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Abstract: In this work, we have developed a fourth order Newton-like method based on
harmonic mean and its multi-step version for solving system of nonlinear equations. The
new fourth order method requires evaluation of one function and two first order Fréchet
derivatives for each iteration. The multi-step version requires one more function evaluation
for each iteration. The proposed new scheme does not require the evaluation of second or
higher order Fréchet derivatives and still reaches fourth order convergence. The multi-step
version converges with order 2r+4, where r is a positive integer and r ≥ 1. We have proved
that the root α is a point of attraction for a general iterative function, whereas the proposed
new schemes also satisfy this result. Numerical experiments including an application to
1-D Bratu problem are given to illustrate the efficiency of the new methods. Also, the new
methods are compared with some existing methods.
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1. Introduction

An often discussed problem in many applications of science and technology is to find a real zero of a
system of nonlinear equations F (x) = 0, where F (x) = (f1(x), f2(x), ..., fn(x))

T , x = (x1, x2, ..., xn)
T ,
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fi : Rn → R,∀i = 1, 2, . . . , n and F : D ⊂ Rn → Rn is a smooth map and D is an open and convex

set, where we assume that α = (α1, α2, ..., αn)
T is a zero of the system and x(0) =

(
x
(0)
1 , x

(0)
2 , ..., x

(0)
n

)T
is an initial guess sufficiently close to α. For example, problems of the above type arise while solving
boundary value problems for differential equations. The differential equations are reduced to system
of nonlinear equations, which are in turn solved by the familiar Newton’s iteration method having
convergence order two [1]. The Newton method (2ndNM) is given by

x(k+1) = G2ndNM(x(k)) = x(k) − u(x(k)), u(x(k)) = [F ′(x(k))]−1F (x(k)) (1)

Homeier [2] has proposed a third order iterative method called Harmonic Mean Newton’s method for
solving a single nonlinear equation. Analogous to this method [2], we consider the following extension
to solve a system of nonlinear equation F (x) = 0, henceforth called as 3rdHM :

x(k+1) = G3rdHM(x(k)) = x(k) − 1

2

(
[F ′(x(k))]−1 + [F ′(x(k) − u(x(k)))]−1

)
F (x(k)) (2)

We note that
1

2

(
[F ′(x(k))]−1 + [F ′(x(k) − u(x(k)))]−1

)
is the average of the inverses of two Jacobians.

In general, such third order methods free of second derivatives like Equation (2) can be used for
solving system of nonlinear equations. These methods require one function evaluation and two first
order Fréchet derivative evaluations. The convergence analysis of a few such methods using point of
attraction theory can be found in [3]. This 3rdHM method is more efficient than Halley’s method
because it does not require the evaluation of a third order tensor of n3 values while finding the number of
function evaluations.

Furthermore, the 3rdHM methods are less efficient than two-step fourth order Newton’s
method (4thNR)

x(k+1) = G4thNR(x
(k)) = G2ndNM(x(k))− F ′(G2ndNM(x(k)))−1F (G2ndNM(x(k))) (3)

which was recently rediscovered by Noor et al. [4] using the variational iteration technique. Recently
Sharma et al. [5] developed the fourth order method, which is given by

x(k+1) = G4thSGS(x
(k)) = x(k) −W (x(k))u(x(k)),

W (x(k)) = −1

2
I +

9

8
[F ′(y(x(k)))]−1F ′(x(k)) +

3

8
[F ′(x(k))]−1F ′(y(x(k)))

y(x(k)) = x(k) − 2

3
u(x(k))

(4)

Cordero et al. [6] presented a sixth order method, which is given by

x(k+1) = G6thCHMT (x
(k)) = z(x(k))− [F ′(x(k) − u(x(k)))]−1F (z(x(k)))

z(x(k)) = x(k) − u(x(k) −
[
2I − F ′(x(k))−1F ′(x(k) − u(x(k)))

]
[F ′(x(k))]−1F (x(k) − u(x(k)))

(5)

Recently, an improved fourth order version from a third order method for solving a single nonlinear
equation is found in [7]. In the current paper, similar to the method found in [7], a multivariate version
having fourth order convergence is proposed. The rest of this paper is organized as follows. In
Section 2, we present a new algorithm (optimal) that has fourth order convergence by using only
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three function evaluations and a multi-step version with order 2r + 4, where r is a positive
integer and r ≥ 1 for solving systems of nonlinear equations. In Section 3, we study
the convergence analysis of the new methods using the point of attraction theory. Section 4
presents numerical examples and comparison with some existing methods. Furthermore, we also
study an application problem, i.e., the 1-D Bratu problem [8]. A brief conclusion is given in
Section 5.

2. Development of the Methods

Babajee [7] has recently improved the 3rdHM method to get a fourth order method for single equation yk = xk − 2
3
f(xk)
f ′(xk)

xk+1 = xk − 1
2

[
f(xk)
f ′(xk)

+ f(xk)
f ′(yk)

] [
1− 1

4

(
f ′(yk)
f ′(xk)

− 1
)
+ 1

2

(
f ′(yk)
f ′(xk)

− 1
)2]

This method is one of the member in the family of higher order multi-point iterative methods based
on power mean for solving single nonlinear equation by Babajee et al. [9].

We next extend the above idea to the multivariate case. For the method given in Equation (2), we
propose an improved fourth order Harmonic Mean Newton’s method (4thHM ) for solving systems of
nonlinear equations as follows:

x(k+1) = G4thHM(x(k)) = x(k) −H1(x
(k))A(x(k))F (x(k))

H1(x
(k)) = I − 1

4
(τ(x(k))− I) + 1

2
(τ(x(k))− I)2, τ(x(k)) = [F ′(x(k))]−1F ′(y(x(k)))

A(x(k)) =
1

2

(
[F ′(x(k))]−1 + [F ′(y(x(k)))]−1

)
, y(x(k)) = x(k) − 2

3
u(x(k))

(6)

where I is the n × n identity matrix. We further improve the 4thHM method by additional function
evaluations to get a multi-step version called (2r + 4)thHM method given by

x(k+1) = G(2r+4)thHM(x(k)) = µr(x
(k))

µj(x
(k)) = µj−1(x

(k))−H2(x
(k))A(x(k))F (µj−1(x

(k)))

H2(x
(k)) = 2I − τ(x(k)), j = 1, 2, ..., r, r ≥ 1

µ0(x
(k)) = G4thHM(x(k))

(7)

Note that this multi-step version has order 2r + 4, where r is a positive integer and r ≥ 0. The case
r = 0 is the 4thHM method.

3. Convergence Analysis

The main theorem is going to be demonstrated by means of the n-dimensional Taylor expansion of
the functions involved. In the following, we use certain notations and results found in [10]:

Let F : D ⊆ Rn −→ Rn be sufficiently Fréchet differentiable in D. Suppose the qth derivative
of F at u ∈ Rn, q ≥ 1, is the q-linear function F (q)(u) : Rn × · · · × Rn −→ Rn such that
F (q)(u)(v1, . . . , vq) ∈ Rn. Given α + h ∈ Rn, which lies in a neighborhood of a solution α of the
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nonlinear system F (x) = 0, Taylor’s expansion can be applied (assuming Jacobian matrix F ′(α) is
nonsingular) to obtain

F (α + h) = F ′(α)

[
h+

p−1∑
q=2

Cqh
q

]
+O(hp) (8)

where Cq = (1/q!)[F ′(α)]−1F (q)(α), q ≥ 2. It is noted that Cqhq ∈ Rn since F (q)(α) ∈ L(Rn × · · · ×
Rn,Rn) and [F ′(α)]−1 ∈ L(Rn). Also, we can expand F ′(α + h) in Taylor series

F ′(α + h) = F ′(α)

[
I +

p−1∑
q=2

qCqh
q−1

]
+O(hp) (9)

where I is the identity matrix. It is also noted that qCqhq−1 ∈ L(Rn). Denote e(k) = x(k) − α, so
the error at the (k + 1)th iteration is e(k+1) = Le(k)

p
+ O(e(k)

p+1
), where L is a p-linear function

L ∈ L(Rn × · · · × Rn,Rn) is called the error equation and p is the order of convergence. Observe that
e(k)

p is (e(k), e(k), · · · , e(k)).
In order to prove the convergence order for the Equation (6), we need to recall some important

definitions and results from the theory of point of attraction.

Definition (Point of Attraction). [11] Let G : D ⊂ Rn → Rn. Then α is a point of attraction of the
iteration

x(k+1) = G(x(k)), k = 0, 1, ... (10)

if there is an open neighborhood S of α defined by

S(α) = {x ∈ Rn
∣∣∣ ‖x− α‖ < δ}, δ > 0,

such that S ⊂ D and, for any x(0) ∈ S, the iterating {x(k)} defined by Equation (10) all lie in D and
converge to α.

Theorem 1 (Ostrowski Theorem). [11] Assume that G : D ⊂ Rn → Rn has a fixed point α ∈ int(D)

and G(x) is Fréchet differentiable on α. If

ρ(G′(α)) = σ < 1 (11)

then α is a point of attraction for x(k+1) = G(x(k)).

We now prove a general result that shows α is a point of attraction of a general iteration function
G(x) = P (x)−Q(x)R(x).

Theorem 2. Let F : D ⊂ Rn −→ Rn be sufficiently Fréchet differentiable at each point of an open
convex neighborhood D of α ∈ D, which is a solution of the system F (x) = 0. Suppose that P,Q,R :

D ⊂ Rn → Rn are sufficiently Fréchet differentiable functionals (depending on F ) at each point in D
with P (α) = α, Q(α) 6= 0 and R(α) = 0. Then, there exists a ball

S = S(α, δ) =
{
‖α− x‖ ≤ δ

}
⊂ S0, δ > 0,
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on which the mapping

G : S → Rn, G(x) = P (x)−Q(x)R(x), for allx ∈ S

is well-defined; moreover, G is Fréchet differentiable at α, thus

G′(α) = P ′(α)−Q(α)R′(α).

Proof: Clearly, G(α) = α.

‖G(x)−G(α)−G′(α)(x− α)‖
= ‖P (x)−Q(x)R(x)− α− (P ′(α)−Q(α)R′(α))(x− α)‖
≤ ‖P (x)− α− P ′(α)(x− α)‖+ ‖ −Q(x)R(x) +Q(α)R′(α)(x− α)‖, using triangle inequality.

Since P (x) is differentiable in α and P (α) = α, we can assume that δ was chosen sufficiently small
such that

‖P (x)− α− P ′(α)(x− α)‖ ≤ ε‖x− α‖,

for all x ∈ S with ε > 0 depending on δ and ε = 0 in case P (x) = x.

Since P , Q and R are continuously differentiable functions, then Q′, R′ and R′′ are bounded:

‖Q′(x)‖ ≤ K1, ‖R′(x)‖ ≤ K2, ‖R′′(x)‖ ≤ K3.

Now by mean value theorem for integrals

Q(x) = Q(α) +

∫ 1

0

Q′(α + t(x− α)) dt (x− α)

and

R(x) =

∫ 1

0

R′(α + s(x− α)) ds (x− α),

so that

‖Q(x)R(x)−Q(α)R′(α)(x− α)‖

=

∥∥∥∥∥Q(α)
(∫ 1

0

R′(α + s(x− α))−R′(α) ds
)
(x− α)2

+

∫ 1

0

∫ 1

0

Q′(α + t(x− α)) R′(α + s(x− α)) dt ds (x− α)2
∥∥∥∥∥

≤

∥∥∥∥∥Q(α)
(∫ 1

0

∫ 1

0

R′′(α + sλ(x− α)) ds dλ
)
s (x− α)2

+

∫ 1

0

∫ 1

0

Q′(α + t(x− α)) R′(α + s(x− α)) dt ds (x− α)2
∥∥∥∥∥, using triangle inequality,
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≤ ‖Q(α)‖
∫ 1

0

∫ 1

0

‖R′′(α + sλ(x− α))‖ ds dλ |s| ‖x− α‖2

+

∫ 1

0

∫ 1

0

‖Q′(α + t(x− α))‖ ‖R′(α + s(x− α))‖ dt ds ‖x− α‖2, using Schwartz inequality,

≤
(
K3

2
‖Q(α)‖+K1K2

)
‖x− α‖2, since Q′, R′ and R′′ are bounded,

≤ δ

(
K3

2
‖Q(α)‖+K1K2

)
‖x− α‖, since ‖x− α‖ ≤ δ.

Combining, we have

‖G(x)−G(α)−G′(α)(x− α)‖ ≤ δ

(
ε+

K3

2
‖Q(α)‖+K1K2

)
‖x− α‖

which shows that G(x) is differentiable in α since δ and ε are arbitrary and ‖Q(α)‖, K1, K2 and K3 are
constants. Thus G′(α) = P ′(α)−Q(α)R′(α). �

Theorem 3. Let F : D ⊆ Rn −→ Rn be sufficiently Fréchet differentiable at each point of an open
convex neighborhood D of α ∈ Rn that is a solution of the system F (x) = 0. Let us suppose that
x ∈ S = S(α, δ) and F ′(x) is continuous and nonsingular in α , and x(0) is close enough to α. Then
α is a point of attraction of the sequence {x(k)} obtained using the iterative expression Equation (6).
Furthermore, the sequence converges to α with order 4, where the error equation obtained is

e(k+1) = G4thHM(x(k))− α = L1e
(k)4 +O(e(k)

5
), L1 =

79

27
C3

2 −
8

9
C2C3 −

1

9
C3C2 +

1

9
C4 (12)

Proof: We first show that α is a point of attraction using Theorem 2. In this case,

P (x) = x, Q(x) = H1(x)A(x), R(x) = F (x).

Now, since F (α) = 0, we have

y(α) = α− 2

3
[F ′(α)]−1F (α) = α,

τ(α) = F ′(α)−1F ′(y(α)) = [F ′(α)]−1F ′(y(α)) = I, H1(α) = I,

A(α) =
1

2

(
[F ′(α)]−1 + [F ′(y(α))]−1

)
= [F ′(α)]−1,

Q(α) = H1(α)A(α) = I[F ′(α)]−1 = [F ′(α)]−1 6= 0,

R(α) = F (α) = 0, R′(α) = F ′(α),

P (α) = α, P ′(α) = I,

G′(α) = P ′(α)−Q(α)R′(α) = I − [F ′(α)]−1F ′(α) = 0,

so that ρ(G′(α)) = 0 < 1 and by Ostrowski’s theorem, α is a point of attraction of Equation (6).
We next establish the fourth order convergence of this method. From Equations (8) and (9) we obtain

F (x(k)) = F ′(α)
[
e(k) + C2e

(k)2 + C3e
(k)3 + C4e

(k)4
]
+O(e(k)

5
) (13)
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and
F ′(x(k)) = F ′(α)

[
I + 2C2e

(k) + 3C3e
(k)2 + 4C4e

(k)3 + 5C5e
(k)4
]
+O(e(k)

5
),

where e(k) = x(k) − α.

We have

[F ′(x(k))]−1 =
[
I +X1e

(k) +X2e
(k)2 +X3e

(k)3
]
[F ′(α)]−1 +O(e(k)

4
) (14)

where X1 = −2C2, X2 = 4C2
2 − 3C3 and X3 = −8C3

2 + 6C2C3 + 6C3C2 − 4C4.
Then

[F ′(x(k))]−1F (x(k)) = e(k) − C2e
(k)2 + 2(C2

2 − C3)e
(k)3 +O(e(k)

4
),

and the expression for y(x(k)) is

y(x(k)) = α +
1

3
e(k) +

2

3
C2e

(k)2 − 4

3
(C2

2 − C3)e
(k)3

+(2C4 −
8

3
C2C3 − 2C3C2 + 8C3

2)e
(k)4 +O(e(k)

5
).

The Taylor expansion of the Jacobian matrix F ′(y(x(k))) is

F ′(y(x(k))) = F ′(α)
[
I + 2C2(y(x

(k))− α) + 3C3(y(x
(k))− α)2 + 4C4(y(x

(k))− α)3

+ 5C5(y(x
(k))− α)4

]
+O(e(k)

5
)

= F ′(α)
[
I +N1e

(k) +N2e
(k)2 +N3e

(k)3
]
+O(e(k)

4
),

N1 =
2

3
C2, N2 =

4

3
C2

2 +
1

3
C3, N3 = −

8

3
C3

2 +
8

3
C2C3 +

4

3
C3C2 +

4

27
C4.

Therefore,

τ(x(k)) = [F ′(x(k))]−1F ′(y(x(k)))

= I + (N1 +X1)e
(k) + (N2 +X1N1 +X2)e

(k)2

+(N3 +X1N2 +X2N1 +X3)e
(k)3 +O(e(k)

4
)

= I − 4

3
C2e

(k) + (4C2
2 −

8

3
C3)e

(k)2 +

(
−32

3
C3

2 + 8C2C3 +
16

3
C3C2 −

104

27
C4

)
e(k)

3

+O(e(k)
4
)

and then
H1(x

(k)) = I − 1

4

(
τ(x(k))− I

)
+

1

2

(
τ(x(k))− I

)2
= I +

1

3
C2e

(k) +

(
−1

9
C2

2 +
2

3
C3

)
e(k)

2

+

(
−8

3
C3

2 +
14

9
C2C3 −

4

3
C3C2 +

26

27
C4

)
e(k)

3
+O(e(k)

4
)

(15)
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Also,

[F ′(y(x(k)))]−1

=

[
I −N1e

(k) + (N2
1 −N2)e

(k)2 +
(
N1N2 +N2N1 −N3

1 −N3

)
e(k)

3

]
[F ′(α)]−1 +O(e(k)

4
)

=
[
I + Y1e

(k) + Y2e
(k)2 + Y3e

(k)3
]
[F ′(α)]−1 +O(e(k)

4
),

where Y1 = −
2

3
C2, Y2 = −

8

9
C2

2 −
1

3
C3, Y3 =

112

27
C3

2 −
22

9
C2C3 −

10

9
C3C2 −

4

27
C4

(16)
On the other hand, using Equations (14) and (16), the harmonic mean can be expressed as

A(x(k)) =
[
I − 4

3
C2e

(k) +

(
14

9
C2

2 −
5

3
C3

)
e(k)

2

+

(
−52

27
C3

2 +
16

9
C2C3 +

22

9
C3C2 −

56

27
C4

)
e(k)

3
]
[F ′(α)]−1 +O(e(k)

4
)

(17)

Using Equations (15) and (17), we have

H1(x
(k))A(x(k))

=

[
I − C2 e

(k) + (C2
2 − C3) e

(k)2 +

(
−106

27
C3

2 +
17

9
C2C3 +

10

9
C3C2 −

10

9
C4

)
e(k)

3

]
[F ′(α)]−1

+O(e(k)
4
)

(18)
Finally, by using Equations (13) and (18) in Equation (6) with some simplifications, the error equation

can be expressed as:

e(k+1) = x(k) − α−H1(x
(k))A(x(k))F (x(k))

=

(
79

27
C3

2 −
8

9
C2C3 −

1

9
C3C2 +

1

9
C4

)
e(k)

4
+O(e(k)

5
)

(19)

Thus from Equation (19), it can be concluded that the order of convergence of the 4thHM method
is four. �

For the case r ≥ 1 we state and prove the following theorem.

Theorem 4. Let F : D ⊆ Rn −→ Rn be sufficiently Fréchet differentiable at each point of an open
convex neighborhood D of α ∈ Rn that is a solution of the system F (x) = 0. Let us suppose that
x ∈ S = S(α, δ) and F ′(x) is continuous and nonsingular in α, and x(0) is close enough to α. Then
α is a point of attraction of the sequence {x(k)} obtained using the iterative expression Equation (7).
Furthermore the sequence converges to α with order 2r + 4, where r is a positive integer and r ≥ 1.

Proof: In this case,

P (x) = µj−1(x), Q(x) = H2(x)A(x), R(x) = F (µj−1(x)), j = 1, ..., r.

We can show by induction that

µj−1(α) = α, µ′j−1(α) = 0, ∀ j = 1, ..., r
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so that

P (α) = µj−1(α) = α, H2(α) = I, Q(α) = H2(α)A(α) = I[F ′(α)]−1 = [F ′(α)]−1 6= 0,

R(α) = F (µj−1(α)) = F (α) = 0,

P ′(α) = µ′j−1(α) = 0, R′(α) = F ′(µj−1(α))µ
′
j−1(α) = 0,

G′(α) = P ′(α)−Q(α)R′(α) = 0.

So ρ(G′(α)) = 0 < 1 and by Ostrowski’s theorem, α is a point of attraction of Equation (7). A Taylor
expansion of F (µj−1(x(k))) about α yields

F (µj−1(x
(k))) = F ′(α)

[
(µj−1(x

(k))− α) + C2(µj−1(x
(k))− α)2 + ...

]
(20)

Also, let

H2(x
(k)) = I +

4

3
C2e

(k) +

(
−4C2

2 +
8

3
C3

)
e(k)

2
+ ... (21)

Using Equations (17) and (21), we have

H2(x
(k))A(x(k)) =

[
I + L2 e

(k)2 + ...
]
[F ′(α)]−1, L2 = −

38

9
C2

2 + C3 (22)

Using Equations (20) and (22), we obtain

µj(x
(k))− α = µj−1(x

(k))− α−H2(x
(k))A(x(k))F (µj−1(x

(k)))

= µj−1(x
(k))− α−

[
I + L2 e

(k)2 + ...
] [

(µj−1(x
(k))− α) + C2(µj−1(x

(k))− α)2 + ...
]

= L2 e
(k)2(µj−1(x

(k))− α) + ...

(23)

Proceeding by induction of Equation (23) and using Equation (12), we have

µr(x
(k))− α = L1L2

r e(k)
(2r+4)

+O(e(k)
(2r+5)

), r ≥ 1

�

4. Numerical Examples

In this section, we compare the performance of the contributed Equations (6) and (7) with
different methods given in Equations (1)–(5). The numerical experiments have been carried out using
MATLAB 7.6 software for the test problems given below. The approximate solutions are calculated
correct to 1000 digits by using variable precision arithmetic. We use the following stopping criterion for
the iterations:

errmin = ‖x(k+1) − x(k)‖2 < 10−100 (24)

We have used the approximated computational order of convergence pc given by (see [12])

pc ≈
log (‖x(k+1) − x(k)‖2/‖x(k) − x(k−1)‖2)
log (‖x(k) − x(k−1)‖2/‖x(k−1) − x(k−2)‖2)

(25)

Let M be the number of iterations required for reaching the minimum residual errmin.
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4.1. Test Problems

Test Problem 1 (TP1) We consider the following system given in [13]:
F (x1, x2) = 0, where F : (4, 6)× (5, 7)→ R2 and

F (x1, x2) = (x21 − x2 − 19, x32/6− x21 + x2 − 17).

The Jacobian matrix is given by F ′(x) =

(
2x1 −1
−2x1 1

2
x22 + 1

)
. The starting vector is

x(0) = (5.1, 6.1)T and the exact solution is α = (5, 6)T .

Test Problem 2 (TP2) We consider the following system given in [3]:
cosx2 − sinx1 = 0,

xx13 −
1

x2
= 0,

expx1 − x23 = 0.

The solution is α ≈ (0.909569, 0.661227, 1.575834)T . We choose the starting vector
x(0) = (1, 0.5, 1.5)T . The Jacobian matrix has 7 non-zero elements and it is given by

F ′(x) =

 − cosx1 − sinx2 0

xx13 lnx3 1/x22 xx13 x1/x3

expx1 0 −2x3

 .

Test Problem 3 (TP3) We consider the following system given in [3]:

x2x3 + x4(x2 + x3) = 0,

x1x3 + x4(x1 + x3) = 0,

x1x2 + x4(x1 + x2) = 0,

x1x2 + x1x3 + x2x3 = 1.

We solve this system using the initial approximation x(0) = (0.5, 0.5, 0.5,−0.2)T . The solution of this
system is α ≈ (0.577350, 0.577350, 0.577350,−0.288675)T . The Jacobian matrix that has 12 non-zero
elements is given by

F ′(x) =


0 x3 + x4 x2 + x4 x2 + x3

x3 + x4 0 x1 + x4 x1 + x3

x2 + x4 x1 + x4 0 x1 + x2

x2 + x3 x1 + x3 x1 + x2 0

 .
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Table 1. Comparison of different methods for system of nonlinear equations.

Methods TP1 TP2 TP3
M errmin pc M errmin pc M errmin pc

2ndNM Equation (1) 7 4.6e−114 2.00 9 1.7e−107 2.00 8 3.9e−145 2.02
3rdHM Equation (2) 5 1.4e−174 2.99 6 4.5e−139 3.00 5 2.9e−291 4.10
4thNR Equation (3) 4 4.6e−114 4.02 5 1.7e−107 4.00 5 2.9e−291 4.11
4thSGS Equation (4) 4 7.1−108 3.99 6 0 3.99 5 8.8e−257 4.03
4thHM Equation (6) 4 1.4e−105 3.99 6 0 4.00 5 5.5e−247 4.12

6thCHMT Equation (5) 4 0 5.91 5 0 5.98 4 4.6e−199 6.12
6thHM Equation (7) 4 0 5.90 5 0 5.98 4 6.1e−194 6.13
8thHM Equation (7) 4 0 7.90 4 1.9e−133 7.99 4 0 8.64
10thHM Equation (7) 3 1.1e−154 9.90 4 2.2e−248 9.99 4 0 10.76

Table 1 shows the results for the test problems (TP1, TP2, TP3), from which we conclude that the
10thHM method is the most efficient method with least number of iterations and residual error.

Table 2. Comparison of CPU time (s).

Methods TP1 TP2 TP3
2ndNM 1.161405 1.734549 1.758380
3rdHM 0.950678 2.445676 1.969176
4thNR 0.808851 1.569021 1.452089
4thSGS 1.052950 2.649530 2.571427
4thHM 1.001148 2.170088 2.456138

6thCHMT 1.132364 2.117847 2.405149
6thHM 0.944062 2.137319 2.528262
8thHM 0.986300 2.328460 2.071641
10thHM 1.029707 2.482167 2.213744

In Table 2, we have given CPU time for the proposed methods and some existing methods.
Next, we consider the (2r + 4)thHM family of methods for finding the least value of r and thus the

value of p in order to get the number of iteration M = 2 and errmin = 0. To achieve this, TP1 requires
r = 6 (p = 16), TP2 requires r = 18 (p = 40) and TP3 requires r = 8 (p = 20). Furthermore, it is
observed that the order of convergence p depends on the test problem and its starting vector.

4.2. 1-D Bratu Problem

The 1-D Bratu problem [8] is given by

d2U

dx2
+ λ expU(x) = 0, λ > 0, 0 < x < 1, (26)

with the boundary conditions U(0) = U(1) = 0. The 1-D planar Bratu problem has two known,
bifurcated, exact solutions for values of λ < λc, one solution for λ = λc and no solution for λ > λc.
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The critical value of λc is simply 8(η2 − 1), where η is the fixed point of the hyperbolic cotangent
function coth (x). The exact solution to Equation (26) is known and can be presented here as

U(x) = −2 ln

[
cosh (x− 1

2
) θ
2

cosh
(
θ
4

) ]
, (27)

where θ is a constant to be determined, which satisfies the boundary conditions and is carefully chosen
and assumed to be the solution of the differential Equation (26). Using a similar procedure as in [14],
we show how to obtain the critical value of λ. Substitute Equation (27) in Equation (26), simplify and

collocate at the point x =
1

2
because it is the midpoint of the interval. Another point could be chosen,

but low order approximations are likely to be better if the collocation points are distributed somewhat
evenly throughout the region. Then, we have

θ2 = 2λ cosh2

(
θ

4

)
. (28)

Differentiating Equation (28) with respect to θ and setting
dλ

dθ
= 0, the critical value λc satisfies

θ =
1

2
λc cosh

(
θ

4

)
sinh

(
θ

4

)
. (29)

By eliminating λ from Equations (28) and (29), we have the value of θc for the critical λc satisfying

θc
4

= coth

(
θc
4

)
(30)

for which θc = 4.798714560 can be obtained using an iterative method. We then get λc = 3.513830720

from Equation (28). Figure 1 illustrates this critical value of λ.
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Figure 1. Variation of θ for different values of λ.

The finite dimensional problem using standard finite difference scheme is given by

Fj(Uj) =
Uj+1 − 2Uj + Uj−1

h2
+ λ expUj = 0, j = 1..N − 1 (31)

with discrete boundary conditions U0 = UN = 0 and the step size h = 1/N . There are N − 1 unknowns
(n = N − 1). The Jacobian is a sparse matrix and its typical number of nonzero per row is three. It
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is known that the finite difference scheme converges to the lower solution of the 1-D Bratu using the
starting vector U (0) = (0, 0, .., 0)T .

We use N = 101 (n = 100) and test for 350 λ’s in the interval (0, 3.5] (interval width = 0.01). For
each λ, we let Mλ be the minimum number of iterations for which ‖U (k+1)

j − U (k)
j ‖2 < 1e − 13, where

the approximation U
(k)
j is calculated correct to 14 decimal places. Let Mλ be the mean of iteration

number for the 350 λ’s.

Table 3. Comparison of number of λ’s in different methods for 1-D Bratu problem.

Method M = 2 M = 3 M = 4 M = 5 M > 5 Mλ

2ndNM 0 12 114 143 81 4.92
3rdHM 0 140 206 2 2 3.62
4thSGS 4 237 100 8 1 3.33
4thHM 4 234 103 7 2 3.35

6thCHMT 3 213 124 8 2 3.42
6thHM 35 281 32 1 1 3.00

Figure 2 and Table 3 give the results for the 1-D Bratu problem, where M represents number of
iterations for convergence. It can be observed from the six methods considered in Table 3 that as λ
increases to its critical value, the number of iterations required for convergence increase. However, as
the order of method increases, the mean of iteration number decreases. The 6thHM is the most efficient
method among the six methods because it has the lowest mean iteration number and the highest number
of λ converging in 2 iterations.
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Figure 2. Variation of number of iteration with λ for the 2ndNM , 3rdHM , 4thHM and
6thHM methods.

For each λ, we find the minimum order of the (2r + 4)thHM family so that we reach convergence in
2 iterations and the results are shown in Figure 3. It can be observed that as the value of λ increases, the
value of p required for convergence in 2 iterations also increases. For λ ∈ [0.01, 0.04], we require p = 4

(4thHM ). For λ ∈ [0.05, 0.35], we require p = 6 (6thHM ). For λ ∈ [0.36, 0.83], we require p = 8

(8thHM ). For λ ∈ [0.84, 1.29], we require p = 10 (10thHM ). For λ ∈ [1.30, 1.66], we require p = 12

(12thHM ). For λ ∈ [1.66, 1.95], we require p = 14 (14thHM ). For λ ∈ [1.96, 2.19], we require p = 16

(16thHM ). For λ ∈ [2.20, 2.37], we require p = 18 (18thHM ). For λ ∈ [2.38, 2.52], we require p = 20
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(20thHM ). For λ ∈ [2.53, 2.64], we require p = 22 (22thHM ) and so on. We notice that the width of
the interval decrease and the order of the family is very high as λ tends to its critical value. Finally, for
λ = 3.5, we require p = 260 to reach convergence in 2 iterations.
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Figure 3. Order of the (2r + 4)thHM family for each λ.

5. Conclusion

In this work, we have proposed a fourth order method and its multi-step version having higher order
convergence using weight functions to solve systems of nonlinear equations. The proposed schemes do
not require the evaluation of second or higher order Fréchet derivatives to reach fourth order or higher
order of convergence. We have tested a few examples using the proposed schemes and compared them
with some known schemes, which illustrate the superiority of the new schemes. Finally, the proposed
new methods have been applied on a practical problem called the 1-D Bratu problem. The results
obtained are interesting and encouraging for the new methods. Hence, the proposed methods can be
considered competent enough to some of the existing methods.
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