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Abstract: The sign least mean square with reweighted L1-norm constraint (SLMS-RL1) 

algorithm is an attractive sparse channel estimation method among Gaussian mixture 

model (GMM) based algorithms for use in impulsive noise environments. The channel 

sparsity can be exploited by SLMS-RL1 algorithm based on appropriate reweighted factor, 

which is one of key parameters to adjust the sparse constraint for SLMS-RL1 algorithm. 

However, to the best of the authors’ knowledge, a reweighted factor selection scheme has 

not been developed. This paper proposes a Monte-Carlo (MC) based reweighted factor 

selection method to further strengthen the performance of SLMS-RL1 algorithm. To 

validate the performance of SLMS-RL1 using the proposed reweighted factor, simulations 

results are provided to demonstrate that convergence speed can be reduced by increasing 

the channel sparsity, while the steady-state MSE performance only slightly changes with 

different GMM impulsive-noise strengths.  

Keywords: Sign least mean square (SLMS); reweighted L1-norm (RL1); reweighted factor 

selection; Gaussian mixture model (GMM); sparse channel estimation 
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1. Introduction 

Adaptive filtering algorithms have been widely applied for multipath channel estimation, especially 

in broadband wireless systems [1–7], where the broadband signals are vulnerable to multipath fading 

as well as additive noises [8–10]. Hence, channel state information (CSI) is necessary for coherent 

demodulation [11]. Based on the classical Gaussian noise model, second-order statistics based least 

mean square (LMS) algorithm has been widely used to estimate channels due to its simplicity and  

robustness [1,2]. However, the performance of LMS is usually degraded by impulsive noise [12], 

which is common in broadband wireless systems and can be described by the Gaussian mixture noise 

model (GMM) [13]. Thus, it is necessary to develop robust channel estimation algorithms in the 

presence of GMM impulsive noise. In [1], a standard sign least mean square (SLMS) algorithm was 

proposed to suppress impulsive noise. In [14], Jiang et al. proposed a sophisticated robust matched 
filtering algorithm in ℓ௣ -space to realize time delay estimation (TDE) and joint delay-Doppler 

estimation (JDDE) for target localization. On the other hand, wireless channels can be often modeled 

as sparse or cluster-sparse and hence many of channel coefficients are zero [15–19]. However, 

standard SLMS algorithm does not exploit sparse channel structure information, while some potential 

performance gain could be obtained by adopting advanced adaptive channel estimation algorithms.  

To exploit channel sparsity as well as to mitigate GMM impulsive noises, some state-of-the-art 

channel estimation algorithms using linear programming [20,21] and Bayesian learning [22] have been 

investigated. However, these algorithms often have high computational complexity. It is well known 

that the fast channel estimation algorithm is one of important factors to design wireless communication 

systems. Hence, a fast adaptive sparse channel estimation algorithm, i.e., SLMS with reweighted  

L1-norm constraint (SLMS-RL1) algorithm was proposed in [23]. In our previous work, we focused 

on the convergence analysis without considering the reweighted factor selection, where the empirical 

parameter is set as ߝ ൌ 0.005 [6]. However, the reweighted factor is one of critical parameters to 

balance estimation performance and sparsity exploitation. To this end, this paper proposes a  

Monte-Carlo (MC) based selection method to select suitable reweighted factor for SLMS-RL1 

algorithm. Numerical simulations are provided to evaluate the performance of the SLMS-RL1 

algorithm using the proposed reweighted factor. 

The rest of the paper is organized as follows. In Section 2, we introduce GMM noise model and 

review of SLMS-RL1 algorithm. By analyzing the convergence performance of LMS-RL1 algorithm, 

the important problem of the reweighted factor selection is point out. In Section 3, the MC-based 

selection method is proposed to select an appropriate reweighted factor for SLMS-RL1 algorithm. In 

Section 4, numerical simulations are provided to demonstrate the effectiveness of SLMS-RL1 with the 

proposed reweighted factor. Finally, Section 5 concludes this paper. 

2. Problem Formulation 

2.1. Review of SLMS-RL1 Algorithm 

Consider an additive noise interference channel, which is modeled by the unknown N-length finite 

impulse response (FIR) vector ܟ ൌ ሾݓ଴,ݓଵ, … ேିଵሿ்ݓ,  at discrete time index ݊. The ideal received 

signal is expressed as 
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݀ሺ݊ሻ ൌ ܟሺ݊ሻ்ܠ ൅ ሺ݊ሻ (1)ݖ

where ܠሺ݊ሻ ൌ ሾݔሺ݊ሻ, ሺ݊ݔ െ 1ሻ, … , ሺ݊ݔ െ ܰ ൅ 1ሻሿ்  is the input signal vector of the ܰ  most recent 

input samples; ܟ is an ܰ-dimensional column vector of the unknown system that we wish to estimate, 

and ݖሺ݊ሻ  is impulsive noise which can be described by Gaussian mixture model (GMM) [13] 

distribution as 

ሺ݊ሻ൯ݖ൫݌ ൌ ሺ1 െ ߶ሻ ⋅ ࣝࣨሺ0, ௡ଶሻߪ ൅ ߶ ⋅ ࣝࣨሺ0, ௡ଶሻ (2)ߪܶ

where ܶ ≫ 1 denotes impulsive-noise strength and ࣝࣨሺ0,  ௡ଶሻ denotes the Gaussian distributions withߪ

zero mean and variance ߪ௡ଶ, and the ߶ is the mixture parameter to control the impulsive noise level. 

According to Equation (2), one can find that stronger impulsive noises can be described by larger noise 

variance ܶߪ௡ଶ as well as larger mixture parameter ߶. According to Equation (2), variance of GMM  

is obtained. 

௭ଶߪ ൌ ଶሺ݊ሻሽݖሼܧ ൌ ሺ1 െ ߶ሻߪ௡ଶ ൅ ௡ଶ (3)ߪܶ߶

Note that ݖሺ݊ሻ will reduce to Gaussian noise model if ߶ ൌ 0. The objective of the adaptive channel 

estimation is to perform adaptive estimate of ܟሺ݊ሻ  with limited complexity and memory given 

sequential observation ሼ݀ሺ݊ሻ, ሺ݊ሻሽܠ  in the presence of additive GMM noise ሺ݊ሻݖ	 . According to 

Equation (1), instantaneous estimation error	݁ሺ݊ሻ can be written as 

݁ሺ݊ሻ ൌ ݀ሺ݊ሻ െ ሺ݊ሻ (4)ܠሺ݊ሻ்ܟ

where ܟሺ݊ሻ is the estimator of ܟ at iteration ݊.  

To obtain the optimal channel estimation, one can construct the ℓ଴-norm minimization problem as 

ሺ݊ሻܩ ൌ ‖݁ሺ݊ሻ‖ଵ ൅ ሺ݊ሻ‖଴ (5)ܟ‖ߣ

where ‖ܟሺ݊ሻ‖଴ denotes ℓ଴-norm operator which is defined as ‖ܟሺ݊ሻ‖଴ ൌ #ሼ݅|ݓ௜ሺ݊ሻ ് 0ሽ. That is to 

say, the main function of ‖ܟሺ݊ሻ‖଴  is to find the total number of nonzero coefficients. However, 

solving the ℓ଴-norm minimization is a Non-Polynomial (NP) hard problem. Hence, it is necessary to 

introduce an approximate ℓ଴-norm minimization function so that Equation (5) is solvable. On the 

adaptive sparse channel estimation, reweighted ℓଵ-norm (RL1) minimization has a better performance 

than ℓଵ-minimization that is usually employed in compressive sensing [24]. It is due to the fact that a 

properly RL1 can approximate the ℓ଴-norm more accurate than ℓଵ-norm. Hence, one approach to 

enforce the sparsity of the solution for the sparse SLMS algorithm is to introduce the RL1 penalty term 

in thee cost function as RL1-LAE which considers a penalty term proportional to the RL1 of the 

coefficient vector. Hence, the cost function Equation (5) can be revised as 

ሺ݊ሻܩ ൌ ‖݁ሺ݊ሻ‖ଵ ൅ ሺ݊ሻ‖ଵ (6)ܟ۴ሺ݊ሻ‖ߣ

where ߣ is the weight associated with the penalty term and elements of the ܰ ൈ ܰ diagonal reweighted 

matrix ۴ሺ݊ሻ are devised as 

ሾ۴ሺ݊ሻሿ௜௜ ൌ
1

ߝ ൅ |ሾܟሺ݊ െ 1ሻሿ௜ |
, ݅ ൌ 0, 1, … , ܰ െ 1 (7)
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where ߝ  being some positive number and hence ሾ۴ሺ݊ሻሿ௜௜ ൐ 0  for ݅ ൌ 0, 1, … ,ܰ െ 1 . The update 

equation can be derived by differentiating (6) with respect to the FIR channel vector ܟሺ݊ሻ. Then, the 

resulting update equation is 

ሺ݊ܟ ൅ 1ሻ ൌ ሺ݊ሻܟ െ
ሺ݊ሻܩ߲ߤ

ሺ݊ሻܟ߲
 

ൌ ሺ݊ሻܟ ൅ ሺ݊ሻsgn൫݁ሺ݊ሻ൯ܠߤ െ
ሺ݊ሻ൯ܟsgn൫ߩ
ߝ ൅ ሺ݊ܟ| െ 1ሻ|

 
(8)

where ߩ ൌ ߣߤ . Notice that in Equation (8), since sgn൫۴ሺ݊ሻ൯ ൌ ۷ேൈே , one can get  

sgnሺ۴ሺ݊ሻܟሺ݊ሻሻ ൌ sgn൫۴ሺ݊ሻ൯sgn൫ܟሺ݊ሻ൯ ൌ sgn൫ܟሺ݊ሻ൯ , where sgnሺ⋅ሻ  denotes sign function, i.e., 

sgnሺܽሻ ൌ a/|a| for ܽ ് 0, sgnሺܽሻ ൌ 0 for ܽ ൌ 0.  

2.2. Problem Formulation 

Define the misalignment channel vector as ܞሺ݊ሻ ≜ ሺ݊ሻܟ െ ܟ  and ۱ሺ݊ሻ ≜  ሺ݊ሻሽ as the்ܞሺ݊ሻܞሼܧ

second moment matrix of ܞሺ݊ሻ, Equation (4) can be rewritten as ݁ሺ݊ሻ ൌ ሺ݊ሻݖ െ  ሺ݊ሻ. To verifyܠሺ݊ሻ்ܞ

the performance, the convergence analysis of SLMS-RL1 algorithm is derived via mean convergence 

and excess MSE. Based on independent assumptions, in [23], the authors derive that SLMS-RL1 is 

stable if  

0 ൏ ߤ ൏ ሺ1ߨ௡ඥߪ ൅ ሺܶ െ 1ሻ߶ሻ/2/ߣ୫ୟ୶ (9)

where ߣ୫ୟ୶ denotes the maximal eigenvalue of ܀ ൌ  ሺ݊ሻ. Then the mean estimation error்ܠሺ݊ሻܠሼܧ

ሺ݊ܟሼܧ ൅ 1ሻሽ is derived as 

ሺ∞ሻܟ ൌ െܟ ඥିߤ2/ߨଵି܀ߩଵߪ௘ିଵsgn൫ܟሺ∞ሻ൯/ሺߝ ൅  (10)	ሺ∞ሻሻܟ

where ߪ௘ሺ݊ሻ ൎ ௡ඥ1ߪ ൅ ሺܶ െ 1ሻ߶	 and ܟሺ∞ሻ ൌ lim
௡→ஶ

 ሺ݊ሻ. Similarly, excess mean square error (MSE)ܟ

is approximated as 

ඥ8/ߨ൫ߣߤ୫ୟ୶ ൅ ߙଵሺିߤ െ ௘ (11)ߪሻ൯ߚ

where ߙand ߚ are defined as  

ߙ ≜ ଶ (12)ߝ/ଶܰߩ

and 

ߚ ≜ ൫1ߩ2 െ ඥ2/ߪߤߨ௘ିଵߣ୫ୟ୶൯ܧሼ‖ܟሺ∞ሻ/ሺߝ ൅ ሺ∞ሻሻ‖ଵܟ െ ߝሺ/ܟ‖ ൅ ሺ∞ሻሻ‖ଵሽ (13)ܟ

respectively. Here, ‖⋅‖ଵ  denotes ℓଵ -norm constraint. Both mean estimation error and excess MSE 

imply that the reweighted factor ߝ adjusts performance of SLMS-RL1 algorithm. Hence, it is necessary 

to develop effective method to choose agreeable reweighted factor for further reinforce the proposed 

SLMS-RL1 algorithm. 

3. Reweighted Factor Selection for SLMS-RL1 Algorithm 

MC-based reweighted factor selection method is developed for SLMS-RL1 algorithm in different 

SNR regimes, impulsive-noise strength ൌ 400, mixture parameters ߶ ൌ 0.1 as well as channel sparsity 

ܭ ൌ 4. For achieving average performance, ܯ ൌ 1000 independent Monte-Carlo runs are adopted. 
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The simulation setup is configured according to the typical broadband wireless communication  

system [10]. The signal bandwidth is 50 MHz located at the central radio frequency of 2.1 GHz. The 

maximum delay spread of 0.8	ݏߤ. Hence, the maximum length of channel vector ܟ is ܰ ൌ 80. In 

addition, each dominant channel tap follows random Gaussian distribution as ࣝࣨሺ0,  ௪ଶሻ which isߪ

subject to ܧሼ‖ܟ‖ଶ
ଶሽ ൌ 1 and their positions are randomly decided within ܟ. To evaluate SLMS-RL1 

algorithm using different factors, we adopt the average mean square error (MSE) metric which is 

defined as 

Average	MSEሼܟሺ݊ሻሽ ≜ 10 logଵ଴ ܧ ቊ
ሺ݊ሻܟ‖ െ ଶ‖ܟ

ଶ

ଶ‖ܟ‖
ଶ ቋ (14)

where ܟ and ܟሺnሻ are the actual signal vector and reconstruction vector, respectively; ܧሼ⋅ሽ denotes 

mathematical expectation operator. The received SNR is defined as ଴ܲ/ߪ௭ଶ, where ଴ܲ is the received 

power of the pseudo-random (PN) binary sequence for training signal. Detailed parameters for 

computer simulation are listed in Table 1. 

Table 1. Simulation parameters. 

Parameters Values 

Training signal structure Pseudo-random Binary sequences 
Channel length ܰ ൌ 80 

No. of nonzero coefficients ܭ ൌ 4 
Distribution of nonzero coefficient Random Gaussian distribution ࣝࣨሺ0,1ሻ 

Received SNR ܴܵܰ ∈ ሼ5 dB, 10	dBሽ 
GMM noise distribution ߙଵ ൌ ଶߙ ൌ ଵߪ ,0

ଶ ൌ 10ሺିௌேோ/ଵ଴ሻ, ܶ ൌ 400 
Step-size  ߤ ൌ 0.01 

Regularization parameters for sparse penalties ߣ ൌ 0.008 
Thresholds of the SLMS-RL1 algorithms ߝ ∈ ሼ0.5, 0.1, 0.05, 0.01, 0.005, 0.001ሽ 

First of all, MC based reweighted factor selection method is performed in Figures 1 and 2. Average 

MSE curves of the SLMS-RL1 algorithm are depicted under two SNR regimes, i.e., ∈ ሼ5	dB, 10	dBሽ. 
To confirm the effectiveness of the proposed method, standard SLMS [1] is considered as a 

performance benchmark. As we discussed in Section 2, one can see that the MSE performance of 

SLMS-RL1 algorithms depends highly on the reweighted factor ߝ. In these two figures, the lowest 

MSE performance of SLMS-RL1 is achieved when reweighted factor ߝ is set as 0.005 in two SNR 

regimes. On the one hand, too big reweighted factor ߝ may suppress noise excessively and hence it 

result in lossy exploitation of channel sparsity. On the other hand, a too small reweighted factor ߝ may 

mitigate noise insufficiently and it causes inefficient exploitation of channel sparsity. Therefore, 

suitable reweighted factor could balance the noise suppression and channel sparsity exploitation.  
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Figure 1. Monte Carlo simulations averaging for evaluating sign least mean square with 

reweighted L1-norm constraint (SLMS-RL1) algorithm over 1000 runs with respect to 

reweighted factors ߝ ∈ ሼ0.001, 0.005, 0.01, 0.05, 0.1, 0.5ሽ  in the scenarios of mixture 

parameter ߶ ൌ 0.1  , impulsive-noise strength ܶ ൌ 400 , channel length ܰ ൌ 80 , channl 

sparsity ܭ ൌ 4 and ܴܵܰ ൌ 5	dB.  

 

Figure 2. Monte Carlo simulations averaging for evaluating SLMS-RL1 algorithm over 

1000 runs with respect to reweighted factors ߝ ∈ ሼ0.001, 0.005, 0.01, 0.05, 0.1, 0.5ሽ in the 

scenarios of mixture parameter ߶ ൌ 0.1, impulsive-noise strength ܶ ൌ 400, channel length 

ܰ ൌ 80, channl sparsity ܭ ൌ 4 and ܴܵܰ ൌ 10	dB. 

4. Numerical Simulations 

In this section, three examples are given to verify the performance of SLMS-RL1 algorithm by 

using proposed reweighted factor ε ൌ 0.005 in the scenarios of ܴܵܰ	= 10 dB, impulsive-noise strength 

ܶ ∈ ሼ200,400,600,800ሽ, mixture parameters ߶ ൌ 0.1 as well as channel sparsity ܭ ∈ ሼ2,4,8,12,16ሽ. 
For achieving average performance, ܯ ൌ 1000 independent Monte-Carlo runs are adopted as well. 

Detailed parameters for computer simulation are listed in Table 2. 
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0 200 400 600 800 1000 1200
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SLMS(w/o RL1)

SLMS-RL1( =0.001)

SLMS-RL1( =0.005)

SLMS-RL1( =0.01)

SLMS-RL1( =0.05)

SLMS-RL1( =0.1)

SLMS-RL1( =0.5)
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Table 2. Simulation parameters. 

Parameters Values 

Training signal structure Pseudo-random Binary sequences 
Channel length ܰ ൌ 80 

No. of nonzero coefficients ܭ ∈ ሼ2, 4, 8, 16ሽ 
Distribution of nonzero coefficient Random Gaussian distribution ࣝࣨሺ0,1ሻ 

Received SNR ܴܵܰ ∈ ሼ5 dB, 10	dBሽ 
GMM noise distribution 

(ܶ controls impulsive noise strength) 
ଵߙ ൌ ଶߙ ൌ ଵߪ ,0

ଶ ൌ 10ሺିௌேோ/ଵ଴ሻ 
ଶߪ
ଶ ൌ ଵߪܶ

ଶ, ܶ ൌ ሼ200, 400, 600, 800ሽ 
Step-size  ߤ ൌ 0.01 

Regularization parameters for sparse penalties ߣ ൌ 0.008 
Threshold of the SLMS-RL1 ߝ ൌ 0.005 

In the first example, average MSE curves of different algorithms are depicted in Figure 3. Under 

the certain circumstance, channel sparsity	ܭ ൌ 4, ܴܵܰ ൌ 10dB, GMM noise with impulsive-noise 

parameter ܶ ൌ 400 as well as mixture parameter ߶ ൌ 0.1, one can find that proposed SLMS-RL1 

algorithm can achieve at least 5 dB and 10 dB performance gain in contrast to SLMS algorithm and 

LMS-type algorithms, respectively. Because SLMS algorithm does not exploit the channel sparsity while 

LMS-type algorithms do not stable under GMM noise environments. Hence, the proposed SLMS-RL1 

can exploit channel sparsity and can keep stability in the presence of GMM noises. 

In the second example, average MSE curves of SLMS-RL1 algorithm with respect to channel 

sparsity ܭ are depicted in Figure 4. Under the certain circumstance, e.g., ܴܵܰ ൌ 10dB, GMM noise 

with impulsive-noise parameter ܶ ൌ 400 as well as mixture parameter ߶ ൌ 0.1, one can find that that 

convergence speed of SLMS-RL1 depends on channel sparsity (ܭ) while steady-state MSE curves of 

corresponding algorithms are very close. For different channel sparsity, in other words, the adaptive 

sparse algorithms may differ from conventional compressive sensing based sparse channel estimation 

algorithms [15], [16], [25], [26] which depend highly on channel sparsity. Hence, SLMS-RL1 using  

MC-based reweighted factor is expected to deal with different sparse channels stably even  

non-sparse cases. 

 

Figure 3. Monte Carlo simulations averaging for different algorithms over 1000 runs in the 

scenarios of mixture parameter ߶ ൌ 0.1, impulsive-noise strength ܶ ൌ 400, channel length 

ܰ ൌ 80, channl sparsity ܭ ൌ 4 and ܴܵܰ ൌ 10	dB. 

Number of Iterations
0 200 400 600 800 1000 1200

-35
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SLMS (w/o RL1)
LMS-RL1
SLMS-RL1 (proposed)
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Figure 4. Monte Carlo simulations averaging for evaluating SLMS-RL1 algorithm over 

1000 runs with respect to channel sparsity ܭ ∈ ሼ2, 4, 8, 12, 16ሽ in the scenarios of mixture 

parameter ߶ ൌ 0.1 , impulsive-noise strength ܶ ൌ 400 , channel length ܰ ൌ 80 , and 	
ܴܵܰ ൌ 10	dB.  

In the third example, average MSE curves of SLMS-RL1 algorithm using reweighted 

selected factor ε ൌ 0.005 with respect to impulsive-noise strength ܶ are depicted in Figure 5. In 

addition, average MSE curves of the algorithm with respect to mixture parameter ߶ are depicted in 

Figure 6. In the two figures, one can see that SLMS-RL1 algorithm using ߝ ൌ 0.005 is stable for 

different GMM noises with impulsive-noise strength parameters ܶ ∈ ሼ200,400,600,800ሽ as well 

as mixture parameters ∈ ሼ0.05,0.1,0.2,0.4,0.6,0.8,1.0ሽ. The main reason of SLMS-RL1 algorithm 

is that sign function is utilized to mitigate the GMM impulsive noise. It is worth noting that  

SLMS-RL1 algorithm may be deteriorated by the enlarging the mixture parameter ߶ of impulsive 

noise. In practical application scenarios, the mixture parameter ߶ is very small (less than 0.1). 

Hence, the proposed reweighted factor for SLMS-RL1 is stable for GMM impulsive-noise. 

 

Figure 5. Monte Carlo simulations averaging for evaluating SLMS-RL1 over 1000 runs 

with respect to impulsive-noise strength ܶ ∈ ሼ200, 400, 600, 800ሽ  in the scenarios of 

mixture parameter ߶ ൌ 0.1 , channel length ܰ ൌ 80 , channel sparsity ܭ ൌ 4  and  

ܴܵܰ ൌ 10dB.  
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Figure 6. Monte Carlo simulations averaging for evaluating SLMS-RL1 over 1000 runs 

with respect to mixture parameter ߶ ∈ ሼ0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0ሽ in the scenarios of 

impulsive-noise strength ܶ ൌ 400, channel length ܰ ൌ 80, channel sparsity ܭ ൌ 4, and 

ܴܵܰ ൌ 10	dB.  

5. Conclusions 

In this paper, we propose a Monte-Carlo based reweighted factor selection method so that the  

SLMS-RL1 algorithm can exploit channel sparsity efficiently. Simulation results are provided to 

illustrate our findings. First of all, SLMS-RL1 can achieve the lowest MSE performance by selecting 

the reweighted factor as ߝ ൌ 0.005 in different SNR regimes. Secondly, the convergence speed of 

SLMS-RL1 can be reduced by increasing the channel sparsity ܭ . At last, the steady-state MSE 

performance of SLMS-RL1 does not change considerably under different GMM impulsive-noise 

strength ܶ . In other words, SLMS-RL1 algorithm using the reweighted factor ߝ ൌ 0.005 is stable 

under different GMM impulsive noises.  
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