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Abstract: We present a semilocal convergence study of Newton-type methods on
a generalized Banach space setting to approximate a locally unique zero of an
operator. Earlier studies require that the operator involved is Fréchet differentiable.
In the present study we assume that the operator is only continuous. This way we extend
the applicability of Newton-type methods to include fractional calculus and problems from
other areas. Moreover, under the same or weaker conditions, we obtain weaker sufficient
convergence criteria, tighter error bounds on the distances involved and an at least as precise
information on the location of the solution. Special cases are provided where the old
convergence criteria cannot apply but the new criteria can apply to locate zeros of operators.
Some applications include fractional calculus involving the Riemann-Liouville fractional
integral and the Caputo fractional derivative. Fractional calculus is very important for its
applications in many applied sciences.

Keywords: Generalized Banach space; Newton-type method; semilocal convergence;
Riemann-Liouville fractional integral; Caputo fractional derivative

1. Introduction

We present a semilocal convergence analysis for Newton-type methods on a generalized Banach space
setting to approximate a zero of an operator. A generalized norm is defined to be an operator from a
linear space into a partially order Banach space (as will be elaborated in Section 2). Earlier studies such
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as [1–16] for Newton’s method have shown that a more precise convergence analysis is obtained when
compared with the real norm theory. However, the main assumption is that the operator involved is
Fréchet differentiable. This hypothesis limits the applicability of Newton’s method. In the present study
we only assume the continuity of the operator. This may be expand the applicability of these methods.
Our approach allows the extension of Newton-type methods in fractional calculus and other areas (see
Section 4) not possible before (since the operator must be Fréchet differentiable). Moreover, we obtain
the following advantages over the earlier mentioned studies using Newton’s method:

(i) Weaker sufficient semilocal convergence criteria.
(ii) Tighter error bounds on the distances involved.
(iii) An at least as precise information on the location of the zero.
Moreover, we show that the advantages (ii) are possible even if our Newton-type methods are reduced

to Newton’s method.
Furthermore, the advantages (i)–(iii) are obtained under the same or less computational cost.
Notice that in the recent elegant work by Adly et al., [1] Newton’s method has also been generalized to

other important directions for solving inclusions and set-valued approximations. In the classical Banach
space setting though these results that rely on non smooth analysis and metric regularity do not provide
sufficient convergence criteria in the local as well as semilocal convergence case that are verifiable using
Lipschitz-type constants as we utilize in the present study. Moreover, computable error bounds on the
distances involved are not given neither the uniqueness or location of the solution is discussed.

The rest of the paper is organized as follows. Section 2 contains the basic concepts on generalized
Banach spaces and auxiliary results on inequalities and fixed points. In Section 3 we present the
semilocal convergence analysis of Newton-type methods. Finally, in Sections 4 and 5, we present
special cases and favorable comparisons with earlier results and applications in some areas including
fractional calculus.

2. Generalized Banach Spaces

We present some standard concepts that are needed in what follows to make the paper as
self-contained as possible. More details on generalized Banach spaces can be found in [5–7,14], and
the references therein.

Definition 2.1. A generalized Banach space is a triplet (x,E, /·/) such that
(i) X is a linear space over R (C).
(ii) E = (E,K, ‖·‖) is a partially ordered Banach space, i.e.,
(ii1) (E, ‖·‖) is a real Banach space,
(ii2) E is partially ordered by a closed convex cone K,
(iii3) The norm ‖·‖ is monotone on K.
(iii) The operator /·/ : X → K satisfies
/x/ = 0⇔ x = 0, /θx/ = |θ| /x/ ,

/x+ y/ ≤ /x/ + /y/ for each x, y ∈ X , θ ∈ R(C).
(iv) X is a Banach space with respect to the induced norm ‖·‖i := ‖·‖ · /·/.

Remark 2.2. The operator /·/ is called a generalized norm. In view of (iii) and (ii3), ‖·‖i is a real norm.
In the rest of this paper all topological concepts will be understood with respect to this norm.
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Let L (Xj, Y ) stand for the space of j-linear symmetric and bounded operators from Xj to Y , where
X and Y are Banach spaces. For X, Y partially ordered L+ (Xj, Y ) stands for the subset of monotone
operators P such that

0 ≤ ai ≤ bi ⇒ P (a1, ..., aj) ≤ P (b1, ..., bj) . (2.1)

Definition 2.3. The set of bounds for an operator Q ∈ L (X,X) on a generalized Banach space
(X,E, /·/) is defined to be:

B (Q) := {P ∈ L+ (E,E) , /Qx/ ≤ P /x/ for each x ∈ X} . (2.2)

Let D ⊂ X and T : D → D be an operator. If x0 ∈ D the sequence {xn} given by

xn+1 := T (xn) = T n+1 (x0) (2.3)

is well-defined. We write in case of convergence

T∞ (x0) := lim (T n (x0)) = lim
n→∞

xn. (2.4)

We need some auxiliary results on inequations.

Lemma 2.4. Let (E,K, ‖·‖) be a partially ordered Banach space, ξ ∈ K and M,N ∈ L+ (E,E).
(i) Suppose there exists r ∈ K such that

R (r) := (M +N) r + ξ ≤ r (2.5)

and
(M +N)k r → 0 as k →∞. (2.6)

Then, b := R∞ (0) is well-defined, satisfies the equation t = R (t) and is the smaller than any solution
of the inequality R (s) ≤ s.

(ii) Suppose there exists q ∈ K and θ ∈ (0, 1) such that R (q) ≤ θq, then there exists r ≤ q

satisfying (i).

Proof. (i) Define sequence {bn} by bn = Rn (0). Then, we have by Equantion (2.5) that b1 = R (0) =

ξ ≤ r ⇒ b1 ≤ r. Suppose that bk ≤ r for each k = 1, 2, ..., n. Then, we have by Equantion (2.5)
and the inductive hypothesis that bn+1 = Rn+1 (0) = R (Rn (0)) = R (bn) = (M +N) bn + ξ ≤
(M +N) r + ξ ≤ r ⇒ bn+1 ≤ r. Hence, sequence {bn} is bounded above by r. Set Pn = bn+1 − bn.
We shall show that

Pn ≤ (M +N)n r for each n = 1, 2, ... (2.7)

We have by the definition of Pn and Equantion (2.6) that

P1 = R2 (0)−R (0) = R (R (0))−R (0)

= R (ξ)−R (0) =

∫ 1

0

R′ (tξ) ξdt ≤
∫ 1

0

R′ (ξ) ξdt

≤
∫ 1

0

R′ (r) rdt ≤ (M +N) r,
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which shows Equantion (2.7) for n = 1. Suppose that Equantion (2.7) is true for k = 1, 2, ..., n. Then,
we have in turn by Equantion (2.6) and the inductive hypothesis that

Pk+1 = Rk+2 (0)−Rk+1 (0) = Rk+1 (R (0))−Rk+1 (0) =

Rk+1 (ξ)−Rk+1 (0) = R
(
Rk (ξ)

)
−R

(
Rk (0)

)
=∫ 1

0

R′
(
Rk (0) + t

(
Rk (ξ)−Rk (0)

)) (
Rk (ξ)−Rk (0)

)
dt ≤

R′
(
Rk (ξ)

) (
Rk (ξ)−Rk (0)

)
= R′

(
Rk (ξ)

) (
Rk+1 (0)−Rk (0)

)
≤

R′ (r)
(
Rk+1 (0)−Rk (0)

)
≤ (M +N) (M +N)k r = (M +N)k+1 r

which completes the induction for Equantion (2.7). It follows that {bn} is a complete sequence
in a Banach space and as such it converges to some b. Notice that R (b) = R

(
lim
n→∞

Rn (0)
)

=

lim
n→∞

Rn+1 (0) = b ⇒ b solves the equation R (t) = t. We have that bn ≤ r ⇒ b ≤ r, where r is a

solution of R (r) ≤ r. Hence, b is smaller than any solution of R (s) ≤ s.
(ii) Define sequences {vn}, {wn} by v0 = 0, vn+1 = R (vn), w0 = q, wn+1 = R (wn). Then, we have

that

0 ≤ vn ≤ vn+1 ≤ wn+1 ≤ wn ≤ q (2.8)

wn − vn ≤ θn (q − vn)

and the sequence {vn} is bounded above by q. Hence, it converges to some r with r ≤ q. We also get by
Equantion (2.8) that wn − vn → 0 as n→∞⇒ wn → r as n→∞.

We also need the auxiliary result for computing solutions of fixed point problems.

Lemma 2.5. Let (X, (E,K, ‖·‖) , /·/) be a generalized Banach space, and P ∈ B (Q) be a bound for
Q ∈ L (X,X). Suppose there exist y ∈ X and q ∈ K such that

Pq + /y/ ≤ q and P kq → 0 as k →∞ (2.9)

Then, z = T∞ (0), T (x) := Qx+y is well-defined and satisfies: z = Qz+y and /z/ ≤ P /z/+/y/ ≤ q.
Moreover, z is the unique solution in the subspace {x ∈ X|∃ θ ∈ R : {x} ≤ θq}.

The proof can be found in [14, Lemma 3.2].

3. Semilocal Convergence

Let (X, (E,K, ‖·‖) , /·/) and Y be generalized Banach spaces, D ⊂ X an open subset, G : D → Y

a continuous operator and A (·) : D → L (X, Y ). A zero of operator G is to be determined by a
Newton-type method starting at a point x0 ∈ D. The results are presented for an operator F = JG,
where J ∈ L (Y,X). The iterating elements are determined through a fixed point problem:

xn+1 = xn + yn, A (xn) yn + F (xn) = 0 (3.1)

⇔ yn = T (yn) = (I − A (xn)) yn − F (xn)

Let U (x0, r) stand for the ball defined by

U (x0, r) = {x ∈ X : /x− x0/ ≤ r}
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for some r ∈ K.
Next, we present the semilocal convergence analysis of Newton-type method Equation (3.1) using the

preceding notation.

Theorem 3.1. Let F : D ⊂ X , A (·) : D → L (X, Y ) and x0 ∈ D be as defined previously. Suppose:
(H1) There exists an operator M ∈ B (I − A (x)) for each x ∈ D.
(H2) There exists an operator N ∈ L+ (E,E) satisfying for each x, y ∈ D

/F (y)− F (x)− A (x) (y − x)/ ≤ N /y − x/

(H3) There exists a solution r ∈ K of

R0 (t) := (M +N) t+ /F (x0)/ ≤ t

(H4) U (x0, r) ⊆ D.
(H5) (M +N)k r → 0 as k →∞.
Then, the following hold:
(C1) The sequence {xn} defined by

xn+1 = xn + T∞n (0) , Tn (y) := (I − A (xn)) y − F (xn) (3.2)

is well-defined, remains in U (x0, r) for each n = 0, 1, 2, ... and converges to the unique zero of operator
F in U (x0, r).

(C2) An a priori bound is given by the null-sequence {rn} defined by r0 := r and for each n = 1, 2, ...

rn = P∞n (0) , Pn (t) = Mt+Nrn−1

(C3) An a posteriori bound is given by the sequence {sn} defined by

sn = R∞n (0) , Rn (t) = (M +N) t+Nan−1

bn := /xn − x0/ ≤ r − rn ≤ r

where
an−1 = /xn − xn−1/ for each n = 1, 2, ...

Proof. Let us define for each n ∈ N the statement:
(In) xn ∈ X and rn ∈ K are well-defined and satisfy

rn + an−1 ≤ rn−1

We use induction to show (In). The statement (I1) is true: By Lemma 2.4, (H3) and (H5), there exists
q ≤ r such that:

Mq + /F (x0)/ = q and Mkq ≤Mkr → 0 as k →∞.

Hence, by Lemma 2.5 x1 is well-defined and we have a0 ≤ q. Then, we get the estimate

P1 (r − q) = M (r − q) +Nr0

≤Mr −Mq +Nr = R0 (r)− q

≤ R0 (r)− q = r − q
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It follows with Lemma 2.4 that r1 is well-defined and

r1 + a0 ≤ r − q + q = r = r0

Suppose that (Ij) is true for each j = 1, 2, ..., n. We need to show the existence of xn+1 and obtain a
bound q for an. To achieve this, notice that:

Mrn +N (rn−1 − rn) = Mrn +Nrn−1 −Nrn = Pn (rn)−Nrn ≤ rn

Then, it follows from Lemma 2.4 that there exists q ≤ rn such that

q = Mq +N (rn−1 − rn) and (M +N)k q → 0, as k →∞ (3.3)

By (Ij) it follows that

bn = /xn − x0/ ≤
n−1∑
j=0

aj ≤
n−1∑
j=0

(rj − rj+1) = r − rn ≤ r.

Hence, xn ∈ U (x0, r) ⊂ D and by (H1) M is a bound for I − A (xn)

We can write by (H2) that

/F (xn)/ = /F (xn)− F (xn−1)− A (xn−1) (xn − xn−1)/

≤ Nan−1 ≤ N (rn−1 − rn) (3.4)

It follows from Equations (3.3) and (3.4) that

Mq + /F (xn)/ ≤ q

By Lemma 2.5, xn+1 is well-defined and an ≤ q ≤ rn. In view of the definition of rn+1 we have that

Pn+1 (rn − q) = Pn (rn)− q = rn − q

so that by Lemma 2.4, rn+1 is well-defined and

rn+1 + an ≤ rn − q + q = rn

which proves (In+1). The induction for (In) is complete. Let m ≥ n, then we obtain in turn that

/xm+1 − xn/ ≤
m∑
j=n

aj ≤
m∑
j=n

(rj − rj+1) = rn − rm+1 ≤ rn (3.5)

Moreover, we get inductively the estimate

rn+1 = Pn+1 (rn+1) ≤ Pn+1 (rn) ≤ (M +N) rn ≤ ... ≤ (M +N)n+1 r

It follows from (H5) that {rn} is a null-sequence. Hence, {xn} is a complete sequence in a Banach
spaceX by Equation (3.5) and as such it converges to some x∗ ∈ X . By lettingm→∞ in Equation (3.5)
we deduce that x∗ ∈ U (xn, rn). Furthermore, Equation (3.4) shows that x∗ is a zero of F . Hence, (C1)
and (C2) are proved.

In view of the estimate
Rn (rn) ≤ Pn (rn) ≤ rn

the a priori bound of (C3) is well-defined by Lemma 2.4. That is, sn is smaller in general than rn. The
conditions of Theorem 3.1 are satisfied for xn replacing x0. A solution of the inequality of (C2) is given
by sn—see Equation (3.4). It follows from Equation (3.5) that the conditions of Theorem 3.1 are easily
verified. Then, it follows from (C1) that x∗ ∈ U (xn, sn), which proves (C3).
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In general, the a posterior estimate is of interest. Then, condition (H5) can be avoided as follows:

Proposition 3.2. Suppose: condition (H1) of Theorem 3.1 is true.
(H′3) There exists s ∈ K, θ ∈ (0, 1) such that

R0 (s) = (M +N) s+ /F (x0)/ ≤ θs

(H′4) U (x0, s) ⊂ D.
Then, there exists r ≤ s satisfying the conditions of Theorem 3.1. Moreover, the zero x∗ of F is unique

in U (x0, s).

Remark 3.3. (i) Notice that by Lemma 2.4 R∞n (0) is the smallest solution of Rn (s) ≤ s. Hence any
solution of this inequality yields on the upper estimate for R∞n (0). Similar inequalities appear in (H2)
and (H′2).

(ii) The weak assumptions of Theorem 3.1 do not imply the existence of A (xn)−1. In practice, the
computation of T∞n (0) as a solution of a linear equation is of no problem, and the computation of the
expensive or impossible to compute in general A (xn)−1 is not needed.

(iii) We can use the following result for the computation of the a posteriori estimates. The proof can
be found in [14, Lemma 4.2] by simply exchanging the definitions of R.

Lemma 3.4. Suppose that the conditions of Theorem 3.1 are satisfied. If s ∈ K is a solution of Rn (s) ≤
s, then q := s− an ∈ K and solves Rn+1 (q) ≤ q. This solution might be improved by Rk

n+1 (q) ≤ q for
each k = 1, 2, ....

4. Special Cases and Applications

Application 4.1. The results obtained in earlier studies such as [5–7,14] require that the operator F
(i.e., G) is Fréchet differentiable. This assumption limits the applicability of the earlier results. In the
present study we only require that F is a continuous operator. Hence, we have extended the applicability
of Newton-type methods to classes of operators that are only continuous. Moreover, as we will show
next, by specializing F to be a Fréchet differentiable operator (i.e., F ′ (xn) = A (xn)), our Theorem 3.1
improves earlier results. Indeed, first of all, notice that the Newton-type method defined by Equation (3.1)
reduces to Newton’s method:

xn+1 = xn + yn, F ′ (xn) yn + F (xn) = 0 (4.1)

⇔ yn = Tn (yn) = (I − F ′ (xn)) yn − F (xn)

Next, we present Theorem 2.1 from [14] and the specialization of our Theorem 3.1 so that we can
compare them.

Theorem 4.2. Let F : D → X be a Fréchet differentiable operator and x0 ∈ D. Suppose that the
following conditions hold:

(H1) There exists an operator M0 ∈ B (I − F ′ (x0)).
(H2) There exists an operator N1 ∈ L+ (E2, E) satisfying for

x, y ∈ D, z ∈ X : /(F ′ (x)− F ′ (y)) z/ ≤ 2N1 (/x− y/ , /z/)
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(H3) There exists a solution c ∈ K of the inequality

R0 (c) := M0c+N1c
2 + /F (x0)/ ≤ c

(H4) U (x0, c) ⊆ D.
(H5) (M0 + 2N1c)

k c→ 0 as k →∞.
Then, the following hold
(C1) The sequence {xn} generated by Equation (4.1) is well-defined and converges to a unique zero

of F in U (x0, c).
(C2) An a priori bound is given by the null-sequence {cn} defined by

c0 = c, cn := P
∞
n (0) ,

P n (t) : = M0t+ 2N1 (c− cn−1) t+N1c
2
n−1

(C3) An a posteriori bound is given by the sequence {dn} defined by

dn = R
∞
n (0) , Rn (t) := M0t+ 2N1bnt+N1t

2 +N1a
2
n−1

where sequences {an} and {bn} are as defined previously.

Theorem 4.3. Let F : D → X be a Fréchet differentiable operator and x0 ∈ D. Suppose that the
following conditions hold:

(H̃1) There exists an operator M1 ∈ B (I − F ′ (x)) for each x ∈ D.
(H̃2) There exists an operator N2 ∈ L+ (E,E) satisfying for each x, y ∈ D

/F (y)− F (x)− F ′ (x) (y − x)/ ≤ N2 /y − x/

(H̃3) There exists a solution r̃ ∈ K of

R̃0 (t) := (M1 +N2) t+ /F (x0)/ ≤ t

(H̃4) U (x0, r̃) ⊆ D.
(H̃5) (M1 +N2)

k r̃ → 0 as k →∞.
Then, the following hold:
(C̃1) The sequence {xn} generated by Equation (4.1) is well-defined and converges to a unique zero

of F in U (xo, r̃).
(C̃2) An a priori bound is given by r̃0 = r̃, r̃n := P̃∞n (0), P̃n (t) = M1t+N2r̃n−1.
(C̃3) An a posteriori bound is given by the sequence {s̃n} defined by s̃n := R̃∞n (0), R̃n (t) =

(M1 +N2) t+N2an−1.

We can now compare the two preceding theorems. Notice that we can write

/F (y)− F (x)− F ′ (x) (y − x)/ =

/∫ 1

0

[F ′ (x+ θ (y − x))− F ′ (x)] (y − x) dt

/
Then, it follows from (H2), (H̃2) and the preceding estimate that

N2 ≤ N1 /p/ , for each p ∈ X
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holds in general. In particular, we have that

N2 ≤ N1c (4.2)

Moreover, we get in turn by (H1), (H2) and (H5) that

/1− F ′ (x)/ ≤ /I − F ′ (x0)/ + /F ′ (x0)− F ′ (x)/ (4.3)

≤M0 + 2N1 /x− x0/ ≤M0 + 2N1c

Therefore, by (H̃1) and Equation (4.3), we obtain that

M1 ≤M0 + 2N1c (4.4)

holds in general.
Then, in view of Equation (4.2), (4.4) and the (H), (H̃) hypotheses we deduce that

R0 (c) ≤ c⇒ R̃0 (r̃) ≤ r̃ (4.5)

(M0 + 2N1c)
k c→ 0 ⇒ (M1 +N2)

k r̃ → 0 (4.6)

but not necessarily vice versa unless if equality holds in Equations (4.2) and (4.4);

r̃ ≤ c (4.7)

r̃n ≤ cn (4.8)

and
s̃n ≤ dn (4.9)

Notice also that strict inequality holds in Equation (4.8) or (4.9) if strict inequality holds in
Equation (4.2) or (4.4).

Estimates (4.5)–(4.9) justify the advantages of our approach over the earlier studies as already stated
in the introduction of this study.

Next, we show that the results of Theorem 2.1 in [14], i.e., of Theorem 4.2 can be improved under the
same hypotheses by noticing that in view of (H2).

(H
0

2) There exists an operator N0 ∈ L+ (E2, E) satisfying for x ∈ D, z ∈ X,

/(F ′ (x)− F ′ (x0)) z/ ≤ 2N0 (/x− x0/ , /z/)

Moreover,
N0 ≤ N1 (4.10)

holds in general and N1

N0
can be arbitrarily large [4–7].

It is worth noticing that (H
0

2) is not an additional hypothesis to (H2), since in practice the computation
of N1 requires the computation of N0 as a special case. Using now (H

0

2) and (H1) we get that

/I − F ′ (x)/ ≤ /I − F ′ (x0)/ + /F ′ (x0)− F ′ (x)/ ≤M0 + 2N0 /x− x0/



Algorithms 2015, 8 841

Hence, M0+2N0bn, M0+2N0 (c− cn) can be used as bounds for I−F ′ (xn) instead ofM0+2N1bn,
M0 + 2N1 (c− cn), respectively.

Notice also that
M0 + 2N0bn ≤M0 + 2N1bn (4.11)

and
M0 + 2N0 (c− cn) ≤M0 + 2N1 (c− cn) (4.12)

Then, with the above changes and following the proof of Theorem 2.1 in [14], we arrive at the
following improvement:

Theorem 4.4. Suppose that the conditions of Theorem 4.2 hold but with N1 replaced by the at most as
large N0. Then, the conclusions (C1)–(C3),

cn ≤ cn (4.13)

and
dn ≤ dn (4.14)

where the sequences {cn}, {dn} are defined by

c0 = c, cn = P
∞
n (0) , P n (t) = M0t+ 2N0 (c− cn−1) t+N1c

2
n−1

dn = R
∞
n (0) , R

∞
n (t) = M0t+ 2N0bnt+N1t

2 +N1a
2
n−1

Remark 4.5. Notice that estimates Equation (4.13) and Equation (4.14) follow by a simple inductive
argument using Equations (4.11) and (4.12). Moreover, strict inequality holds in Equation (4.13) (for
n ≥ 1) and in Equation (4.14) (for n > 1) if strict inequality holds in Equation (4.11) or (4.12). Hence,
again we obtain better a priori and a posteriori bounds under the same hypotheses (H).

Condition (H̄5) has been weakened since N0 ≤ N1. It turns out that condition (H̄3) can be weakened
and sequences {cn} and {dn} can be replaced by more precise sequences as follows: Define operators
Q0, Q1, Q2, H1, H2 on D by

( ¯̄H3) Q0(t) = M0t+ /F (x0)/

Suppose that there exists a solution µ0 ∈ K of the inequality

Q0(µ0) ≤ µ0

There exists a solution µ1 ∈ K with µ1 ≤ µ0 of the inequality

Q1(t) ≤ t

where
Q1(t) := M0t+ 2N0(µ0 − t)t+N0µ

2
0

There exists a solution µ2 = µ ∈ K with µ ≤ µ1 such that

Q2(t) ≤ t
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where
Q2(t) = M0t+ 2N0(µ− t)t+N1µ

2
1

Moreover, define operators on D by

H1(t) = M0t, H2(t) = Q1(t)

Hn(t) = M0t+ 2N0(µ− µn−1)t+N1µ
2
n−1, n = 3, 4, . . .

and
Qn(t) = M0t+ 2N0bnt+N1t

2 +N1an−1

Furthermore, define sequences {¯̄cn} and { ¯̄dn} by

¯̄cn = H∞n (0) and ¯̄dn := Q∞n (0)

Then, the proof of Theorem 4.2 goes on through in this setting to arrive at:

Theorem 4.6. Suppose that the conditions of Theorem 4.2 are satisfied but with c,(H̄3)− (H̄5) replaced
by µ, (H̄3),

( ¯̄H4) U(x0, µ) ⊆ D

( ¯̄H5) (M0 +N0µ)kµ→ 0 as k →∞, respectively.

Then, the conclusions of Theorem 4.2 hold with sequences {¯̄cn} and { ¯̄dn} replacing {cn} and {dn}
respectively. Moreover, we have that

¯̄cn ≤ c̄n ≤ cn

¯̄dn ≤ d̄n ≤ dn

and
µ ≤ c

Clearly, the new error bounds are more precise: the information on the location of the solution x∗ is
at least as precise and the sufficient convergence criteria ( ¯̄H3) and ( ¯̄H5) are weaker than (H̄3) and (H̄5),
respectively.

Example 4.7. The j-dimensional space Rj is a classical example of a generalized Banach space. The
generalized norm is defined by component-wise absolute values. Then, as ordered Banach space we set
E = Rj with component-wise ordering with, e.g., the maximum norm. A bound for a linear operator
(a matrix) is given by the corresponding matrix with absolute values. Similarly, we can define the “N”
operators.

Let E = R. That is we consider the case of a real normed space with norm denoted by ‖·‖. Let us see
how the conditions of Theorem 3.1 and Theorem 4.4 look like.
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Theorem 4.8. (H1) ‖I − A (x)‖ ≤M for some M ≥ 0.
(H2) ‖F (y)− F (x)− A (x) (y − x)‖ ≤ N ‖y − x‖ for some N ≥ 0.

(H3) M +N ≤ 1,

r =
/F (x0)/

1− (M +N)
(4.15)

(H4) U (x0, r) ⊆ D.
(H5) (M +N)k r → 0 as k →∞, where r is given by Equation (4.15).
Then, the conclusions of Theorem 3.1 hold.

Theorem 4.9. (H1) ‖I − F ′ (x0)‖ ≤M0 for some M0 ∈ [0, 1).
(H2) ‖F ′ (x)− F ′ (x0)‖ ≤ 2N0 ‖x− x0‖ ,
‖F ′ (x)− F ′ (y)‖ ≤ 2N1 ‖x− y‖, for some N0 ≥ 0 and N1 > 0.
(H3)

4N1 ‖F (x0)‖ ≤ (1−M0)
2 (4.16)

c =
1−M0 −

√
(1−M0)

2 − 4N1 ‖F (x0)‖
2N1

(4.17)

(H4) U (x0, c) ⊆ D.
(H5) (M0 + 2N0c)

k c→ 0 as k →∞, where c is defined by Equation (4.17).
Then, the conclusions of Theorem 4.4 hold.

Remark 4.10. Condition (4.16) is a Newton–Kantorovich type hypothesis appearing as a sufficient
semilocal convergence hypothesis in connection to Newton-type methods. In particular, if F ′ (x0) =

I , then M0 = 0 and Equation (4.16) reduces to the famous for its simplicity and clarity
Newton–Kantorovich hypothesis

4N1 ‖F (x0)‖ ≤ 1 (4.18)

appearing in the study of Newton’s method [1,2,5–7,9–16].

5. Application to Fractional Calculus

The semilocal convergence Newton-type general methods that we presented earlier, see Theorem 4.8,
apply in the next two fractional settings given that the following inequalities are fulfilled:

‖1− A (x)‖∞ ≤ γ0 ∈ (0, 1) (5.1)

and
|F (y)− F (x)− A (x) (y − x)| ≤ γ1 |y − x| (5.2)

where γ0, γ1 ∈ (0, 1); furthermore
γ = γ0 + γ1 ∈ (0, 1) (5.3)

for all x, y ∈ [a∗, b].
Here we consider a < a∗ < b.
The specific functions A (x), F (x) will be described next.
(I) Let α > 0 and f ∈ L∞ ([a, b]). The Riemann–Liouville integral ([8], p.13) is given by

(Jαa f) (x) =
1

Γ (α)

∫ x

a

(x− t)α−1 f (t) dt, x ∈ [a, b] (5.4)
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Then

|(Jαa f) (x)| ≤ 1

Γ (α)

(∫ x

a

(x− t)α−1 |f (t)| dt
)

≤ 1

Γ (α)

(∫ x

a

(x− t)α−1 dt
)
‖f‖∞ =

1

Γ (α)

(x− a)α

α
‖f‖∞ (5.5)

=
(x− a)α

Γ (α + 1)
‖f‖∞ = (ξ1)

Clearly
(Jαa f) (a) = 0. (5.6)

(ξ1) ≤
(b− a)α

Γ (α + 1)
‖f‖∞ (5.7)

That is

‖Jαa f‖∞,[a,b] ≤
(b− a)α

Γ (α + 1)
‖f‖∞ <∞ (5.8)

i.e., Jαa is a bounded linear operator.
By [3], p. 388, we get that (Jαa f) is a continuous function over [a, b] and in particular over [a∗, b].

Thus there exist x1, x2 ∈ [a∗, b] such that

(Jαa f) (x1) = min (Jαa f) (x) (5.9)

(Jαa f) (x2) = max (Jαa f) (x) , x ∈ [a∗, b]

We assume that
(Jαa f) (x1) > 0 (5.10)

Hence
‖Jαa f‖∞,[a∗,b] = (Jαa f) (x2) > 0 (5.11)

Here it is
J (x) = mx, m 6= 0 (5.12)

Therefore the equation
Jf (x) = 0, x ∈ [a∗, b] (5.13)

has the same solutions as the equation

F (x) :=
Jf (x)

2 (Jαa f) (x2)
= 0, x ∈ [a∗, b] (5.14)

Notice that

Jαa

(
f

2 (Jαa f) (x2)

)
(x) =

(Jαa f) (x)

2 (Jαa f) (x2)
≤ 1

2
< 1, x ∈ [a∗, b] (5.15)

Call

A (x) :=
(Jαa f) (x)

2 (Jαa f) (x2)
, ∀ x ∈ [a∗, b] (5.16)

We notice that

0 <
(Jαa f) (x1)

2 (Jαa f) (x2)
≤ A (x) ≤ 1

2
, ∀ x ∈ [a∗, b] (5.17)
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Hence the first condition (5.1) is fulfilled

|1− A (x)| = 1− A (x) ≤ 1− (Jαa f) (x1)

2 (Jαa f) (x2)
=: γ0, ∀ x ∈ [a∗, b] (5.18)

Clearly γ0 ∈ (0, 1).
Next we assume that F (x) is a contraction, i.e.,

|F (x)− F (y)| ≤ λ |x− y| ; all x, y ∈ [a∗, b] (5.19)

and 0 < λ < 1
2
.

Equivalently we have

|Jf (x)− Jf (y)| ≤ 2λ (Jαa f) (x2) |x− y| , all x, y ∈ [a∗, b] (5.20)

We observe that

|F (y)− F (x)− A (x) (y − x)| ≤ |F (y)− F (x)|+ |A (x)| |y − x| ≤

λ |y − x|+ |A (x)| |y − x| = (λ+ |A (x)|) |y − x| =: (ψ1) , ∀ x, y ∈ [a∗, b] (5.21)

We have that

|(Jαa f) (x)| ≤ (b− a)α

Γ (α + 1)
‖f‖∞ <∞, ∀ x ∈ [a∗, b] (5.22)

Hence

|A (x)| = |(Jαa f) (x)|
2 (Jαa f) (x2)

≤ (b− a)α ‖f‖∞
2Γ (α + 1) ((Jαa f) (x2))

<∞, ∀ x ∈ [a∗, b] (5.23)

Therefore we get

(ψ1) ≤
(
λ+

(b− a)a ‖f‖∞
2Γ (α + 1) ((Jαa f) (x2))

)
|y − x| , ∀ x, y ∈ [a∗, b] (5.24)

Call

0 < γ1 := λ+
(b− a)a ‖f‖∞

2Γ (α + 1) ((Jαa f) (x2))
(5.25)

Choosing (b− a) small enough, we can make γ1 ∈ (0, 1), fulfilling Equation (5.2).
Next we call and we need that

0 < γ := γ0 + γ1 = 1− (Jαa f) (x1)

2 (Jαa f) (x2)
+ λ+

(b− a)a ‖f‖∞
2Γ (α + 1) ((Jαa f) (x2))

< 1 (5.26)

equivalently,

λ+
(b− a)a ‖f‖∞

2Γ (α + 1) ((Jαa f) (x2))
<

(Jαa f) (x1)

2 (Jαa f) (x2)
(5.27)

equivalently,

2λ (Jαa f) (x2) +
(b− a)a ‖f‖∞

Γ (α + 1)
< (Jαa f) (x1) , (5.28)

which is possible for small λ, (b− a). That is γ ∈ (0, 1), fulfilling Equation (5.3). So our numerical
method converges and solves Equation (5.13).
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(II) Let again a < a∗ < b, α > 0, m = dαe (d·e ceiling function), α /∈ N, G ∈ Cm−1 ([a, b]),
0 6= G(m) ∈ L∞ ([a, b]). Here we consider the Caputo fractional derivative (see [3], p. 270),

Dα
∗aG (x) =

1

Γ (m− α)

∫ x

a

(x− t)m−α−1G(m) (t) dt (5.29)

By [3], p. 388, Dα
∗aG is a continuous function over [a, b] and in particular continuous over [a∗, b].

Notice that by [4], p. 358, we have that Dα
∗aG (a) = 0.

Therefore there exist x1, x2 ∈ [a∗, b] such that Dα
∗aG (x1) = minDα

∗aG (x), and Dα
∗aG (x2) =

maxDα
∗aG (x), for x ∈ [a∗, b].

We assume that
Dα
∗aG (x1) > 0 (5.30)

(i.e., Dα
∗aG (x) > 0, ∀ x ∈ [a∗, b]).

Furthermore
‖Dα
∗aG‖∞,[a∗,b] = Dα

∗aG (x2) (5.31)

Here it is
J (x) = mx, m 6= 0 (5.32)

The equation
JG (x) = 0, x ∈ [a∗, b] (5.33)

has the same set of solutions as the equation

F (x) :=
JG (x)

2Dα
∗aG (x2)

= 0, x ∈ [a∗, b] (5.34)

Notice that

Dα
∗a

(
G (x)

2Dα
∗aG (x2)

)
=

Dα
∗aG (x)

2Dα
∗aG (x2)

≤ 1

2
< 1, ∀ x ∈ [a∗, b] (5.35)

We call

A (x) :=
Dα
∗aG (x)

2Dα
∗aG (x2)

, ∀ x ∈ [a∗, b] (5.36)

We notice that

0 <
Dα
∗aG (x1)

2Dα
∗aG (x2)

≤ A (x) ≤ 1

2
(5.37)

Hence the first condition (5.1) is fulfilled

|1− A (x)| = 1− A (x) ≤ 1− Dα
∗aG (x1)

2Dα
∗aG (x2)

=: γ0, ∀ x ∈ [a∗, b] (5.38)

Clearly γ0 ∈ (0, 1).
Next we assume that F (x) is a contraction over [a∗, b], i.e.,

|F (x)− F (y)| ≤ λ |x− y| ; ∀ x, y ∈ [a∗, b] , (5.39)

and 0 < λ < 1
2
.

Equivalently we have

|JG (x)− JG (y)| ≤ 2λ (Dα
∗aG (x2)) |x− y| , ∀ x, y ∈ [a∗, b] . (5.40)
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We observe that

|F (y)− F (x)− A (x) (y − x)| ≤ |F (y)− F (x)|+ |A (x)| |y − x| ≤

λ |y − x|+ |A (x)| |y − x| = (λ+ |A (x)|) |y − x| =: (ξ2) , ∀ x, y ∈ [a∗, b] (5.41)

We observe that

|Dα
∗aG (x)| ≤ 1

Γ (m− α)

∫ x

a

(x− t)m−α−1
∣∣G(m) (t)

∣∣ dt
≤ 1

Γ (m− α)

(∫ x

a

(x− t)m−α−1 dt
)∥∥G(m)

∥∥
∞ =

1

Γ (m− α)

(x− a)m−α

(m− α)

∥∥G(m)
∥∥
∞

=
1

Γ (m− α + 1)
(x− a)m−α

∥∥G(m)
∥∥
∞ ≤

(b− a)m−α

Γ (m− α + 1)

∥∥G(m)
∥∥
∞ (5.42)

That is

|Dα
∗aG (x)| ≤ (b− a)m−α

Γ (m− α + 1)

∥∥G(m)
∥∥
∞ <∞, ∀ x ∈ [a, b] (5.43)

Hence, ∀ x ∈ [a∗, b] we get that

|A (x)| = |D
α
∗aG (x)|

2Dα
∗aG (x2)

≤ (b− a)m−α

2Γ (m− α + 1)

∥∥G(m)
∥∥
∞

Dα
∗aG (x2)

<∞ (5.44)

Consequently we observe

(ξ2) ≤

(
λ+

(b− a)m−α

2Γ (m− α + 1)

∥∥G(m)
∥∥
∞

Dα
∗aG (x2)

)
|y − x| , ∀ x, y ∈ [a∗, b] (5.45)

Call

0 < γ1 := λ+
(b− a)m−α

2Γ (m− α + 1)

∥∥G(m)
∥∥
∞

Dα
∗aG (x2)

(5.46)

Choosing (b− a) small enough we can make γ1 ∈ (0, 1). So Equation (5.2) is fulfilled.
Next we call and need

0 < γ := γ0 + γ1 = 1− Dα
∗aG (x1)

2Dα
∗aG (x2)

+ λ+
(b− a)m−α

2Γ (m− α + 1)

∥∥G(m)
∥∥
∞

Dα
∗aG (x2)

< 1, (5.47)

equivalently we find,

λ+
(b− a)m−α

2Γ (m− α + 1)

∥∥G(m)
∥∥
∞

Dα
∗aG (x2)

<
Dα
∗aG (x1)

2Dα
∗aG (x2)

(5.48)

equivalently,

2λDα
∗aG (x2) +

(b− a)m−α

Γ (m− α + 1)

∥∥G(m)
∥∥
∞ < Dα

∗aG (x1) (5.49)

which is possible for small λ, (b− a).
That is γ ∈ (0, 1), fulfilling Equation (5.3). Hence Equation (5.33) can be solved with our presented

numerical methods.
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6. Conclusions

We presented a convergence analysis for Newton-type methods under weaker convergence criteria
than in earlier studies with applications in fractional calculus.
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