GMM parameters can be estimated using EM (Expectation Maximisation) [17].
However, if the number of mixtures is unknown, EM can result in overfitting. The problem of knowing
the “correct” number of components can be avoided by using a non-parametric model: the approach
in [18] assumes an infinite number of components and uses VI (Variational Inference) to determine the
optimal number for a given dataset. The variational algorithm can be accelerated for higher-dimensional
data using a kd-tree [19].

In [20], the edge weight parameters are specified as a GMM. However, the Gaussian distribution may
not be the best choice where the weight is a countable quantity representing the number of occurrences of
an edge. In this case, the weights are bounded by (0,+∞), while the Gaussian distribution is bounded by
(−∞,+∞). Although the weights can be modelled as a GMM, a large number of mixture components
are required to describe the data close to the boundary [21]. Alternatives to the GMM include the
truncated GMM [21] and the BMM [22]. We investigate these options in this paper.

The most central task in modeling the data with a BMM is parameter estimation. Since the
normalisation constant (the beta function) in the beta distribution is defined as a fraction of integrals,
it is difficult to obtain a closed-form expression for estimating the parameters. For maximum likelihood
estimation of the BMM parameters, [23,24] proposed an EM algorithm [25], with iterative numerical
calculations in the maximisation step. As with GMMs, the EM algorithm for BMM has some
disadvantages: it can lead to overfitting when the mixture models are excessively complex; and the
iterative numerical calculation in the maximisation step (e.g., with the Newton-Raphson method) has a
high computational cost.

For Bayesian estimation, we can formally find the prior distribution and the conjugate posterior
distribution of the parameters of the beta distribution. However, this posterior distribution is still defined
with an integration expression in the denominator such that the closed-form of the posterior distribution
is analytically intractable. [22] proposed a practical Bayesian estimation algorithm based on the Gibbs
sampling method, which simulates the posterior distribution approximately rather than computing it.
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This method prevents the overfitting problem but still suffers from high computational cost because
of the Gibbs sampling, especially when the data is in a high-dimensional space. To overcome this
problem, [26,27] proposed a full Bayesian estimation method for parameter estimation in a BMM, where
the VI framework was employed and an analytically tractable solution can be obtained. The proposed
method facilitates the parameter estimation.

3. AGWAN: A Generative Model for Labelled, Weighted Graphs

In this section, we present our generative model, AGWAN (Attribute Graph: Weighted and Numeric).
The model is illustrated in Figure 1.

(a) (b)

Figure 1. AGWAN parameters. (a) Vertex Labels; (b) Edge Weights.

Consider a graph G = (V,E) with discrete vertex label values drawn from a set L (Figure 1a).
For each combination of vertex attributes 〈i, j〉, the corresponding mixture model Ωij parameterises
the distribution of edge weights, with an edge weight of 0 indicating no edge (Figure 1b). u, v ∈ V

are vertices and wuv, wvu ∈ N are edge weights. Edges e ∈ E are specified as a 3-tuple 〈u, v, wuv〉.
Thus, the AGWAN model is parameterised by π, the set of prior probabilities over L; and the set of edge
weight mixture parameters Θ = {Ωij|i, j ∈ L}. For directed graphs, |Θ| = |L|2 and we need to generate
both wuv and wvu. For undirected graphs, Ωij = Ωji, so |Θ| = O(|L|2/2) and wvu = wuv.

Ωij is specified as a BMM:

Ωij =
M∑
m=1

ωijm · Beta(aijm, b
ij
m) (1)
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where ωijm is the weight of each component; and Beta(aijm, b
ij
m) is the beta distribution with shape

parameters (aijm, b
ij
m). The PDF of the beta distribution is:

Beta(x; a, b) =
1

beta(a, b)
xa−1(1− x)b−1, a, b > 0 (2)

where beta(a, b) is the beta function beta(a, b) = Γ(a)Γ(b)
Γ(a+b)

and Γ(·) is the gamma function defined as
Γ(z) =

∫∞
0
tz−1e−tdt. As the support of the BMM is (0, 1), we use a constant sij to scale the data into

this range before fitting the BMM parameters. During graph generation, we draw values from the BMM
and multiply by sij .

We specify Ωij such that the weight of the first component (m = 0) encodes the probability of no edge:
ωij0 = 1− P (eij), where P (eij) is the probability of an edge between pairs of vertices with labels 〈i, j〉
and is learned from the input graph. The weights of the BMM components (m ∈ [1,M ]) are normalised
by P (eij), so the weights of all the components form a probability distribution:

∑M
m=0 ω

ij
m = 1.

3.1. Graph Generation

Algorithm 1 describes how to generate a random graph using AGWAN(N,L, π,Θ). The number of
vertices in the generated graph is specified by N . After assigning discrete label values to each vertex
(lines 2–3), the algorithm checks each vertex pair 〈u, v〉 for the occurrence of an edge (lines 4–7).
If there is an edge, we assign its weight from mixture component m (lines 8,9). The generated graph is
returned as G = (V,E).

Algorithm 1 AGWAN Graph Generation

Require: N (no. of vertices), L (set of discrete label values), π (prior distribution over L), Θ = {Ωij}
(set of mixture models)

1: Create vertex set V of cardinality N , edge set E = ∅
2: for all u ∈ V do
3: Randomly draw discrete label lu ∈ L according to prior π

4: for all u, v ∈ V : u 6= v do
5: i = lu, j = lv

6: Randomly draw mixture component m according to mixture weights ωij

7: if m 6= 0 then
8: Randomly draw edge weight wuv from sij · Beta(aijm, b

ij
m)

9: Create edge e = 〈u, v, wuv〉 , E = E ∪ {e}
return G = (V,E)

3.2. Parameter Fitting

To create realistic random graphs, we need to learn the parameters π,Θ from a real-world input
graph G. For each i, j ∈ V , the edge weights W ij = {wij} follow an unknown, arbitrary probability
distribution. For each set of edge weights W ij , we choose the scaling parameter sij ≥ maxW ij , then
estimate the BMM parameters for the empirical distribution 1/sij ·W ij , which has support (0, 1].
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In this section, we describe the Bayesian estimation of BMMs within a VI framework, followed by
our algorithms for AGWAN parameter fitting.

The beta distribtion has a conjugate prior in the exponential family. The conjugate prior density
function can be written as [15,28]:

f(a, b) =
1

C(α0, β0, ν0)

[
Γ(a+ b)

Γ(a)Γ(b)

]ν0
e−α0(a−1)e−β0(b−1) (3)

where α0, β0, ν0 are free positive parameters and C(α0, β0, ν0) is a normalisation factor such that∫∞
0

∫∞
0
f(a, b)dadb = 1. Then, we obtain the posterior distribution of a, b as (with N independent

and identically distributed (i.i.d.) scalar observations X = {x1, . . . , xN})

f(a, b|X) =
f(X|a, b)f(a, b)∫∞

0

∫∞
0
f(X|a, b)f(a, b)dadb

=
1

C(αN , βN , νN )

[
Γ(a+ b)

Γ(a)Γ(b)

]νN
e−αN (a−1)e−βN (b−1)dadb

(4)

where νN = ν0 +N , αN = α0 −
∑N

n=1 lnxn and βN = β0 −
∑N

n=1 ln(1− xn). To avoid infinity in the
practical implementation, we assign ε1 to xn when xn = 0 and 1− ε2 to xn when xn = 1, where ε1 and
ε2 are slightly positive real numbers.

We introduce an approximation to both the conjugate prior and the posterior distributions of the
beta distribution and attempt to solve the Bayesian estimation problem via the factorised approximation
method. A distribution can be used as the factorised distribution of the true posterior distribution
if the optimal solution to this factorised distribution has exactly the same form as its initialisation.
This requirement guarantees that the estimation works iteratively. With the non-negative property of the
parameters in the beta distribution and assuming that a and b are statistically independent, we could use
some well-defined distribution with support (0,+∞) to approximate the conjugate prior. One possible
way is to assign the gamma distribution to a and b as:

f(a;µ, α) =
αµ

Γ(µ)
aµ−1e−αa; f(b; ν, β) =

βν

Γ(ν)
bν−1e−βb (5)

The conjugate prior is then approximated as:

f(a, b) ≈ f(a)f(b) (6)

The same form of approximation applies to the posterior distribution as:

f(a, b|X) ≈ f(a|X)f(b|X) (7)

For each observation xn, the corresponding zn = [zn1, . . . , znM ]T is the indication vector defined with
respect to theM components in the mixture model. One element of zn will be equal to 1 and the rest equal
to 0, to indicate which mixture component zn belongs to. Denoting Z = {z1, . . . , zN} and assuming the
indication vectors are independent given the mixing coefficients, the conditional distribution of Z given
P is:

f(Z|P) =

N∏
n=1

M∏
m=1

pznm
m (8)

Introducing the Dirichlet distribution as the prior distribution of the mixing coefficients, the
probability function of P can be written as:

f(P) = Dir(p|c) = C(c)

M∏
m=1

pcm−1m (9)
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where C(c) = Γ(ĉ)
Γ(c1)···Γ(cM )

and ĉ =
∑M

m=1 cm. We consider the observation xn and the unobserved
indication vector zn as the complete data. The conditional distribution of X = {x1, . . . ,xN} and
Z = {z1, . . . , zN} given the latent variables {A,B,P} is:

f(X,Z|A,B,P)

=f(X|A,B,P,Z)f(Z|P)

=f(X|A,B,Z)f(Z|P)

=

N∏
n=1

M∏
m=1

[pmBeta(xn|am,bm)]
znm

(10)

The algorithm for Bayesian estimation of a BMM model is presented in Algorithm 2. An overview
of the derivation of the algorithm from Equations (5)–(10) can be found in Appendix A. For full details
of the derivations, refer to [26].

Algorithm 2 Bayesian estimation of a Beta Mixture Model (BMM)
Require: Number of components M , initial parameters for the Dirichlet distribution, initial parameters

(element-wise) α0 > 0, β0 > 0, µ0 > 0.6156, ν0 > 0.6156. Select initial parameters such that
µ0/α0 > 1 and ν0/β0 > 1.

1: Initialise rnm with k-means
2: Calculate the initial guess of a and v from α0, β0, µ0, ν0

3: repeat
4: Update the hyperparameters c∗m, µ∗lm, α∗lm, ν∗lm and β∗lm
5: until convergence

return the current estimated hyperparameters

After initialisation (lines 1,2), Algorithm 2 iterates until the the current estimated model and the
previous estimated model are sufficiently close (lines 3–5). The order of updating (line 4) does not matter,
but each hyperparameter should be updated exactly once during each iteration. Refer to Appendix A for
details of how the intermediate quantities are calculated (c∗m is updated following Equation (A3), µ∗lm
from Equation (A4), α∗lm from Equation (A5), ν∗lm from Equation (A6) and β∗lm from Equation (A7). The
expectations for these quantities are given in Equation (A8).) The algorithm returns the current estimated
hyperparameters at the last iteration, which are used to get the approximating posterior distribution. The
joint posterior distribution of alm, blm (Equation (4)) is approximated by the product of two gamma
distributions with parameters µ∗lm, α

∗
lm and ν∗lm, β

∗
lm (Equations ( 5 ) and ( 7)).

AGWAN parameter fitting is performed by Algorithm 3. First, we estimate the vertex label priors
(lines 1–3); Next, we sample the edge weights for each possible combination of vertex label values
(lines 5–10); The proportion of non-edges is used to estimate the weight of mixture 0 (line 10).
We estimate each scaled BMM Ωij from the appropriate set of samples W ij using Algorithm 2 as
described above (lines 12–13). Finally, the mixture weights ωijm are normalised so that they sum to 1

(line 14).
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Algorithm 3 AGWAN Parameter Fitting

Require: Input graph G = (V,E)

1: L = {discrete vertex label values}, d = |L|
2: Calculate vertex label priors, apply Laplace smoothing ∀l ∈ L : P (l) = count(l)+α

N+αd

3: π = the normalised probability distribution over L such that
∑d

i=1 P (li) = 1

4: ∀i, j ∈ L : W ij = ∅
5: for all u, v ∈ V : u 6= v do
6: i = lu, j = lv

7: if 〈u, v〉 ∈ E then
8: W ij = W ij ∪ {wuv}
9: else

10: Increment ωij0
11: for all i, j ∈ L do
12: ωij0 = 1− P (eij exists)
13: sij = maxW ij

14: estimate Ωij from 1/sij ·W ij using Algorithm 2
15: Normalise all ωijm

return π,Θ = {Ωij}

3.3. Extending AGWAN to Multiple Attributes

AGWAN can be extended to multiple numeric edge labels by generalising the concept of edge
weight to K dimensions. In this case, the weight is parameterised as the multivariate beta distribution.
For any random vector x consisting ofK elements, the dependencies among the elements x1, . . . , xK can
be represented by a mixture model, even if each specific mixture component can only generate vectors
with statistically independent elements. Therefore, we define the multivariate BMM as:

f(x; P,A,B) =

M∑
m=1

pm ·Beta(x; am, bm) =

M∑
m=1

pm ·
K∏
k=1

Beta(xk; akm, bkm) (11)

where x = {x1, . . . , xK}, P = {p1, . . . , pM}, A = {a1, . . . , aM} and B = {b1, . . . , bM}. am, bm denote
the parameter vectors of the mth mixture component and akm, bkm are the (scalar) parameters of the
beta distribution for element xk. Using this representation, we can apply Algorithm 2 to K-dimensional
edge weights.

4. Experimental Section

We evaluate our approach by comparing AGWAN with the state-of-the-art in labelled graph generation,
represented by the MAG model [9,14]. AGWAN and MAG parameters are learned from real-world
graphs. We generate random graphs from each model and calculate a series of statistics on each graph.
As MAG does not generate weighted graphs, we fixed the weight of the edges in the generated graphs to
the mean edge weight from the input graphs. This ensures that statistics such as average vertex strength
are maintained.
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We used two datasets for the experiments. The first is a graph of “who exercises with whom” from
a behavioural health study (Figure 2a, |V | = 279, |E| = 1308) [29]. Vertices represent participants and
are labelled with 28 attributes denoting demographic information and health markers obtained from
questionnaire data. Participants were tracked during periods of physical activity; when two people
frequently register at the same sensor at the same time, an undirected edge is created, weighted with
the number of mutual coincidences. Our second dataset is the “who communicates with whom” graph
of the Enron e-mail corpus (Figure 2b, |V | = 159, |E| = 2667) [11]. Vertices are labelled with the
job role of the employee. Edges are weighted with the number of e-mails exchanged between sender
and recipient. As e-mail communications are not symmetric, edges in the Enron graph are directed.
Both graphs exhibit a core-periphery structure which is typical of many real-world networks [7].

(a) (b)

Figure 2. Input Graph Datasets, from (a) a health study and (b) the Enron e-mail
corpus. (a) Undirected graph of who exercised with whom; (b) Directed graph of who
e-mailed whom.

We evaluated AGWAN against the following models:
Erdős-Rényi random graph (ER): The ER model G(n, p) has two parameters. We set the number of

vertices n and the edge probability p to match the input graphs as closely as possible. We do not expect
a very close fit, but the ER model provides a useful baseline.

MAG model with real attributes (MAG-R1) The MAG model with a single real attribute has a set of
binary edge probabilities, Θ = {pij} instead of a set of BMMs Θ = {Ωij}.

MAG model with latent attributes (MAG-Lx): The MAG model also allows for modelling the graph
structure using latent attributes. The discrete labels provided in the input graph are ignored; instead
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MAGFIT [14] learns the values of a set of latent attributes to describe the graph structure. We vary the
number of synthetic attributes x to investigate the relative contributions of vertex labels and edge weights
to graph structure.

AGWAN model with truncated GMMs: We compare our BMM model to an alternative approach using
GMMs [20]. One drawback of using GMMs is that it is possible to draw edge weights wuv < 0. To avoid
negative edge weights, we implement a tabula rasa rule during graph generation, drawing new values
from Ωij until wuv ≥ 0.

To evaluate the closeness of fit of each model, we use the following statistics:
Vertex Strength: For an unweighted graph, one of the most important measures is the degree

distribution (the number of in-edges and out-edges of each vertex). Real-world graphs tend to have
heavy-tailed power-law or log-normal degree distributions [2,5]. For a weighted graph, we generalise
the concept of vertex degree to vertex strength [30]:

su =
∑
v 6=u

wuv (12)

We compare using the Complementary Cumulative Distribution Function (CCDF) of the strength
of each vertex (both in-strength and out-strength in the case of the directed graph). For Cumulative
Distribution Function (CDF) F (x) = P (X ≤ x), the CCDF is defined as F̄ = P (X > x) = 1− F (x).
We show the unnormalised CCDFs in our plots; the normalised value can be obtained by integrating
the area under the curve to 1. The CCDF of a power-law function will appear linear when plotted on a
log-log scale, while the CCDF of a log-normal function will appear parabolic.

Spectral Properties: We use Singular Value Decomposition (SVD) to calculate the singular values and
singular vectors of the graph’s adjacency matrix, which act as a signature of the graph structure. In an
unweighted graph, the adjacency matrix contains binary values, for “edge” or “no edge”. In a weighted
graph, the adjacency matrix contains the edge weights (with 0 indicating no edge). For SVD UΣV , we
plot the CCDFs of the singular values Σ and the components of the left singular vector U corresponding
to the highest singular value.

Clustering Coefficients: the clustering coefficient C is an important measure of community structure.
It measures the density of triangles in the graph, or the probability that two neighbours of a vertex are
themselves neighbours [5]. We extend the notion of clustering coefficients to weighted, directed graphs
by defining Cu, the weighted clustering coefficient for vertex u [30]:

Cu =
[W[ 1

3
]

u + (WT
u )[ 1

3
]]3uu

2[dtotu (dtotu − 1)− 2d↔u ]
(13)

where Wu is the weighted adjacency matrix for u and its neighbours, WT is the transpose of W, dtotu is
the total degree of a vertex (the sum of its in- and out-degrees) and d↔u is the number of bilateral edges
in u (the number of neighbours of u which have both an in-edge and an out-edge between themselves
and u). The notation Auu means the uth element of the main diagonal of A.
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Figure 3. Triad Patterns in a Directed Graph. (a) Cycle; (b) Middleman; (c) In; (d) Out.

Triad Participation: Closely related to the clustering coefficient is the concept of triangle or triad
participation. The number of triangles that a vertex is connected to is a measure of transitivity [5].
For the directed graphs, the triangles have a different interpretation depending on the edge directions.
There are four types of triangle pattern [30], as shown in Figure 3. To generalise the concept of triad
participation to weighted, directed graphs, we consider each of the four triangle types separately, and
sum the total strength of the edges in each triad:

tyu =
∑

v,z∈Wu\u

Wy
uvz (14)

where y = {cycle,middleman, in, out} is the triangle type and Wy
uvz is calculated as shown in Figure 3

for each triangle type y.
To give a more objective measure of the closeness of fit between the generated graphs and the input

graph, we use a Kolmogorov-Smirnov (KS) test and the L2 (Euclidean) distance between the CCDFs for
each statistic. Details are in Appendix B.

5. Results and Discussion

In the experimental data, most of the edge weights follow a heavy-tailed distribution. The BMM
achieves a very close fit with its primary mixture component (Figure 4a). The GMM would need several
Gaussian components to achieve a similar fit. In practice the VI algorithm for GMMs [18] tries to fit to
power law or log-normal distributions using a single Gaussian component, resulting in probability mass
being assigned to the area x < 0, as shown in Figure 4a. This results in a fit that is not as close as the
BMM (Figure 4b). To compensate for this effect, we used a truncated GMM for graph generation as
discussed in Section 3.2.
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Figure 4. Fitting BMM and GMM models to edge weights. (a) Probability Mass Function;
(b) Cumulative Distribution Function.

For our experiments, we generated 10 random graphs for each AGWAN model. For each graph,
we calculated the statistics for vertex strength, spectral properties, clustering and triad participation, as
described in the previous section. We calculated the CCDFs for each set of statistics, and averaged
the CCDF scores at each x-coordinate value across the 10 graphs, to smooth any random fluctuations.
The plots of the averaged CCDFs for each model are shown in Figures 5–12. Tables for the closeness of
fit of each CCDF (KS and L2 statistics) are in Appendix B.
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Figure 5. Vertex Strength Distribution—Real Attributes. (a) Undirected; (b) Directed
(In-strength); (c) Directed (Out-strength).
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Figure 6. Spectral Properties—Real Attributes. (a) Undirected—Singular Values;
(b) Undirected—Primary Left Singular Vector; (c) Directed—Singular Values;
(d) Directed—Primary Left Singular Vector.
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Figure 7. Clustering Coefficients—Real Attributes. (a) Undirected; (b) Directed (In-edges);
(c) Directed (Out-edges).

10
0

10
2

10
4

10
−1

10
0

10
1

10
2

10
3

Total Triad Strength

N
o
. 
o
f 
P

a
rt

ic
ip

a
ti
n
g
 V

e
rt

ic
e
s

 

 
Real−world graph

Erdos−Renyi

MAG−R1, Age

MAG−R1, Floor

AGWAN, Age (GMM)

AGWAN, Floor (GMM)

AGWAN, Age (BMM)

AGWAN, Floor (BMM)

(a)

10
0

10
5

10
−1

10
0

10
1

10
2

10
3

Total Triad Strength

N
o
. 
o
f 
P

a
rt

ic
ip

a
ti
n
g
 V

e
rt

ic
e
s

 

 
Real−world graph

Erdos−Renyi

MAG−R1

AGWAN (GMM)

AGWAN (BMM)

(b)

Figure 8. Cont.



Algorithms 2015, 8 1158

10
0

10
5

10
−1

10
0

10
1

10
2

10
3

Total Triad Strength

N
o
. 
o
f 
P

a
rt

ic
ip

a
ti
n
g
 V

e
rt

ic
e
s

 

 
Real−world graph

Erdos−Renyi

MAG−R1

AGWAN (GMM)

AGWAN (BMM)

(c)

10
0

10
5

10
−1

10
0

10
1

10
2

10
3

Total Triad Strength

N
o
. 
o
f 
P

a
rt

ic
ip

a
ti
n
g
 V

e
rt

ic
e
s

 

 
Real−world graph

Erdos−Renyi

MAG−R1

AGWAN (GMM)

AGWAN (BMM)

(d)

10
0

10
5

10
−1

10
0

10
1

10
2

10
3

Total Triad Strength

N
o
. 
o
f 
P

a
rt

ic
ip

a
ti
n
g
 V

e
rt

ic
e
s

 

 
Real−world graph

Erdos−Renyi

MAG−R1

AGWAN (GMM)

AGWAN (BMM)

(e)

Figure 8. Triad Participation—Real Attributes. (a) Undirected; (b) Directed (Cycles);
(c) Directed (Middlemen); (d) Directed (Ins); (e) Directed (Outs).
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Figure 9. Vertex Strength Distribution—Synthetic Attributes. (a) Undirected; (b) Directed
(In-strength); (c) Directed (Out-strength).
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Figure 10. Spectral Properties—Synthetic Attributes. (a) Undirected—Singular
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Figure 11. Clustering Coefficients—Synthetic Attributes. (a) Undirected; (b) Directed
(In-edges); (c) Directed (Out-edges).
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Figure 12. Triad Participation—Synthetic Attributes. (a) Undirected; (b) Directed (Cycles);
(c) Directed (Middlemen); (d) Directed (Ins); (e) Directed (Outs).

5.1. Real Attributes

For the undirected graph (Health Study), we show results for two vertex attributes: Age and Floor
(the building and floor number where the person works; people who work on the same floor were highly
likely to exercise together). For the directed graph (Enron), there is one vertex attribute, the person’s
job role.

Vertex Strength (Figure 5): The graphs generated from AGWAN have vertex strength distributions
which map very closely to the input graphs. The graphs generated from MAG-R1 are better than random
(ER), but the vertex strength distribution is compressed into the middle part of the range, with too few
high- and low-strength vertices. This indicates that vertex strength depends on both the label distribution
and the edge weight distribution; AGWAN models both of these effectively.

Spectral Properties (Figure 6): The spectral properties of the AGWAN graphs map very closely to the
input graphs. The singular values follow the same curve as the input graphs. This is significant as it
indicates that graphs generated with AGWAN have similar connectivity to the input graph: the primary
singular value has been shown to be the most significant measure of graph connectivity [2]. In contrast,
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MAG-R1 does not preserve the singular value curve, showing a linear relationship instead. MAG-R1
cannot model the singular vector components at all without taking the edge weights into account.
These results show that the spectral properties of the graph are dependent on both the vertex label
distribution and the edge weight distribution.

Clustering Coefficients (Figure 7): The accuracy of AGWAN and MAG-R1 is similar. For the
undirected graph, performance is little better than random. For the directed graph, AGWAN gives
reasonable performance for the low-degree vertices but drops away for the high-degree vertices. In all
cases, the clustering is independent of the edge weight distribution. The accuracy of the results depends
on which vertex attribute was chosen, implying that some attributes can predict community formation
better than others. We hypothesise that cluster formation may in fact be (conditionally) independent
of the vertex label values and may be better explained by triadic closure [5]: links are likely to form
between two people who share a mutual friend, independently from their vertex attributes. The apparent
dependency on vertex labels may be an artefact of the connection to the mutual friend, rather than the true
explanation of why clustering asises. This aspect of network formation requires further investigation.

Triad Participation (Figure 8): Similar to clustering, triad participation appears to be dependent to
some extent on vertex label values but independent of the edge weight distribution. We hypothesise that
like clustering, the apparent dependency between vertex label and triad participation values may be due
to triadic closure, which is not currently modelled by either MAG or AGWAN.

5.2. Synthetic Attributes

The second set of experiments ignore the real attributes of the graph, replacing them with a set of
randomly generated synthetic attributes. The purpose is to evaluate the relative contribution of the
discrete vertex labels and numeric attributes to the graph structure. By reducing the number of numeric
attributes to zero, we can evaluate the contribution of the numeric attributes in isolation.

We replaced the real labels in the input graph with a synthetic vertex attribute taking 20 . . . 29

values allocated uniformly at random, then learned the edge weight distributions using VI as normal.
We compare our results with an alternate interpretation of the MAG model, which ignores the true
attribute values from the input graph and represents attributes as latent variables, which are learned
using a VI EM approach [14]. We also show AGWAN with one real attribute for comparison.

Vertex Strength (Figure 9): AGWAN with synthetic attributes significantly outperforms MAG for the
accuracy of the vertex strength distribution, and has similar accuracy to AGWAN-R1. Varying the number
of synthetic attributes has a small effect on the accuracy. We conclude that vertex strength is dependent
on both edge weight and vertex label distribution, but the edge weights play a more important role.

Spectral Properties (Figure 10): AGWAN has a very close fit to the spectral properties of the input
graphs. Varying the number of attributes has a moderate effect on the closeness of fit. On the undirected
graph, MAG-L9 matches the singular vector very closely but performs poorly with the singular values;
in general, MAG is a poor fit as the edge weight distribution is not taken into account. These results
confirm that the spectral properties are dependent on both the vertex label distribution and the edge
weight distribution, and the degrees of freedom of the vertex labels are important.
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Clustering Coefficients (Figure 11): AGWAN and MAG are both significantly more accurate using
synthetic attributes than with real attributes. This (somewhat surprising) result implies that clustering
is not closely related to the real attribute values. While real labels appear to be influenced by the
(unobserved) process which gives rise to clustering, synthetic labels with more degrees of freedom
can model it more accurately. We note that AGWAN performs better where there are more degrees
of freedom, while MAG performs better with few degrees of freedom (due to the independence
assumption mentioned in Section 3.3). As before, clustering appears to be independent of the edge
weight distribution.

Triad Participation (Figure 12): Similarly to clustering, AGWAN and MAG are both more accurate
using synthetic attributes than they were with real attributes. The effects of degrees of freedom of
the synthetic attributes is even more pronounced than it was for clustering: AGWAN-L9 has a good fit
whereas AGWAN-L1 is not so good. Edge weights appear to have little influence.

5.3. Graph Evolution

One of the goals of our model is to generate synthetic graphs which are larger than the input graph.
We conducted experiments to measure how AGWAN graph properties change as the number of vertices
is increased. We generated sets of random graphs from the same model, with increasing numbers of
vertices N = {10, 20, . . . , 100, 200, . . . , 3000} vertices and measured the size of the giant component,
the density and the diameter.

Giant Component: We measured the proportion of vertices in the largest component of the graph as
the graph grows in size. Figure 13 shows that a giant component forms quickly, as in real graphs [5].
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Figure 13. Giant Component. (a) Undirected; (b) Directed.

Densification Power Law: We measured graph densification as the ratio of the number of vertices to
the number of edges as the graph grows in size. Figure 14 shows that AGWAN graphs densify as they
grow, as in real graphs. Real-world graphs have e(t) ∝ v(t)γ , with power-log exponent γ typically in
the range (1, 2) [4]. When γ = 1, the rate of edge growth is linear in the number of vertices; γ = 2

means that on average, each vertex has edges to a constant fraction of all vertices. As Figure 14 shows,
AGWAN graphs have γ ' 2, because the model learns its edge probabilities independently from the size
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of the input graph. This means that AGWAN overestimates density when generating graphs larger than
the input graph.
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Figure 14. Densification Power Law. (a) Undirected, unweighted; (b) Undirected, weighted;
(c) Directed, unweighted; (d) Directed, weighted.

Shrinking Diameter Effect (Figure 15): AGWAN graphs exhibit the Small World Effect [5] and the
unweighted diameter shrinks as the graphs grow, as in real graphs [4]. As the weighted diameter was
calculated using Johnson’s algorithm [31], which treats the edge weight as a cost function, we used the
reciprocal of the edge weights. With this interpretation, the weighted diameter also shrinks as the graphs
grow. It is interesting to note that the weighted diameters decay following a power law (with exponent
γ = −0.72 for the undirected graph and γ = −0.65 for the directed graph).
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Figure 15. Cont.
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Figure 15. Shrinking Diameter Effect. (a) Undirected, unweighted; (b) Undirected,
weighted; (c) Directed, unweighted; (d) Directed, weighted.

6. Conclusions and Future Work

In this paper, we presented AGWAN, a generative model for random graphs with discrete labels and
weighted edges. We included a fitting algorithm to learn a model of edge weights from real-world
graphs, and an algorithm to generate random labelled, weighted graphs with similar characteristics to
the input graph.

We measured the closeness of fit of our generated graphs to the input graph over a range of graph
statistics, and compared our approach to the state-of-the-art in random graph generative algorithms.
Our results and findings are summarised in Table 1.

Table 1. Summary of results and findings: dependencies between graph labels and weights
and structural properties (∗hypothesised); relative accuracy of the properties of weighted
graphs generated using AGWAN and MAG models.

Statistic Vertex Labels Edge Weights AGWAN MAG

Vertex Strength Dependent Dependent Accurate Less accurate

Singular Values Dependent Dependent Accurate Less accurate

Primary Singular Vector Partially Dependent Accurate Poor
Dependent

Clustering Coefficients Conditionally Independent Less accurate when using real attributes
Independent∗ More accurate with synthetic attributes

Triad Participation Conditionally Independent Less accurate when using real attributes
Independent∗ More accurate with synthetic attributes

Our results demonstrate that AGWAN produces an accurate model of the weighted input graphs.
The AGWAN graphs reproduce many of the properties of the input graphs, including formation of a
giant component, heavy-tailed degree distribution, Small World property, Densification Power Law and
shrinking diameter effect. Vertex strength and spectral properties were modelled very closely, indicating
that these properties are indeed dependent on vertex labels and edge weights. For clustering and triad
participation, it appears that these properties are independent of the edge weight distribution. While there
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appears to be a relationship with the vertex label distribution, we suggest that this may be an artefact of
the true process giving rise to these properties, triadic closure. Further research is required into the
relationship between vertex attributes and triangle formation in graphs.

We investigated the accuracy of modelling edge weights using BMMs and compared to a previous
approach which used GMMs. The edge weights often follow a power-law distribution, which the BMM
approach fits more closely, particularly in the lower range of edge weight values. In general, BMMs
are more suitable for bounded data; probability mass can only be assigned to the valid range of weight
values. For the GMM model, we compensated for this by truncating the GMM during graph generation.
We expected that AGWAN (BMM) would consistently outperform AGWAN (GMM), but the truncated
GMM performed surprisingly well. We propose to conduct experiments on a wider range of datasets to
investigate this further. It would also be interesting to compare with Poisson Mixture Models to model
discrete edge weights.

Supplementary Materials

Source code and datasets used for the experiments (Gzipped TAR archive). See
Datasets/README and src/README for details. Supplementary materials can be accessed
at: http://www.mdpi.com/1999-4893/8/4/1143/s1.
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Appendix

A. Derivation of Approximate Inference Algorithm

The derivation of the algorithm for Bayesian estimation of a BMM model (Algorithm 2) from
Equations (5)–(10) is outlined in this appendix.
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We combine Equations (5)–(10) using Bayesian rules to obtain the joint density function of the
observation X and all the i.i.d. latent variables Z = {A,B,P,Z}. We assume that X is conditionally
independent of P, given Z. The joint density function is given by:

f(X,Z) = f(X,A,B,P,Z)

=f(X|A,B,Z)f(Z|P)f(P)f(A)f(B)

=

N∏
n=1

M∏
m=1

[pmBeta(xn|am,bm)]
znm · C(c)

M∏
m=1

pcm−1m

·
L∏
l=1

M∏
m=1

[
αµlm

lm

Γ(µlm)
aµlm−1
lm e−αlmalm

]
·
[
βνlmlm

Γ(νlm)
bνlm−1lm e−βlmblm

]
(A1)

and the logarithm of Equation (A1) is

L(X,Z) = ln f(X,Z,A,B,P)

=con. +

N∑
n=1

M∑
m=1

znm

{
ln pm +

L∑
l=1

ln
Γ(alm + blm)

Γ(alm)Γ(blm)

+

L∑
l=1

[(alm − 1) lnxln + (blm − 1) ln(1− xln)]

}

+

L∑
l=1

M∑
m=1

[(µlm − 1) ln alm − αlmalm]

+

L∑
l=1

M∑
m=1

[(νlm − 1) ln blm − βlmblm] +

M∑
m=1

(cm − 1) ln pm

(A2)

The i.i.d. latent variables we have now are A, B, P and Z with the hyperparameters α, β, µ, ν and
c. The updating scheme of the VI can be used to estimate these hyperparameters of the latent variables.
Following the principles of the VI framework [15,32–35], we have:

c∗m = cm0
+

N∑
n=1

E [znm] = cm0
+

N∑
n=1

rnm (A3)

where cm0 denotes the initial value of cm.
We can also obtain the closed-form updating scheme for the hyperparameters αlm and µlm:

µ∗lm =µlm0
+

N∑
n=1

E [znm] alm

{
ψ(alm + blm)− ψ(alm)

+ blm · ψ
′
(alm + blm)(Eb [ln blm]− ln blm)

} (A4)

α∗lm =αlm0
−

N∑
n=1

E [znm] lnxln (A5)

For the same reasons, the update schemes for the hyperparameters βlm and νlm are:

ν∗lm =νlm0 +

N∑
n=1

E [znm] blm

{
ψ(alm + blm)− ψ(blm)

+ alm · ψ
′
(alm + blm)(Ea [ln alm]− ln alm)

} (A6)

β∗lm =βlm0 −
N∑
n=1

E [znm] ln(1− xln) (A7)
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Further details of the derivations are given in [26,27].
The update Equations (A3)–(A7) are calculated through the following expectations:

a =
µ

α
, b =

ν

β
, E [znm] = rnm, E [ln pm] = ψ(cm)− ψ(ĉ),

Ea[ln a] = ψ(µ)− lnα, Eb[ln b] = ψ(ν)− lnβ,

Ea
[
(ln a− ln a)2

]
= [ψ(µ)− (lnµ)]

2
+ ψ

′
(µ)

Eb
[
(ln b− ln b)2

]
= [ψ(ν)− (ln ν)]

2
+ ψ

′
(ν)

(A8)

B. KS and L2 Statistics

To measure the closeness of fit between the generated graphs and the input graph, we use a
Kolmogorov-Smirnov (KS) test and the L2 (Euclidean) distance between the CCDFs for each of the
statistics presented in Section 4. The model that generates graphs with the lowest KS and L2 values has
the closest fit to the real-world graph for that graph property.

The KS test is commonly used for goodness of fit and is based on the following statistic:

KS = sup |F ∗(x)− S(x)| (B1)

where F ∗(x) is the hypothesised Cumulative Density Function (CDF) and S(x) is the empirical
distribution function based on the sampled data [36]. As trying to perform a linear fit on a heavy-tailed
distribution is biased [36], we use the logarithmic variant of the KS test [14]:

KS = sup | logF ∗(x)− logS(x)| (B2)

We also calculate the L2 (Euclidean) distance for each statistic in the logarithmic scale:

L2 =

√√√√ 1

log b− log a

b∑
x=a

(logF ∗(x)− logS(x))2 (B3)

where [a, b] is the support of distributions F ∗(x) and S(x) respectively.
Note that for the Singular Values and Primary Left Singular Vectors, we use the standard (linear)

version of KS and L2, as these statistics do not follow a heavy-tailed distribution.

B1. Real Attributes (Figures 5–8)

Table B1. KS Statistic for Undirected Graph, Real Attributes.

Statistic Erdős-Rényi
MAG-R1 AGWAN-R1 (GMM) AGWAN-R1 (BMM)

Age Floor Age Floor Age Floor

Vertex Strength 6.064 5.940 5.799 2.303 2.303 1.609 2.303
Singular Values 3752.439 3809.375 3829.967 1284.796 507.622 263.853 262.647
Singular Vector 10.142 9.513 9.437 1.039 1.599 2.401 1.871

Clustering Coefficient 5.224 5.048 4.895 4.917 4.994 4.249 5.196
Triad Participation 7.012 6.877 6.685 6.646 6.646 6.898 6.685
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Table B2. L2 Statistic for Undirected Graph, Real Attributes.

Statistic Erdős-Rényi
MAG-R1 AGWAN-R1 (GMM) AGWAN-R1 (BMM)

Age Floor Age Floor Age Floor

Vertex Strength 9.686 7.281 10.039 2.572 3.292 3.291 4.623
Singular Values 14,813.827 14,734.707 14,926.969 12,370.046 5624.668 2448.545 2772.618
Singular Vector 97.408 96.356 95.162 14.688 23.921 36.761 28.416

Clustering Coefficient 55.422 48.889 48.524 50.844 52.051 50.267 51.982
Triad Participation 16.879 17.334 17.101 17.419 19.601 19.596 19.726

Table B3. KS Statistic for Directed Graph, Real Attributes.

Statistic Erdős-Rényi MAG-R1 AGWAN-R1 (GMM) AGWAN-R1 (BMM)

In-Vertex Strength 2.469 4.700 1.609 2.303
Out-Vertex Strength 2.708 2.659 1.204 2.303

Singular Values 40,564.590 7220.030 22,750.790 11,944.700
Singular Vector 8.927 9.154 0.714 0.619

Clustering Coefficient (In-Edges) 3.444 2.208 1.784 3.355
Clustering Coefficient (Out-Edges) 3.728 0.769 3.167 0.814

Clustering Coefficient 4.347 1.651 0.593 0.835
Triad Participation (Cycles) 4.787 4.248 3.219 4.248

Triad Participation (Middlemen) 4.382 4.500 2.639 2.503
Triad Participation (Ins) 4.700 4.500 3.401 4.248

Triad Participation (Outs) 4.382 4.094 1.851 4.248

Table B4. L2 Statistic for Directed Graph, Real Attributes.

Statistic Erdős-Rényi MAG-R1 AGWAN-R1 (GMM) AGWAN-R1 (BMM)

In-Vertex Strength 5.679 4.912 2.244 1.507
Out-Vertex Strength 5.100 3.534 2.463 2.510

Singular Values 262,699.994 32,990.793 104,552.681 60,843.087
Singular Vector 69.775 74.606 8.842 4.884

Clustering Coefficient (In-Edges) 3.528 1.607 1.215 2.231
Clustering Coefficient (Out-Edges) 3.145 1.191 1.891 1.399

Clustering Coefficient 6.949 1.438 0.813 1.033
Triad Participation (Cycles) 3.823 3.000 3.027 5.088

Triad Participation (Middlemen) 5.144 4.178 4.101 6.660
Triad Participation (Ins) 4.630 4.826 4.380 7.747

Triad Participation (Outs) 3.727 3.295 2.869 4.984
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B2. Synthetic Attributes (Figures 9–12)

Table B5. KS Statistic for Undirected Graph, Synthetic Attributes.

Statistic
MAG AGWAN (GMM)

L1 L5 L9 L1 L5 L9

Vertex Strength 2.243 5.670 6.234 2.207 1.354 0.722
Singular Values 6519.191 6580.987 8801.651 284.193 1518.976 4169.982
Singular Vector 5.037 3.447 0.362 3.514 2.686 2.082

Clustering Coefficient 1.283 4.401 4.773 4.627 4.422 2.319
Triad Participation 3.829 6.016 6.877 7.115 6.205 4.007

Statistic
AGWAN (BMM)

L1 L5 L9 R1 (Age) R1 (Floor)

Vertex Strength 2.996 3.555 1.609 1.609 2.303
Singular Values 626.352 3206.064 4602.751 263.853 262.647
Singular Vector 3.212 2.334 2.408 2.401 1.871

Clustering Coefficient 4.784 4.960 3.257 4.249 5.196
Triad Participation 7.065 6.966 4.200 6.898 6.685

Table B6. L2 Statistic for Undirected Graph, Synthetic Attributes.

Statistic
MAG AGWAN (GMM)

L1 L5 L9 L1 L5 L9

Vertex Strength 7.944 10.103 21.027 4.980 3.611 2.570
Singular Values 32,272.685 32,524.858 47,155.221 2831.411 9885.424 30,238.426
Singular Vector 56.664 46.483 3.524 53.375 40.520 30.481

Clustering Coefficient 25.795 40.622 61.933 57.583 55.496 34.061
Triad Participation 12.047 11.038 29.136 22.053 20.686 9.375

Statistic
AGWAN (BMM)

L1 L5 L9 R1 (Age) R1 (Floor)

Vertex Strength 5.610 8.036 3.812 3.291 4.623
Singular Values 6001.378 19,322.594 32,632.837 2448.545 2772.618
Singular Vector 49.353 35.109 35.913 36.761 28.416

Clustering Coefficient 57.318 54.340 36.950 50.267 51.982
Triad Participation 20.349 23.206 10.758 19.596 19.726
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Table B7. KS Statistic for Directed Graph, Synthetic Attributes.

Statistic
MAG AGWAN (GMM)

L1 L5 L9 L1 L5 L9

In-Vertex Strength 4.700 6.142 5.193 1.897 0.836 0.418
Out-Vertex Strength 4.942 6.234 3.401 1.157 0.691 2.303

Singular Values 7951.240 17,978.152 12,036.091 23,196.640 14,303.690 3181.910
Singular Vector 7.485 2.066 6.737 0.645 0.534 0.485

Clustering Coefficient (In-Edges) 2.961 4.578 4.512 3.298 2.535 2.370
Clustering Coefficient (Out-Edges) 3.164 5.463 2.865 4.830 3.140 1.717

Clustering Coefficient 3.278 5.839 4.000 4.996 2.949 2.558
Triad Participation (Cycles) 3.912 6.867 5.704 6.292 3.602 2.639

Triad Participation (Middlemen) 4.248 6.319 5.858 5.438 4.787 3.401
Triad Participation (Ins) 3.912 7.170 6.153 6.507 4.248 2.996

Triad Participation (Outs) 1.476 6.768 4.745 6.292 4.007 2.590

Statistic
AGWAN (BMM)

L1 L5 L9 R1

In-Vertex Strength 0.811 1.455 0.511 2.303
Out-Vertex Strength 2.148 0.693 2.303 2.303

Singular Values 15,219.730 12,480.590 1238.550 11,944.700
Singular Vector 0.775 0.451 0.451 0.619

Clustering Coefficient (In-Edges) 3.904 2.861 3.426 3.355
Clustering Coefficient (Out-Edges) 4.971 3.182 1.535 0.814

Clustering Coefficient 4.869 3.300 2.956 0.835
Triad Participation (Cycles) 6.380 5.561 3.912 4.248

Triad Participation (Middlemen) 6.620 5.768 3.401 2.503
Triad Participation (Ins) 6.579 5.075 2.526 4.248

Triad Participation (Outs) 6.492 5.394 2.303 4.248

Table B8. L2 Statistic for Directed Graph, Synthetic Attributes.

Statistic
MAG AGWAN (GMM)

L1 L5 L9 L1 L5 L9

In-Vertex Strength 5.023 15.718 7.066 2.109 2.189 0.649
Out-Vertex Strength 3.001 10.882 3.737 2.483 2.060 0.988

Singular Values 29,286.029 44,305.501 22,485.397 111,282.298 72,433.178 5554.271
Singular Vector 68.345 24.388 66.319 7.932 5.224 5.763

Clustering Coefficient (In-Edges) 2.507 7.692 4.819 3.731 1.710 1.594
Clustering Coefficient (Out-Edges) 2.771 5.642 2.785 1.501

Clustering Coefficient 2.450 13.922 7.653 8.296 2.617 1.827
Triad Participation (Cycles) 2.060 16.270 8.763 9.561 3.990 1.777

Triad Participation (Middlemen) 2.828 18.575 11.150 10.101 6.094 2.476
Triad Participation (Ins) 3.293 16.361 13.740 14.168 6.562 3.074

Triad Participation (Outs) 1.459 14.603 6.315 9.218 3.960 2.077

Statistic
AGWAN (BMM)

L1 L5 L9 R1

In-Vertex Strength 1.524 1.278 0.356 1.507
Out-Vertex Strength 2.731 1.524 0.907 2.510

Singular Values 78,886.496 54,111.356 2224.587 60,843.087
Singular Vector 9.494 5.531 5.153 4.884

Clustering Coefficient (In-Edges) 5.466 1.822 2.178 2.231
Clustering Coefficient (Out-Edges) 6.487 3.401 1.425 1.399

Clustering Coefficient 9.937 3.086 2.053 1.033
Triad Participation (Cycles) 11.684 7.300 3.946 5.088

Triad Participation (Middlemen) 13.301 11.218 3.997 6.660
Triad Participation (Ins) 14.616 11.028 3.766 7.747

Triad Participation (Outs) 9.419 8.347 2.527 4.984
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