
Algorithms 2015, 8, 1195-1209; doi:10.3390/a8041195
OPEN ACCESS

algorithms
ISSN 1999-4893

www.mdpi.com/journal/algorithms

Article

A New Smoothing Conjugate Gradient Method for Solving
Nonlinear Nonsmooth Complementarity Problems
Ajie Chu, Shouqiang Du * and Yixiao Su

College of Mathematics, Qingdao University, 308 Qingdao Ningxia Road, Qingdao 266071, China;
E-Mails: 13658689660@163.com (A.C.); y_x_su@163.com (Y.S.)

* Author to whom correspondence should be addressed; E-Mail: sqdu@qdu.edu.cn;
Tel.: +86-532-8595-3660.

Academic Editor: Louxin Zhang

Received: 13 October 2015 / Accepted: 11 December 2015 / Published: 17 December 2015

Abstract: In this paper, by using the smoothing Fischer-Burmeister function, we
present a new smoothing conjugate gradient method for solving the nonlinear nonsmooth
complementarity problems. The line search which we used guarantees the descent of the
method. Under suitable conditions, the new smoothing conjugate gradient method is proved
globally convergent. Finally, preliminary numerical experiments show that the new method
is efficient.

Keywords: smoothing Fischer-Burmeister function; conjugate gradient method; nonlinear
nonsmooth complementarity problems

1. Introduction

We consider the nonlinear nonsmooth complementarity problem, which is to find a vector in Rn

satisfying the conditions
x ≥ 0, F (x) ≥ 0, xTF (x) = 0 (1)

where F : Rn → Rn is a locally Lipschitz continuous function. If F is continuously
differentiable, then Problem (1) is called the nonlinear complementarity problems NCP(F). As we
all know, Equation (1) is a very useful general mathematics model, which is closely related to the
mathematical programming, variational inequalities, fixed point problems and mixed strategy problems
(such as [1–13]). The methods for solving NCP(F) are classified into three categories: nonsmooth

Algorithms 2015, 8 1196

Newton methods, Jacobian smoothing methods and smoothing methods (see [14–19]). Conjugate
gradient methods are widely and increasingly used for solving unconstrained optimization problem,
especially in large-scale cases. There are few scholar has investigated the problem how to use the
conjugate gradient method to solve NCP(F) (such as [10,20]). Moreover, in these papers, F is required
to be a continuous differentiable P0 + R0 function. In this paper, we present a new smoothing
conjugate gradient method for solving Equation (1), where F is only required to be a locally Lipschitz
continuous function.

In this paper, we also define the generalized gradient of F at x is

∂F (x) = conv{ lim
xk−→x,xk∈DF

5F (xk)}

where ′′conv′′ denotes the convex hull of a set, DF denotes the set of points at which F is differentiable
(see [21]). In the following, we introduce the definition of the smoothing function.

Definition 1 (see [22]) Let F : Rn −→ Rn be a locally Lipschitz continuous function. We call F̃ :

Rn × R+ −→ Rn is a smoothing function of F , if F̃ (x, µ) is continuously differentiable in Rn for any
fixed µ > 0, and

lim
µ−→0

F̃ (x, µ) = F (x)

for any fixed x ∈ Rn. If
lim

xk−→x,µ↓0
5F̃ (xk, µ) ∈ ∂F (x)

for any xk ∈ Rn, we say F satisfies gradient consistency property.

In the following sections of our paper, we also use the Fischer-Burmeister function (see [23]) and the
smoothing Fischer-Burmeister function. (1) The Fischer-Burmeister function

ϕ(a, b) =
√
a2 + b2 − a− b, (a, b)T ∈ R2

where ϕ : R2 −→ R. From the definition of ϕ, we know that it is twice continuously differentiable
besides (0, 0)T . Moreover, it is a complementarity function, which satisfies

ϕ(a, b) = 0⇐⇒ a ≥ 0, b ≥ 0, ab = 0

Denote

H(x) =

 ϕ(x1, F1(x))
...

ϕ(xn, Fn(x))


It is obvious that H(x) is zero at a point x if and only if x is a solution of Equation (1). Then

Equation (1) can be transformed into the following unconstrained optimization problem

min Ψ(x) =
1

2
‖H(x)‖2

We know that the optimal value of Ψ is zero, and Ψ is called the value function of Equation (1).
(2) The smoothing Fischer-Burmeister function

ϕµ(a, b) =
√
a2 + b2 + µ− a− b

Algorithms 2015, 8 1197

where ϕ : R3 −→ R and µ > 0.

Let

Hµ(x) =

 ϕµ(x1, F̃1(x, µ))
...

ϕµ(xn, F̃n(x, µ))



Ψµ(x) =
1

2
‖Hµ(x)‖2

where F̃i(x, µ) is the smoothing function of Fi(x), i = 1, · · · , n.
The rest of this work is organized as follows. In Section 2, we describe the new smoothing

conjugate gradient method for the solution of Problem (1). It is shown that this method has global
convergence properties under fairly mild assumptions. In Section 3, preliminary numerical results and
some discussions for this method are presented.

2. The New Smoothing Conjugate Gradient Method and its Global Convergence

The new smoothing conjugate gradient direction is defined as

dk =

{
−∇Ψµ0(x0), k = 0

−∇Ψµk−1
(xk) + βkdk−1, k ≥ 1

(2)

where βk is a scalar. Here, we use βk (see [24]) which is defined as

βDYk =
‖∇Ψµk−1

(xk)‖2

dTk−1yk−1

(3)

where yk−1 = ∇Ψµk−1
(xk) − ∇Ψµk−2

(xk−1). When k = 1, we set µk−2 = µ0. The line search is
Armijo-type line search (see [25]), where αk = ηmk , 0 < η < 1,mk is the smallest nonnegative integer
satisfies

Ψµk(xk + αkdk) ≤ Ψµk(xk) + δαk(∇Ψµk−1
(xk))

Tdk (4)

(∇Ψµk(xk + αkdk))
Tdk+1 ≤ −σ‖∇Ψµk(xk + αkdk)‖2, 0 < σ ≤ 1, 0 < δ < 1 (5)

Then, we give the new smoothing conjugate gradient method for solving Equation (1).

Algorithm 1: Smoothing Conjugate Gradient Method
(S.0) Choose x0 ∈ Rn, ε > 0, µ0 > 0,m > 0, σ, δ,m1 ∈ (0, 1), d0 = −∇Ψµ0(x0). Set k = 0.
(S.1) If Ψ(xk) ≤ ε, then stop, otherwise go to Step 2.
(S.2) Compute αk by Equations (4) and (5), where dk+1 = −∇Ψµk(xk + αkdk) + βk+1dk and βk+1 is

given by Equation (3). Let xk+1 = xk + αkdk.
(S.3) If ‖∇Ψµk(xk+1)‖ ≥ mµk, then set µk+1 = µk, otherwise set µk+1 = m1µk.
(S.4) Let k = k + 1, go back to Step 1.

Algorithms 2015, 8 1198

Algorithm 2: Algorithm Framework of Algorithm 1
PROGRAM ALGORITHM

INITIALIZE x0 ∈ Rn, ε > 0, µ0 > 0,m > 0,m1 ∈ (0, 1);
Set k = 0 and d0 = −∇Ψµ0(x0).
WHILE the termination condition

Ψ(xk) ≤ ε is not met
Find step sizes αk;
Set xk+1 = xk + αkdk

Evaluate∇Ψµk(xk+1) and dk+1;
IF ‖∇Ψµk(xk+1)‖ ≥ mµk THEN

Set µk+1 = µk;
ELSE

Set µk+1 = m1µk;
END IF
Set k = k + 1;

END WHILE
RETURN final solution xk;

END ALGORITHM

In the following, we will give the analysis about the global convergence of Algorithm 1. (The
Algorithm 2 is the algorithm framework of Algorithm 1.) Before doing this work, we need the following
basic assumptions.
Assumption 1.

(i) For any x ∈ Rn, 0 < µ ≤ µ0, the level set Lµ(c) = {x ∈ Rn|Ψµ(x) ≤ c} is bounded.
(ii) ∇Ψµk(xk+1) is Lipschitz continuous, that is, there exists a constant L > 0 such that

‖∇Ψµk(xk+1)−∇Ψµk−1
(xk)‖ ≤ L‖xk+1 − xk‖,∀xk+1, xk ∈ Lµ(c)

Lemma 1. Suppose that {dk} is an infinite sequence of directions generated by Algorithm 1, then

−(∇Ψµk−1
(xk))

Tdk ≥ c̄‖∇Ψµk−1
(xk)‖2,∀k ≥ 0, c̄ < σ (6)

Proof If k = 0, by Equation (2) and c̄ < 1, we can know that Equation (6) holds. If k > 0, by
Equation (5) and c̄ < σ, we can conclude that Equation (6) holds.

Lemma 2. Suppose that Assumption 1 holds. Then, there exists αk > 0 for every k, and

αk ≥ ω
|(∇Ψµk−1

(xk))
Tdk|

‖dk‖2
(7)

with ω is a positive constant.

Proof From Step 0 of Algorithm 1, we know that d0 = −∇Ψµ0(x0), i.e., d0 is a descent direction.
Suppose that dk is satisfied

(∇Ψµk−1
(xk))

Tdk ≤ −σ‖∇Ψµk−1
(xk)‖2 ≤ 0 (8)

Algorithms 2015, 8 1199

for any α̃k. We denote
x̃k+1 = xk + α̃kdk

d̃k+1 = −∇Ψµk(x̃k+1) + β̃k+1dk (9)

By
(∇Ψµk(x̃k+1))T d̃k+1 = −‖∇Ψµk(x̃k+1)‖2 + β̃k+1[(∇Ψµk−1

(xk))
Tdk+

(∇Ψµk(x̃k+1)−∇Ψµk−1
(xk))

Tdk] (10)

We know that βk in Equation (3) is equivalent to (see [24])

βk =
(∇Ψµk−1

(xk))
Tdk

(∇Ψµk−2
(xk−1))Tdk−1

> 0 (11)

Since Assumption 1, Equations (10) and (11) yield

(∇Ψµk(x̃k+1))T d̃k+1 ≤ −σ‖∇Ψµk(x̃k+1)‖2, α̃k ∈ (0,
|(∇Ψµk−1

(xk))
Tdk|

L‖dk‖2
) (12)

by Mean Value Theorem, we have

Ψµk(x̃k+1)−Ψµk(xk) =

∫ 1

0

α̃k(∇Ψµk(xk + tα̃kdk))
Tdkdt

= α̃k(∇Ψµk−1
(xk))

Tdk +

∫ 1

0

α̃k[∇Ψµk(xk + tα̃kdk)−∇Ψµk−1
(xk)]

Tdkdt

≤ α̃k(∇Ψµk−1
(xk))

Tdk +

∫ 1

0

Lα̃2
k‖dk‖2tdt

≤ α̃k(∇Ψµk−1
(xk))

Tdk +
1

2
Lα̃2

k‖dk‖2

Then, we obtain that

Ψµk(x̃k+1)−Ψµk(xk) ≤ δα̃k(∇Ψµk−1
(xk))

Tdk,

∀α̃k ∈ (0,
2(1− δ)

L

|(∇Ψµk−1
(xk))

Tdk|
‖dk‖2

) (13)

By Equations (12) and (13), we know that Equations (4) and (5) determine a positive stepsize αk.
And there must exists a constant ξ ∈ (0, 1) yields

ξ ·
|(∇Ψµk−1

(xk))
Tdk|

L‖dk‖2
< 1

Denote ω = min{ ξ
L
, 2ξ(1−δ)

L
}, then Equation (7) holds. And Equation (5) implies that Equation (8)

holds for k + 1. Hence, the proof is completed.

Theorem 1. Suppose that for any fixed µ > 0, Ψµ satisfies Assumption 1, then the infinite sequence
{xk} generated by Algorithm 1 satisfies

lim
k−→∞

µk = 0, lim inf
k−→∞

‖∇Ψµk−1
(xk)‖ = 0 (14)

Algorithms 2015, 8 1200

Proof Denote K = {k|µk+1 = m1µk}, we first show that K is an infinite set.
If K is a finite set, there exists an integer k̄ such that

‖∇Ψµk−1
(xk)‖ ≥ mµk−1

for all k > k̄. We also have µk = µk̄ =: µ̄ for all k > k̄ and

lim inf
k−→∞

‖∇Ψµ̄(xk)‖ > 0 (15)

In the following, we will proof
lim inf
k−→∞

‖∇Ψµ̄(xk)‖ = 0 (16)

By Lemma 1 and Assumption 1, we know that {Ψµ̄(xk)} is a monotone decreasing sequence and the
limit of {Ψµ̄(xk)} is exist. Summing Equation (7), we get

∑
k≥k̄+1

(∇Ψµ̄(xk))
Tdk)

2

‖dk‖2
<∞ (17)

Due to Equation (2), we also have

dk +∇Ψµ̄(xk) = βkdk−1,∀k ≥ k̄ + 1 (18)

Square both sides of Equation (18), we get

‖dk‖2 = (βk)
2‖dk−1‖2 − 2(∇Ψµ̄(xk))

Tdk − ‖∇Ψµ̄(xk)‖2 (19)

Divided both sides of Equation (19) by ((∇Ψµ̄(xk))
Tdk)

2, we have

‖dk‖2

((∇Ψµ̄(xk))Tdk)2
=

(βk)
2‖dk−1‖2

((∇Ψµ̄(xk))Tdk)2
− 2(∇Ψµ̄(xk))

Tdk
((∇Ψµ̄(xk))Tdk)2

− ‖∇Ψµ̄(xk)‖2

((∇Ψµ̄(xk))Tdk)2

=
(βk)

2‖dk−1‖2

((∇Ψµ̄(xk))Tdk)2
− (

1

‖∇Ψµ̄(xk)‖
+
‖∇Ψµ̄(xk)‖

(∇Ψµ̄(xk))Tdk
)2 +

1

‖∇Ψµ̄(xk)‖2

≤ (βk)
2‖dk−1‖2

((∇Ψµ̄(xk))Tdk)2
+

1

‖∇Ψµ̄(xk)‖2

=
‖dk−1‖2

((∇Ψµ̄(xk−1))Tdk−1)2
+

1

‖∇Ψµ̄(xk)‖2

≤ ‖dk−2‖2

((∇Ψµ̄(xk−2))Tdk−2)2
+

1

‖∇Ψµ̄(xk−1)‖2
+

1

‖∇Ψµ̄(xk)‖2

≤ · · ·

≤ ‖dk̄+1‖2

((∇Ψµ̄(xk̄+1))Tdk̄+1)2
+

1

‖∇Ψµ̄(xk̄+2)‖2
+ · · ·+ 1

‖∇Ψµ̄(xk)‖2

Denote
‖dk̄+1‖2

((∇Ψµ̄(xk̄+1))Tdk̄+1)2
= λ > 0

Algorithms 2015, 8 1201

Then
‖dk‖2

((∇Ψµ̄(xk))Tdk)2
≤ λ+

k∑
i=k̄+2

1

‖∇Ψµ̄(xi)‖2
(20)

If Equation (16) is not hold, there exists γ > 0 such that

‖∇Ψµ̄(xk)‖ ≥ γ, ∀k > k̄ + 1 (21)

We obtain from Equations (20) and (21) that

‖dk‖2

((∇Ψµ̄(xk))Tdk)2
≤ λγ2 + k − k̄ − 1

γ2

Because of
((∇Ψµ̄(xk))

Tdk)
2

‖dk‖2
≥ γ2

λγ2 + k − k̄ − 1

provies ∑
k≥k̄+1

((∇Ψµ̄(xk))
Tdk)

2

‖dk‖2
= +∞

which leads to a contradiction with Equation (17). This show that Equation (16) holds. There are
conflicts between Equations (16) and (15). This show that K must be an infinite set and

lim
k−→∞

µk = 0 (22)

Then, we can assume that K = {k0, k1, ...} with k0 < k1 < ... Hence, we get

lim
i−→∞

‖∇Ψµki
(xki+1)‖ ≤ m lim

i−→∞
µki = 0

and completes the proof.

3. Numerical Tests

In this section, we intend to test the efficiency of Algorithm 1 by numerical experiments. We use
Algorithm 1 to solve eleven examples, some of them are proposed the first time, some of them are
modified by the examples of the references (such as [26,27]).

The smoothing function of F as F̃i(x, µ) =
√
Fi(x)2 + µ is used in solving Examples

1–4. From Example 5 to Example 11, the smoothing function of F is defined by (see [26]).
F̃ (x, µ) = µ ln

∑m
i=1 exp(fi(x)

µ
), where F (x) = max{f1(x), · · · , fm(x)}, i = 1, · · ·m.

Throughout the experiments, we set σ = 10−2,m = 1.5,m1 = 0.5. In Examples 1–3 and
Examples 5–8, we set ε = 10−4, δ = 10−3, η = 0.4, µ0 = 0.2. Example 4, in which we set
parameters ε = 10−3, δ = 10−2, η = 0.1, µ0 = 0.02. In the case of Examples 9–11, we set
ε = 10−2, δ = 10−3, η = 0.4, µ0 = 0.2. We choose Ψ(x) ≤ ε as the termination criterion. Our
numerical results are summaried in Tables 1–11, where all components of x0 are randomly selected from
0 to 10. We randomly generate 10 initial points, then implement Algorithm 1 to solve the test problem
for each initial point. By the numerical of results of Examples 10–11, we can see that Algorithm 1 is
suitably to solve the large scale problems.

Example 1. We consider Equation (1), where F is defined by F (x) = |2x− 1|.
The exact solutions of this problem are 0 and 0.5.

Algorithms 2015, 8 1202

Table 1. Number of iterations and the final value of Ψ(x∗).

x0 x∗ Ψ(x∗) k

0.9713 5.053658e−1 5.636783e−5 1
1.7119 4.977618e−1 9.929266e−6 11
2.7850 −1.295343e−2 8.495830e−5 8
3.1710 5.422178e−3 1.461954e−5 8
4.0014 5.562478e−3 1.538368e−5 8
5.4688 −7.521520e−3 2.849662e−5 7
6.5574 5.926470e−3 1.745635e−5 10
7.9221 1.276205e−2 8.037197e−5 7
8.4913 −1.994188e−3 1.992344e−6 7
9.3399 1.723553e−3 1.482749e−6 7

Example 2. We consider Equation (1), where F =

(
|2x1 − 1|

|4x2 + x1 − 1
2
|

)
. There are three exact

solutions as (1
2
, 0)T , (0, 1

8
)T and (0, 0)T .

Table 2. Number of iterations and the final value of Ψ(x∗).

x0 x∗ Ψ(x∗) k

(4.6939, 0.1190)T (−0.0058, 0.0031)T 2.162427e−5 7
(5.2853, 1.6565)T (0.0077, 0.1233)T 2.974655e−5 13
(9.9613, 0.7818)T (0.0030, 0.1248)T 7.106107e−6 5
(4.9836, 9.5974))T (0.4979,−0.0097)T 6.744680e−5 12
(1.4495, 8.5303)T (0.4978, 0.0080)T 3.327241e−5 13
(0.4965, 9.0272)T (0.0045, 0.1221)T 3.348105e−5 15
(9.1065, 1.8185)T (−0.0045, 0.1296)T 9.857281e−5 6
(4.0391, 0.9645)T (0.0087, 0.1247)T 6.417282e−5 10
(7.7571, 4.8679)T (0.0045,−0.0043)T 1.946526e−5 13
(7.0605, 0.3183)T (0.0086, 0.122)T 4.037476e−5 8

Example 3. We consider Equation (1), where F =

 |5x1 + x2 − x3|
x2

1 + 4x2 − x3 − 2

5x2
2 − 6x1 − 2x3

 .

(0, 1
2
, 0)T is one of the exact solutions of this problem.

Algorithms 2015, 8 1203

Table 3. Number of iterations and the final value of Ψ(x∗).

x0 x∗ Ψ(x∗) k

(1.9175, 7.3843, 2.4285)T (0.0087, 0.5021,−0.0026)T 9.785244e−5 21
(1.1921, 9.3983, 6.4555)T (0.0047, 0.5019, 0.0102)T 6.577107e−5 25
(1.8687, 4.8976, 4.4559)T (−0.0055, 0.4974,−0.0109)T 7.552798e−5 19
(2.7029, 2.0846, 5.6498)T (0.0099, 0.4998, 0.0028)T 5.759549e−5 26
(7.2866, 7.3784, 0.6340)T (0.0099, 0.5003,−0.0063)T 9.612693e−5 36
(1.2991, 5.6882, 4.6939)T (−0.0115, 0.5009, 0.0065)T 9.216436e−5 31
(5.3834, 9.9613, 0.7818)T (0.0022, 0.4952,−0.0083)T 9.798255e−5 26
(9.5613, 5.7521, 0.5978)T (0.0089, 0.5029, 0.0074)T 7.570081e−5 28
(7.7571, 4.8679, 4.3586)T (0.0048, 0.5025,−0.0008)T 6.774521e−5 24
(3.8827, 5.5178, 2.2895)T (−0.0047, 0.4981,−0.0111)T 7.903206e-5 25

Example 4. We consider Equation (1), where F =


|2x1 − x2 + 3x3 + 2x4 − 6|
3x1 − 3x2 + 3x3 + 2x4 − 5

3x1 − x2 − x3 + 2x4 − 3

3x1 − x2 + 3x3 − x4 − 4

 .

(31
13
, 22

13
, 0, 19

13
)T , (7

4
, 0, 0, 5

4
)T , (0, 0, 11

5
, 13

5
)T , (3, 0, 0, 0)T are four of the exact solutions of this problem.

Table 4. Number of iterations and the final value of Ψ(x∗).

x0 x∗ Ψ(x∗) k

(5.6743, 9.6878, 8.2450, 9.5961)T (0.0062,−0.0249, 2.1692, 2.5652)T 4.436641e-4 21
(0.1485, 1.5669, 4.7157, 5.4299)T (0.0009, 0.0320, 2.2173, 2.6291)T 5.987181e−4 37
(0.5969, 6.5803, 8.8964, 1.0963)T (3.0522, 0.0031,−0.0202,−0.0151)T 3.790585e−4 23
(8.7494, 1.2100, 8.5635, 8.9978)T (0.0296,−0.0290, 2.1300, 2.5000)T 9.638295e−4 17
(7.7836, 0.6937, 2.7878, 3.7937)T (3.0003, 0.0096, 0.0154,−0.0158)T 3.052065e−4 13
(0.6837, 0.8497, 0.6834, 4.0982)T (3.0055, 0.0333,−0.0050, 0.0131)T 7.098848e−4 21
(7.6034, 5.8410, 4.0295, 5.1004)T (2.4048, 1.7076,−0.0096, 1.4753)T 4.242339e−4 25
(9.8754, 9.2271, 5.6426, 4.3146)T (3.0166, 0.0148,−0.0271, 0.0280)T 8.913504e−4 20
(8.5061, 1.4453, 3.7049, 6.2239)T (2.9635, 0.0040, 0.0176, 0.0220)T 5.981987e−4 26
(2.7744, 0.0611, 3.7471, 4.3693)T (0.0132,−0.0399, 2.1529, 2.5310)T 9.794091e−4 21

Example 5. We consider Equation (1), where F = max{(x − 2), (2x − 5)}. There are two exact
solutions as 0 and 2.

Algorithms 2015, 8 1204

Table 5. Number of iterations and the final value of Ψ(x∗).

x0 x∗ Ψ(x∗) k

0.2922 2.0024 2.787626e−6 5
1.7071 1.9894 5.621467e−5 3
2.2766 2.0075 2.836408e−5 3
3.1110 2.0001 2.938429e−9 1
4.3570 2.0101 5.061011e−5 4
5.7853 2.0109 5.937701e−5 5
6.2406 1.9871 8.325445e−5 6
7.1122 2.0116 6.635145e−5 3
8.8517 1.9970 4.557770e−6 6
9.7975 1.9928 2.607803e−5 4

Example 6. We consider Equation (1), where F =


f1(x)

f2(x)

f3(x)

f4(x)

 .

fi(x) = max{x2
1, x

2
2, x

2
3, x

2
4}, i = 1, 2, 3, 4. The exact solution of this problem is (0, 0, 0, 0)T .

Table 6. Number of iterations and the final value of Ψ(x∗).

x0 x∗ Ψ(x∗) k

(7.4003, 2.3483, 7.3496, 9.7060)T (0.0825, 0.0842, 0.0825, 0.0830)T 9.228501e−5 29
(1.3393, 0.3089, 9.3914, 3.0131)T (0.0858, 0.0629, 0.0484, 0.0414)T 9.446089e−5 22
(7.3434, 0.5133, 0.7289, 0.8853)T (0.0852, 0.0817, 0.0801, 0.0607)T 9.546345e−5 36
(6.7865, 4.9518, 1.8971, 4.9501)T (0.0431, 0.0800, 0.0733, 0.0801)T 7.428734e−5 34
(1.4761, 0.5497, 8.5071, 5.6056)T (0.0774, 0.0691, 0.0717, 0.0655)T 6.591548e−5 39
(0.5670, 5.2189, 3.3585, 1.7567)T (0.0244, 0.0421, 0.0575, 0.0604)T 2.433055e−5 25
(7.6903, 5.8145, 9.2831, 5.8009)T (0.0477, 0.0739, 0.0745, 0.0766)T 6.280631e−5 32
(6.9475, 7.5810, 4.3264, 6.5550)T (0.0846, 0.0819, 0.0566, 0.0850)T 9.476538e−5 21
(2.8785, 4.1452, 4.6484, 7.6396)T (0.0637, 0.0802, 0.0742, 0.0012)T 5.739573e−5 33
(2.9735, 0.6205, 2.9824, 0.4635)T (0.0854, 0.0727, 0.0831, 0.0542)T 9.575717e−5 22

Example 7. We consider Equation (1), where F =

 f1(x)
...

f10(x)


with fi(x) = max{x2

1, · · · , x2
10}, i = 1, · · · , 10. The exact solution of this problem is

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T .

Algorithms 2015, 8 1205

Table 7. Number of iterations and the final value of Ψ(x∗).

x0 Ψ(x∗) k

(8.2408, 8.2798, 2.9337, 3.0937, 5.2303, 3.2530, 8.3184, 8.1029, 5.5700, 2.6296)T 9.719070e−5 27
(9.5089, 4.4396, 0.6002, 8.6675, 6.3119, 3.5507, 9.9700, 2.2417, 6.5245, 6.0499)T 9.957464e−5 45
(4.1705, 9.7179, 9.8797, 8.6415, 3.8888, 4.5474, 2.4669, 7.8442, 8.8284, 9.1371)T 8.965459e−5 39
(8.3975, 3.7172, 8.2822, 1.7652, 1.2952, 8.7988, 0.4408, 6.8672, 7.3377, 4.3717)T 9.644608e−5 47
(9.7209, 0.3146, 8.3540, 8.3571, 0.4986, 5.4589, 9.4317, 3.2147, 8.0647, 6.0140)T 9.737485e−5 37
(8.3336, 4.0363, 3.9018, 3.6045, 1.4026, 2.6013, 0.8682, 4.2940, 2.5728, 2.9756)T 9.240212e−5 47
(4.8267, 3.7601, 5.2378, 2.6487, 0.6836, 4.3633, 1.7385, 0.2611, 9.5468, 4.3060)T 8.801643e−5 44
(0.5398, 0.2062, 6.8148, 5.9863, 1.1403, 7.9625, 6.1785, 0.7021, 0.6928, 1.3601)T 8.946151e−5 44
(5.7099, 1.6977, 1.4766, 4.7608, 9.0810, 5.5218, 0.3294, 0.5386, 8.0506, 4.5137)T 8.815143e−5 45
(2.1647, 7.8620, 7.2309, 2.7884, 5.8243, 4.2101, 0.9207, 0.2403, 4.9115, 2.7827)T 6.697806e−5 39

Example 8. We consider Equation (1), where F =

 f1(x)
...

f4(x)


with fi(x) =

∑4
j=1max{−xj − xj+1,−xj − xj+1 + (x2

j + x2
j+1 + 1)}, i = 1, 2, 3, 4. The exact solution

of this problem is (0, 0, 0, 0)T .

Table 8. Number of iterations and the final value of Ψ(x∗).

x0 Ψ(x∗) k

(4.1131, 8.2898, 9.3511, 3.9907)T 3.670149e−5 4
(0.5221, 5.7119, 7.4767, 3.2024)T 4.216994e−5 4
(5.4000, 2.2106, 0.9595, 0.6017)T 6.167554e−5 7
(6.6015, 0.5231, 5.5683, 7.1203)T 3.838925e−5 4
(1.6924, 2.5845, 1.9791, 6.0569)T 6.272257e−5 6
(3.3969, 1.9786, 5.0683, 9.5076)T 7.097729e−5 5
(4.2175, 4.1131, 9.5914, 7.5025)T 2.693701e−5 4
(8.8728, 0.5585, 1.3822, 8.6306)T 9.021922e−5 7
(9.8100, 2.3352, 0.9623, 3.8458)T 4.687797e−5 5
(9.6426, 6.7115, 2.9917, 5.3113)T 8.657057e−5 6

Example 9. We consider Equation (1), where F =

 f1(x)
...

f4(x)


with fi(x) =

∑4
j=1max{−xj − xj+1,−xj − xj+1 + (x2

j + x2
j+1 − 1)}, i = 1, 2, 3, 4. The exact solution

of this problem is (0, 0, 0, 0)T .

Algorithms 2015, 8 1206

Table 9. Number of iterations and the final value of Ψ(x∗).

x0 Ψ(x∗) k

(1.5290, 1.5254, 1.5555, 0.8957)T 9.777886e−3 8
(4.5442, 6.6890, 8.3130, 7.9024)T 3.912481e−3 5
(9.0150, 3.1834, 5.9708, 2.9780)T 9.081688e−3 3
(3.1781, 9.8445, 5.4825, 7.4925)T 6.868711e−3 7
(8.4185, 1.6689, 9.0310, 1.0512)T 5.318627e−3 4
(7.4509, 7.2937, 7.1747, 1.3343)T 7.203761e−3 9
(4.4579, 5.0879, 5.3049, 8.5972)T 9.500345e−3 4
(6.7772, 8.0584, 5.3124, 9.5590)T 9.421194e−3 4
(0.6668, 5.4152, 2.8166, 4.8090)T 6.718722e−3 7
(6.8486, 2.0826, 6.0816, 3.2618)T 3.494877e−3 4

Example 10. We consider Equation (1), where F =

 f1(x)
...

fn(x)


with fi(x) = max{x2

1 − 6x1, · · · , x2
n − 6xn}, i = 1, · · · , n. n represents the problem dimension. The

solution is x∗ = (λ · · ·λ)T (λ is no more than 6). In this problem, we intend to check the efficiency of
Algorithm 1 with the dimension of test problem is 50, 100, and 200. We randomly selected ten initial
values when n = 50, n = 100 and n = 200.

Table 10. Number of iterations, the final value of Ψ(x∗) and dimension of the test problem.

n = 50 n = 100 n = 200
Ψ(x∗) k Ψ(x∗) k Ψ(x∗) k

1.625691e−3 9 9.444914e−3 11 9.897292e−3 15
4.082584e−3 7 5.358975e−5 9 3.937758e−4 5
6.082289e−3 7 4.734809e−3 9 5.800944e−3 16
2.042082e−3 9 3.249863e−3 6 3.289200e−3 11
3.765484e−3 9 6.587880e−3 10 4.674659e−3 10
7.553578e−3 13 2.632872e−3 10 1.450852e−3 13
4.208302e−4 14 4.177174e−3 3 9.461359e−3 16
4.250316e−3 9 9.744427e−3 7 3.778464e−3 15
2.634965e−5 10 5.854241e−6 10 1.501579e−3 8
3.445498e−3 11 4.209193e−3 6 1.984871e−3 25

Example 11. We consider Equation (1), where F =

 f1(x)
...

fn(x)


with fi(x) = max{x2

1, · · · , x2
n}, i = 1, · · · , n. The problem has only unique solution x∗ = (0, · · · , 0)T .

We randomly selected ten initial values when n = 100, n = 200 and n = 500.

Algorithms 2015, 8 1207

Table 11. Number of iterations, the final value of Ψ(x∗) and dimension of the test problem.

n = 100 n = 200 n = 500
Ψ(x∗) k Ψ(x∗) k Ψ(x∗) k

9.152621e−03 17 9.040255e−03 9 7.682471e−3 14
4.383679e−3 15 6.976857e−3 9 8.861191e−3 15
5.172738e−3 15 6.902897e−3 10 8.892858e−3 12
5.796109e−3 12 7.686345e−3 12 9.210427e−3 14
7.613768e−3 16 8.400876e−3 10 9.843579e−3 10
5.398565e−3 12 8.066523e−3 10 9.717126e−3 13
3.403516e−3 15 9.097423e−3 12 8.999900e−3 15
8.701785e−3 13 7.208014e−3 11 9.970099e−3 12
8.302172e−3 11 7.822304e−3 13 9.391355e−3 15
6.610621e−3 13 7.278306e-3 9 9.624919e−3 10

4. Conclusions

In this paper, we have presented a new smoothing conjugate gradient method for the nonlinear
nonsmooth complementarity problems. The method is based on a smoothing Fischer-Burmeister
function and Armijo-type line search. With careful analysis, we are able to show that our method
is globally convergent. Numerical tests illustrate that the method can efficiently solve the given test
problems, therefor the new method is promising. We might consider more effective ways of choosing
smoothing functions and line search methods for our method. This remains under investigation.

Acknowledgments

The authors wish to thank the anonymous referees for their helpful comments and suggestions,
which led to great improvement of the paper. This work is also supported by National Natural
Science Foundation of China (NO. 11101231, 11401331), Natural Science Foundation of Shandong
(No. ZR2015AQ013) and Key Issues of Statistical Research of Shandong Province (KT15173).

Author Contributions

Ajie Chu prepared the manuscript. Yixiao Su assisted in the work. Shouqiang Du was in charge of
the overall research of the paper.

Conflicts of Interest

The authors declare no conflict of interest.

Algorithms 2015, 8 1208

References

1. Facchinei, F.; Pang, J.S. Finite-Demensional Variational Inequalities and Complementarity
Problems; Spring-Verlag: New York, NY, USA, 2003.

2. Luca, T.D.; Facchinei, F.; Kanzow, C. A semismooth equation approach to the solution of nonlinear
complementarity problems. Math. Programm. 1996, 75, 407–439.

3. Ferris, M.C.; Pang, J.S. Engineering and economic applications of complementarity problems.
SIAM Rev. 1997, 39, 669–713.

4. Zhao, Y.B.; Li, D. A new path-following algorithm for nonlinear complementarity problems.
Comp. Optim. Appl. 2005, 34, 183–214.

5. Yu, Q.; Huang, C.C.; Wang, X.J. A combined homotopy interior point method for the linear
complementarity problem. Appl. Math. Comp. 2006, 179, 696–701.

6. Wang, Y.; Zhao, J.X. An algorithm for a class of nonlinear complementarity problems with
non-Lipschitzianfunctions. Appl. Numer. Math. 2014, 82, 68–79.

7. Fischer, A.; Jiang, H. Merit functions for complementarity and related problems: A survey. Comp.
Optim. Appl. 2000, 17, 159–182.

8. Chen, J.S.; Pan, S.H. A family of NCP functions and a descent method for the nonlinear
complementarity problem. Comp. Optim. Appl. 2008, 40, 389–404.

9. Luca, T.D.; Facchinei, F.; Kanzow, C. A theoretical and numerical comparison of some semismooth
algorithm for complementarity problems. Comp. Optim. Appl. 2000, 16, 173–205.

10. Wu, C.Y. The Conjugate Gradient Method for Solving Nonlinear Complementarity Problems; Inner
Mongolia University: Hohhot, China, 2012.

11. Qi, L.; Sun, D. Nonsmooth and smoothing methods for nonlinear complementarity problems and
variational inequalities. Encycl. Optim. 2009, 1, 2671–2675.

12. Facchinei, F.; Kanzow, C. A nonsmooth inexact Newton method for the solution of large-scale
nonlinear complementarity problems. Math. Programm. 1997, 76, 493–512.

13. Yang, Y.F.; Qi, L. Smoothing trust region methods for nonlinear complementarity problems with
P0 -functions. Ann. Op. Res. 2005, 133, 99–117.

14. Chen, B.; Xiu, N. A global linear and local quadratic non-interior continuation method for
nonlinear complementarity problems based on Chen-Mangasarian smoothing functions. SIAM J.
Optim. 1999, 9, 605–623.

15. Chen, B.; Chen, X.; Kanzow, C. A penalized Fischer-Burmeister NCP-function: Theoretical
investigation and numerical results. Math. Programm. 2000, 88, 211–216.

16. Kanzow, C.; Kleinmichel, H. A new class of semismooth Newton-type methods for nonlinear
complementarity problems. Comp. Optim. Appl. 1998, 11, 227–251.

17. Chen, X.; Qi, L.; Sun, D. Global and superlinear convergence of the smoothing Newton method
and its application to general box constrained variational inequalities. Math. Comp. 1998, 67,
519–540.

18. Kanzow, C.; Pieper, H. Jacobian smoothing methods for general nonlinear complementarity
problems. SIAM J. Optim. 1999, 9, 342–372.

Algorithms 2015, 8 1209

19. Chen, B.; Harker, P.T. Smoothing approximations to nonlinear complementarity problems. SIAM
J. Optim. 1997, 7, 403–420.

20. Wu, C.Y.; Chen, G.Q. A smoothing conjugate gradient algorithm for nonlinear complementarity
problems. J. Sys. Sci. Sys. Engin. 2008, 17, 460–472.

21. Clarke, F.H. Optimization and Nonsmooth Analysis; John Wiley and Sons, Inc.: New York, NY,
USA, 1983.

22. Chen, X.J. Smoothing methods for nonsmooth, nonconvex minimization. Math. Programm. 2012,
134, 71–99.

23. Fischer, A. A special Newton-type optimization method. Optimization 1992, 24, 269–284.
24. Dai, Y.H.; Yuan, Y. An efficient hybrid conjugate gradient method for unconstrained optimization.

Ann. Oper. Res. 2001, 103, 33–47.
25. Dai, Y.H. Conjugate gradient methods with Armijo-type line searches. Acta Math. Appl. Sin.

2002, 18, 123-130.
26. Xu, S. Smoothing method for minimax problem. Comp. Optim. Appl. 2001, 20, 267–279.
27. Haarala, M. Large-Scale Nonsmooth Optimization: Variable Metric Bundle Method with Limited

Memory. Ph.D. Thesis, University of Jyväskylä: Jyväskylä, Finland, 13 November 2004.

c© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).

	Introduction
	The New Smoothing Conjugate Gradient Method and its Global Convergence
	Numerical Tests
	Conclusions

