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Abstract: Arc fault is one of the most critical reasons for electrical fires. Due to the 

diversity, randomness and concealment of arc faults in low-voltage circuits, it is difficult 

for general methods to protect all loads from series arc faults. From the analysis of many 

series arc faults, a large number of high frequency signals generated in circuits are found. 

These signals are easily affected by Gaussian noise which is difficult to be eliminated as a 

result of frequency aliasing. Thus, a novel detection algorithm is developed to accurately 

detect series arc faults in this paper. Initially, an autoregressive model of the mixed high 

frequency signals is modelled. Then, autoregressive bispectrum analysis is introduced to 

analyze common series arc fault features. The phase information of arc fault signal is 

preserved using this method. The influence of Gaussian noise is restrained effectively. 

Afterwards, several features including characteristic frequency, fluctuation of phase angles, 

diffused distribution and incremental numbers of bispectrum peaks are extracted for 

recognizing arc faults. Finally, least squares support vector machine is used to accurately 

identify series arc faults from the load states based on these frequency features of 

bispectrum. The validity of the algorithm is experimentally verified obtaining arc fault 

detection rate above 97%. 
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1. Introduction 

Statistical data from fire services show that over 90% of electrical fires are caused by arc faults, 

over currents, short circuits and leakages [1–4]. Leakage protectors and over current breakers are 

respectively used to protect electrical circuits from leakages and over currents presently, but they 

cannot be used to protect circuits from arc faults. There are three types of arc faults: ground arc fault, 

parallel arc fault and series arc fault. Parallel and ground arc faults respectively share similar features 

to ground fault and over current and are thus easy to be detected [5]. However, fault features from 

series arc faults are usually submerged by load currents and background noise, thus making accurate 

recognition difficult.  

To accurately describe an arc fault in mathematics, some arc fault models were proposed. Gammon 

and Matthews developed an instantaneous arc model for a resistive-inductive system [6]. This model 

could predict arc fault currents because arc voltage was a current-dependent function. Another similar 

arc fault model for alternating current (AC) systems was derived by the probability method [7]. Parise 

provided a simplified model which could be used to analyze and determine basic parameters such as 

arc resistance and ignition voltage [8]. To fit with the arc fault scenarios described in UL1699 which 

was a standard for arc fault circuit interrupter (AFCI), a meta-model based on Mayr and Ayrton 

models was built [9]. Arc fault models usually provide theoretical bases for arc fault detection.  

When arc faults occur in circuits, some abnormal behaviors are found on arc light, arc sounds, arc 

radiation signals, arc voltages and arc currents. Arc light and arc sounds usually change obviously and 

they can be used for arc fault detection [10,11]. The study in [12] estimated the amplitude of arc 

voltage by least error squares method. The voltage was compared with a given threshold value to 

identify arc faults. Another similar approach for arc fault detection by the amplitude comparison of arc 

voltage was proposed in [13]. The simulation of the approach was successfully done using a square 

wave arc model. Charles obtained the radiated electromagnetic energy from arc source using a stick 

and a loop antenna [14]. He then concluded that the radiation signals could be used for arc fault 

detection. Although arc fault behaviors of arc light, arc sounds, arc radiation signals and arc voltages 

are obvious, they appear on stationary sites. Hence, there are some limitations in arc fault detection 

methods based on these behaviors since the sites, time and intensities of series arc faults are random.  

The study in [15] briefly summarized the frequency features of currents. Researchers in the study 

believed that the high frequency components (greater than 20 kHz) existed in arc fault currents. In the 

frequency domain, the spectrum energy variations of line currents can be used to detect series arc 

faults [16]. In many studies, a large quantity of load currents in arc faults and normal states were first 

acquired. Arc fault features were then found by advanced signal processing approaches, and arc faults 

were finally discriminated from the load states based on these features. Those advanced approaches 

are: using the absolute sum value of coefficients in multiresolution signal decomposition [17], 

combining discrete wavelet transform and wavelet networks [18], using discrete wavelet transform and 
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an artificial neural network [19,20], using Gabor Transform and artificial neural network [21], 

reconstructing the information entropy of signals in different frequency bands [22], etc.  

For this paper, in order to improve the accuracy of arc fault detection, a large number of arc fault 

high frequency signals will be collected by a transducer to find any common features among arc faults. 

High frequency signals are usually mixed with Gaussian noise, such as circuit noise and quantization 

noise from the acquisition process [23]. In order to improve the signal-to-noise ratio (SNR) and the 

accuracy of arc fault detection, the higher-order spectrum will be introduced in this paper.  

Higher-order spectrum analysis is emerging as a new useful technique in signal processing; it can 

describe nonlinear coupling, restrain Gaussian noise and preserve phase information among different 

frequency components of a random process. The study in [24] introduced the higher-order spectrum in 

detail. In the third-order case of a random process, the higher-order spectrum reduces to the 

bispectrum. The two main methods used to estimate the bispectrum are the conventional and the 

parametric methods [24–29]. Raghuvee and Nikias presented two parametric approaches consisting of 

the third-order recursion method and the constrained third-order mean method to estimate the  

bispectrum [30,31]. Bispectrum has been widely used in many fields, such as electrical and mechanical 

equipment condition monitoring and diagnostics [32–34], astronomy [35], communication [36,37] and 

biomedical engineering [38,39].  

Bispectrum will be used to extract common features for identifying series arc faults. In order to further 

improve the identification rate of arc fault, a good classification algorithm is needed. Compared with 

traditional classification algorithms, such as a neural network algorithm, support vector machine (SVM) 

can better solve the difficult problems: dimension disaster, over learning, local minima [40,41], etc. It has 

several merits including convergence to global optimum, good generalization ability and adaptation for 

some small samples and high dimension data [42,43]. In this research, least squares support vector 

machine (LSSVM) will be introduced to identify series arc faults. 

As mentioned above, many previous studies on arc fault detection have discussed mathematical 

models, abnormal behaviors in time domain, frequency spectrum, power spectrum, etc., but none of 

these studies offer autoregressive (AR) model and AR bispectrum analysis for arc fault detection. For 

the first time, this research will apply AR bispectrum to study arc faults in low-voltage AC circuits.  

The remainder of this paper is organized as follows. Section 2 constructs an arc fault experimental 

platform and collects a large amount of experimental data. Section 3 analyzes different types of load 

signals in arc faults and normal states based on two main methods: conventional time-frequency 

domain and AR bispectrum analysis. The conventional time-frequency analysis includes time domain 

and power spectrum analysis. In bispectrum analysis, an AR model is first modelled, then AR 

bispectrum is introduced. Common series arc fault features are extracted as input vectors to recognize 

arc faults. Section 4 introduces LSSVM and applies it to the identification of series arc faults from the 

load states. Finally, Section 5 summarizes the conclusions of this study. 

2. Experimental Platform 

An arc fault experimental platform which is based on the low-voltage electric standards is 

constructed as shown in Figure 1. Electrical standards include UL1699, IEC 62606: 2013 and GB/T 

31143-2014 which are used as reference standards to construct the experimental platform. Typical 
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experimental loads are composed of six 50 W halogen lamps, a 0.75 kW electrical hand drill, two  

40 W fluorescent lamps, a 0.35 kW computer, a 1.2 kW electric stove, a 1 kW dimming lamp, a  

1.2 kW vacuum cleaner, a 1.1 kW air conditioning unit and a 2.2 kW air compressor. The arc generator 

used for simulations of arc faults in circuits consists of a stationary electrode and a moving electrode. 

A PXI (the abbreviated form of the peripheral component interconnection extension for 

instrumentation) data acquisition system and a high frequency transducer are used to acquire a large 

number of high frequency signals in circuits. The band width of PXI system is 100 MHz. Different 

types of load signals in arc faults and normal states are acquired through this experimental platform, 

and they will be used to analyze the common features of arc faults in the following section. 

 

 

Arc generator 

Transducer PXI system 

Different types  

of loads 
 

Figure 1. Experimental platform of arc faults. 

3. Signal Analysis  

3.1. Conventional Time-Frequency Analysis 

High frequency signals were discovered during numerous arc fault experiments. They could reflect 

the dynamic arc discharge process and be acquired using high frequency transducers [14]. At first, air 

molecules in the wire gap are ionized in the initiation of arc discharge, and the motion of plasma is 

then intensified further. According to electromagnetic theory, great quantities of high frequency 

signals are initially released. The signals are then gradually reduced during the remainder of the 

current cycle [14]. As a result, high frequency signals are produced periodically when arc faults exist 

in circuits. However, these signals are uncertain as a result of the unknown external conditions 

including the effects of electrode materials, surface states, oxide layers, adsorbed gases, arc currents, 

arc gaps of dielectric materials, etc. 
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Figure 2. Detected high frequency signals of different load states. (a) Halogen lamp 

normal; (b) Halogen lamp arc fault; (c) Vacuum cleaner normal; (d) Vacuum cleaner arc 

fault; (e) Electrical drill normal; (f) Electrical drill arc fault. 
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In order to find the features of arc faults, some typical load signals are selected for analysis. The 

high frequency signals of different loads in arc faults and normal states are shown in Figure 2. There 

are many high frequency signals and short pulses generated during the arcing process when the loads 

work in arc fault states as shown in Figure 2b,d and f. The high frequency signals with big amplitudes 

are densely distributed. However, high frequency signals can be also acquired during the normal states 

as shown in Figure 2a,c and e. 

As a result of the switch transformers alternating between on/off state, there are many high 

frequency signals generated in current cycles when the halogen lamps work in the normal state as 

shown in Figure 2a. Similarly, when the vacuum cleaner and the electrical drill work in normal states, 

some random interference pulses appear in the circuits as shown in Figure 2c,e. Due to electric brush 

motors in the vacuum cleaner and electrical drill, electrical discharge occurs and produces many high 

frequency signals when the electric brush changes the current phase. Electric sparks can be seen from 

the electrical drill windows even when working in the normal states. The electric sparks are caused by 

load arcs which are not dangerous but are similar to fault arcs. It is usually very difficult to 

discriminate load arcs directly from measured frequency signals.  

The analysis above indicates that it is difficult to find a reasonable numerical threshold to classify 

arc faults and the normal states in all loads by simply inspecting the constant amplitude of the high 

frequency signals. This is because that arc fault signals are usually mixed with much interference 

consisting of circuit noise, quantization noise from the acquisition process, random noise from electric 

parts, etc. They are both close to the Gaussian distribution. As a result of their existence, the SNR 

decreases considerably. The frequency aliasing is hard to overcome.  

In frequency domain, the power spectra of vacuum cleaner are shown in Figure 3. The frequency 

distributions of arc faults and normal states in power spectra are similar. As we know, the power 

spectrum is based on second-order statistics. Signals are only analyzed by the amplitude  

(e.g. Figures 2c,e, 3a and b) but lack phase coupling information. So the power spectrum may fail in 

providing a satisfactory description in a non-Gaussian or nonlinear process. In addition, there are many 

high frequency signals generated in current cycles when the vacuum cleaner works in normal state. 

The power spectrum applies the Fourier transform to all signals and is sensitive to the Gaussian noise. 

Hence it is difficult to distinguish the effective components from the mixed signals of arc faults 

through the power spectrum. That is to say, it is difficult to identify series arc faults from the load 

states. Generally speaking, arc fault high frequency signals are random, nonlinear and non-Gaussian. 

Since bispectrum is a powerful technique in processing random signals, it will be introduced to analyze 

arc fault signals in the following section. 
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Figure 3. The power spectra of vacuum cleaner. (a) Normal; (b) Arc fault. 

3.2. Bispectrum Analysis 

Higher-order spectrum and higher-order cumulants are useful tools in describing the dynamic 

features and processing signals [44]. Bispectrum is the two-dimensional Fourier transform of  

third-order cumulants and is the simplest higher-order spectrum. It is widely used in describing the 

nonlinear coupling, restraining Gaussian noise and preserving the phase information of random 

signals. At present, there are many methods to estimate the bispectrum. A parametric method based on 

the AR model is introduced to study arc faults in this section.  

3.2.1. AR Model and Third-Order Cumulants 

According to the analysis results in Section 3.1, arc fault is an obvious random process. So it is very 

difficult for us to build a mathematical function to describe the variation rules with time. However, we may 

introduce time series analysis theory to reveal the correlation among the acquired data from arc faults. 

Here, the AR model is introduced. As a result of environmental impacts, circuit noise, quantization noise 

and load disturbances, there is much interference mixed in arc fault signals. The random signals which exist 

in arc faults are assumed to be interfered by the non-Gaussian white noise a(t) whose mean value is zero. 

The zero-mean non-Gaussian colored noise u(t) containing abundant useful dynamic information of arc 

faults is assumed to be the output of AR process driven by a(t) [30,44]. Therefore, the time series AR 

model of arc fault can be described as 

1

( ) ( ) ( )k

q

k

u t u t k a tϕ
=

+ − = , (t = 1, 2, 3, …) (1)

where q is the order of model AR(q), ( 1,2, , )k k qϕ =   is the autoregressive coefficient and a(t) is the 

input signal. 

According to the relationship between cumulants and moments in statistical theory, the third-order 

cumulants of u(t) can be expressed as 
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[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]

3 1 2 1 2 1 2 1 2

2 1 1 2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) 2 ( ) ( ) ( )

uC , E u t u t u t E u t E u t u t E u t E u t u t

E u t E u t u t E u t E u t E u t

τ τ τ τ τ τ τ τ
τ τ τ τ

= + + − + + − + +

− + + + + +
 (2)

where 
1τ  and 

2τ  are lags. The mean of u(t) can be denoted as [ ]( )u E u tμ =  and the correlation function 

can be expressed as [ ]( ) ( ) ( )u E u t u tρ τ τ= + . Then Equation (2) can be denoted as 

[ ] 3
3 1 2 1 2 2 1 2 1( ) ( ) ( ) ( ) ( ) ( ) ( ) 2u u u u u u u uC , E u t u t u tτ τ τ τ μ ρ τ τ μ ρ τ μ ρ τ μ= + + − − − − +  (3)

After the preprocessing, the mean value of u(t) is zero, namely, 0uμ = . Therefore, Equation (3) can 

be simplified as 

[ ]3 1 2 1 2( ) ( ) ( ) ( )uC , E u t u t u tτ τ τ τ= + +  (4)

Here the third-order cumulants of u(t) equal to its third-order moments. For the input signal a(t), it 

has the following properties:  

[ ]
[ ]
[ ]

2
1 1

1 2 1 2

1 1 2

( ) ( ) ( )

( ) ( ) ( ) ( , )

( ) ( ) 0 ( , )

aE a t a t

E a t a t a t

E a t u t

τ σ δ τ
τ τ γδ τ τ
τ τ τ

 + =


+ + =
 − = ≥0 ≥0

 (5)

where 2
aσ  is the variance of a(t), 1( )δ τ  is the one-dimensional unit impulse function, 1 2( , )δ τ τ  is the  

two-dimensional unit impulse function and the coefficient 3( )[ ] 0a tEγ = ≠ . 

For a stationary physical process, Equation (1) can be expressed by using third-order cumulants of 

u(t) [30,31]: 

3 1 2 3 1 2 2
1

1(- ,- ) ( - , - ) ( , )u k u

q

k

C C k kτ τ τ τ γδ τ τϕ
=

+ =  (6)

When 1 2= =0 1, 2, , qτ τ ， , Equation (6) can be transformed in matrix: 

=CΦ Γ  (7)

where 

3 3 3

13 3 3

3 3 3

1(0,0) (1,1) ( , )

( 1, 1) (0,0) ( 1, 1) 0
= , , .

( , ) (1 ,1 ) (0,0) 0

u u u

u u u

qu u u

C C C q q

C C C q q

C q q C q q C

ϕ

ϕ

γ    
    − − − −     = =
    
    − − − −       

C Φ Γ




    


 C is a Toeplitz matrix but in general is 

not symmetric, ( 1, 2, , )k k qϕ =   is the AR model parameter to be estimated.  

Now, when solving Equation (7), a crucial action should be taken: determine the order of AR 
model. This problem can be solved by the cumulant matrix eC  with the singular value decomposition 

technique [45]. Here eC  is the third-order cumulant matrix of u(t). It can be decomposed as  

H
e =C UΣV  (8)

where U and V are unitary matrices, Σ  is an matrix whose elements are zero except possibly along its 

main diagonal and HV  is the complex conjugate transpose of V. The diagonal elements of Σ  are 

ordered as 

1 2 0nλ λ λ≥ ≥ ≥ ≥  (9)
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The diagonal element nλ  is called as the singular value of eC . The normalized ratio of Frobenious 

norm can be expressed as 
1

2 2 2 2
1 2

1
2 2 2 2

1 2

( )
q

n

R q
λ λ λ

λ λ λ

 + + + =
 + + + 




, 1,2 , ,q n=   (10)

The number q can be regarded as the order of the AR model when R(q) ≥ 0.995.  

At last, Equation (7) can be solved by the least squares method to obtain the AR model parameter 
( 1, 2, , )k k qϕ =  . Here the AR model of the mixed high frequency signals can be used to quantitatively 

describe the nonlinear coupling relationships of arc fault signals. The next task is to extract series arc 

fault features through bispectrum based on the AR model. 

3.2.2. AR Bispectrum 

AR Bispectrum is a type of bispectrum which is estimated through an AR model parametric 

method. It will be briefly introduced in this section.  

In Equation (1), if the system impulse response is h(t), the output u(t) can be described as 

( ) ( ) ( )u t h a t
β

β β
∞

=−∞

= −  (11)

Substituting Equation (11) into Equation (4), then we have 

[ ]

3 1 2 1 2

1 2

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

uC , E h a t h a t h a t

h h h E a t a t a t

β χ ε

β χ ε

τ τ β β χ τ χ ε τ ε

β χ ε β τ χ τ ε

∞ ∞ ∞

=−∞ =−∞ =−∞

∞ ∞ ∞

=−∞ =−∞ =−∞

 
= − × + − × + − 

 

= × − + − + −

  

  
 (12)

As a result of 31, 0
( , ) ( )

0, othe
, [ ] 0,

rs

i j
i j a tEγδ =

=
= 


≠
=

 Equation (12) can be simplified as 

3 1 2 1 2

1 2

1 2

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

uC , h h h ,

h h h

h h h

β χ ε

β χ ε

β

τ τ β χ ε γδ τ χ β τ ε β

γ β χ δ τ χ β ε δ τ ε β

γ β τ β τ β

∞ ∞ ∞

=−∞ =−∞ =−∞

∞ ∞ ∞

=−∞ =−∞ =−∞

∞

=−∞

= − + − +

= − + − +

= + +

  

  



 
(13)

According to the definition of higher-order spectrum, third-order cumulants spectrum (usually 

called bispectrum) is defined as the two-dimensional Fourier transform of third-order cumulants: 

1 1 2 2

1 2

( )
3 1 2 3 1 2( , ) ( , ) j
u uS C e ω τ ω τ

τ τ
ω ω τ τ

∞ ∞
− +

=−∞ =−∞

=    (14)

Here the imaginary number 1j = − . Substituting Equation (13) into Equation (14), then we have 

( ) ( ) ( )*
1 2 1 23 1 2( , )u H H HS λ ω ω ω ωω ω = +  (15)
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where the frequency transfer function ( ) ( ) jh eH ωβ

β
βω

∞
−

=−∞
  and ( )*

1 2H ω ω+  is the complex conjugate 

of ( )1 2H ω ω+  [31,46].The frequency transfer function of the q-th order AR process in Equation (1) can 

be further expressed as 

( )

1

1

1
q

k
k

k

je

H
ωϕ

ω

=

−

=
+

 
(16)

To reduce the computational complexity of the bispectrum, bispectrum slice will be introduced. The 

one-dimensional slices of the bispectrum are the reconstructed spectra. For ω = ω1 = ω2 and according 

to Equation (15), the calculation of 1½-dimensional slices of the bispectrum is given by  

( ) ( )2
3

*( ) 2,uS H Hλ ω ωω ω =  (17)

The 1½-dimensional slices usually achieve high resolution ability and have quick calculation  

speed [47]. They can also reflect the nonlinearity, the quadratic phase coupling information and 

restrain Gaussian noise of a random process. They can be used to analyze arc fault features quickly. 

3.2.3. Bispectrum Features of Arc Faults 

The contours, amplitudes, phase angles and the 1½-dimensional slices of different load bispectra are 

plotted as shown in Figures 4–6. According to the differences between the normal state and arc fault 

bispectra, it is demonstrated that more information about the nonlinear dynamic features of the load 

signals is given by the bispectra. When series arc faults occur in circuits, the energy distribution which 

can be discovered from the contours becomes diffused. 

Since the power spectrum is phase blind, it is unable to detect the presence of phase coupling. 

However, the bispectrum gives an indication of the correlation between the phases of different 
frequency components 1ω  and 2ω . In addition, the power spectrum also applies the Fourier transform 

to all signals and is sensitive to Gaussian noise. In contrast, the bispectrum can eliminate the additive 

Gaussian noise and provide information of the phase coupling. The phases of electrical load arc faults 

are different from those of normal states, where the former increase suddenly and randomly in some 

frequency domain while the latter change smoothly in most frequency domain. Since the capacitive 

and the inductive reactance of fault arc are unstable, they may change randomly. 

As shown in the analysis of arc fault contours (Figures 4–6) and the symmetry features of the 

bispectrum, all the valuable information in the arc fault signal is contained in the bispectra in the inner 
triangular domain 2 0ω   ≥ , 

1 2ω ω≥  and 1 2ω ω π+    ≤ . Therefore, the spectrum is sufficient for the 

description of all bispectrum features and the symmetry features are given by:  

* *
3 1 2 3 2 1 3 1 2 3 2 1

3 1 1 2 3 1 2 1

3 2 1 2 3 1 2 2

( , ) ( , ) ( , ) ( , )

( , ) ( , )

( , ) ( , )

u u u u

u u

u u

S S S S

S S

S S

ω ω ω ω ω ω ω ω
ω ω ω ω ω ω
ω ω ω ω ω ω

= = =
= =
= =

− − − −
− − − −
− − − −

 (18)

In the inner triangular domain, the highest peaks can be found in each plot. The peaks of the 

bispectra indicate the process is non-Gaussian and the nonlinear coupling does exist in the arc fault 

signals. One possible reason is the randomness of the fault arc resistance. The information of the peaks 
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is similar, and proves they are effective in reflecting the information of the dominant frequency 

components of the non-Gaussian nonlinear arc fault signals. 

When the loads work in normal, the background noise and working processes are treated as 

stationary random processes, and there are few peaks in the bispectrum graphs. When series arc faults 

occur in circuits, as a result of the coupling relations of different high frequency components generated 

by arc faults, bispectrum peaks gradually change from concentrated distribution to dispersed and 

become mixed and disordered. The number of bispectrum peaks is evidently increased. There are 

increased numbers of high peaks in the arc fault bispectrum as a result of strong correlation in some 

frequency. The arc fault becomes more serious and the nonlinearity becomes stronger.  

The above dynamic features of load states are also performed in the slices of bispectra. 

Furthermore, the 1½-dimensional slices of bispectra are easier to calculate than bispectra. The phase 

coupling frequency components can also be extracted from the Gaussian noise environment. 

Bispectrum peak numbers of arc faults increase obviously, and the highest bispectrum peak positions 
of arc faults move towards 1 = 0.5πω   . Therefore, the attended phase coupling components and their 

generated components in the 1½-dimensional slices of bispectra can be used for arc fault detection. 

However, it is hard to find constant thresholds to classify normal states and arc faults in all loads. 

Thus, a good classification algorithm is needed. 
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Figure 4. AR bispectra of halogen lamp. (a) Normal contour; (b) Normal amplitude;  

(c) Normal phase angle; (d) Normal 1½-D slices; (e) Arc fault contour; (f) Arc fault 

amplitude; (g) Arc fault phase angle; (h) Arc fault 1½-D slices. 
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Figure 5. AR bispectra of vacuum cleaner. (a) Normal contour; (b) Normal amplitude;  

(c) Normal phase angle; (d) Normal 1½-D slices; (e) Arc fault contour; (f) Arc fault 

amplitude; (g) Arc fault phase angle; (h) Arc fault 1½-D slices. 
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Figure 6. AR bispectra of electrical drill. (a) Normal contour; (b) Normal amplitude;  

(c) Normal phase angle; (d) Normal 1½-D slices; (e) Arc fault contour; (f) Arc fault 

amplitude; (g) Arc fault phase angle; (h) Arc fault 1½-D slices. 
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Compared with traditional classification algorithms, such as a neural network algorithm, SVM can 

better solve the difficult problems listed as follows: dimension disaster, over learning, local  

minima [40,41], etc. It has several merits consisting of convergence to global optimum, good 

generalization ability and adaptation for some small samples and high dimension data [42,43]. To 
better discriminate arc fault states from load states, the frequencies 1ω  and 2ω  are selected as the input 

vector. Based on the features including distribution regularities of bispectrum peaks, SVM is 

introduced to classify series arc faults and the normal states in the following section. 

4. Arc Fault Identification 

The SVM algorithm which is based on statistical learning theory has been successfully used to solve 

linear regression, pattern recognition and classification problems [40]. The LSSVM algorithm which 

has been developed by Suykens and Vandewalle [42] is a new deformation algorithm based on the 

traditional SVM. It can reduce computing complexity and guarantee the accuracy of data classification 
simultaneously. The frequencies 1ω  and 2ω  are selected as the input vector x. 

The feature vector x is mapped from the original to the high dimensional feature space by nonlinear 

transformation f(x). Then, the optimal classification plane is found in the high dimensional feature 

space. According to the structural risk minimization principle, the constrained optimization problem 

corresponding to the original classification problem can be expressed as follows: 
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where V is a weight vector, C is the penalty parameter, m is the number of samples, iξ  is the relaxation 

coefficient and b is a bias term. The output result of classification is 
1 if class 1

1 if class 2
i

i
iy

∈
= − ∈

，  

，  

x
x  [40,42,48].  

In order to solve the constrained optimization problem, Lagrange multipliers iα  is introduced. 

Equation (19) is transformed to the unconstrained objective function as 
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According to the Karush-Kuhn-Tucker condition, let the derivative to V, b, iα , iξ  of Equation (20) 

equal to 0, then the equation can be expressed as 
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Furthermore, Equation (21) can be organized into a matrix form 

T 0 0b
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Ω y α R
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where ( ) ( )T T T
1 1 1, ,1 ,  , , (, ), ,m my y α α α= = =R y   , element in the positive definite matrix Ω is 
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C C
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. On the basis of Mercer 

condition, T( , ) ( ) ( )i j i jK f f=x x x x  is defined as a kernel function. According to the features of arc fault 

signals, the radial basis function (RBF) is selected as the kernel function which is widely used in 

classification cases.  

Hence the optimization problem of Equation (19) can be solved by using Equation (22), where α 

and b can be solved through least square method [42]. The identification result of the loads states by 

LSSVM can be described as 

*

1

( )=sgn ( , )i i
i

m

iy y K bα
=

 + 
 
x x x  (23)

The frequencies 1ω  and 2ω  are selected as the input vector x. The main procedures for arc fault 

identification are listed as follows: 

(1) Selection of sample set for LSSVM. The input used the feature vector x including the 
frequencies 1x  and 2x . The output was the classification result y. The status of output 

contained −1 and 1. The “−1” represented the normal state and “1” represented arc fault state.  

(2) Construction of the training set (x, y). From the experimental data of nine types of typical loads 

in different working states, three hundred and sixty samples were chosen for further processing. 

Two hundred and eighty samples of those samples were treated as the training samples and the 

remainder were treated as testing samples. The training set of recognizer was listed in Table 1. 

Table 1. The training set of recognizer. 

Samples 1 2 3 … 280 

x1 0.1521π 0.3534π 0.6171π … 0.8051π 

x2 0.2213π 0.2514π 0.3502π … 0.1586π 

y −1 1 1 … −1 

(3) Selection of LSSVM parameters. The RBF can be described as 

( ) ( )2 2, expi j i jK σ= − −x x x x  (24)

where σ2 is the kernel parameter. At first, the initial kernel parameter σ2 and the penalty parameter C 

were selected. Then, the ten-fold cross-validation method was applied to optimize the parameters 

through the training set. According to the method, the training set was equally divided into ten subsets 

which were mutually disjoint. The entire method would be repeated ten times. Each time, one of the 

ten subsets was selected as a new test subset and the other nine subsets were placed together to form a 

new training subset. The nine subsets were used for training and the tenth subset was used for testing. 

After repeating ten times, the average error of the ten trials was computed. Finally, the optimal 

parameters were obtained when the error was the minimum [49]. 
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(4) Arc fault identification. The testing samples were input into the arc fault recognizer. Then the 

identification results were compared with the real results. Finally, the generalization ability of 

recognizer was evaluated based on error rate which could be calculated as 

*

=1 100%
2

p

i i
i

p

y y
e

−
 =   × 


 (25)

where p was the number of testing samples and *
iy  was the classification result. 

From the above procedures of arc fault identification, the arc fault recognizer was proposed. The 

kernel parameter σ2 = 0.54 and the penalty parameter C = 7.1 were obtained by the ten-fold  

cross-validation method. The identification results are shown in Figure 7 where “*” represents the 

normal states and “□” represents arc faults of the loads. The testing samples can be identified from the 

feature vector space. If the testing sample appears on the arc fault feature space in Figure 7, it means 

an arc fault has occurred in the circuit; otherwise, there is no arc fault. The identification results are the 

globally optimal solution in that RBF kernel function parameters. The optimal classification plane of 

arc faults and the normal states can be found in the high dimensional feature space.  
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Figure 7. Arc fault identification results. 

After completing sample experiments, the actual results and the classified results are listed in  

Table 2. The results show the average error rate of LSSVM is 2.6%. Hence, the arc fault identification 

rate is 97.4%. Since some weak arc fault signals are added to the testing samples, the frequency of the 

arc fault is very close to that of the normal state. Therefore, the LSSVM recognizer fails to classify the 

arc faults from the normal states. This limitation can be improved in future works.  
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Table 2. Confusion matrix for LSSVM recognizer. 

Actual Results
Classified Results 

Normal Arc Fault

Normal 96.875% 3.125% 
Arc Fault 2.083% 97.917% 

5. Conclusions  

AR Bispectrum analysis has been applied in many signal processing cases, but not previously in the 

analysis of arc faults in low-voltage AC circuits. Therefore, application of said analysis in this research 

would represent a first. Arc fault features are extracted to realize detection of series arc faults by AR 

bispectrum. The main conclusions in detail are listed as follows:  

(1) High frequency signals of circuits increase frequently when series arc faults occur in circuits, 

but they are usually mixed with much interference. 

(2) An AR model of arc fault is established to describe the coupling relationship of the mixed high 

frequency signals and reflect the dynamic characteristics of arc faults.  

(3) According to the AR bispectrum analysis on nine types of typical experimental loads which are 

mentioned in electrical standards, the signal phase information of arc fault is kept and the 

influence of noise such as Gaussian noise is restrained effectively. AR bispectrum analysis is 

more effective than power spectrum and time-domain analysis. When series arc faults occur, 

the numbers of spectrum peaks increase obviously; the distribution of spectrum peaks tends to 

diffuse and the bispectrum slices are also dispersed. To better describe series arc faults, 

bispectrum frequency features including distribution regularities of bispectrum peaks are 

extracted as support vectors.  

(4) Based on the above features of bispectrum, LSSVM is successfully used to discriminate arc 

faults from working states in different loads. The whole algorithm has been well run in the 

computer and has been verified through the arc fault experimental platform. The arc fault 

detection rate is over 97%. The result shows that the developed algorithm has good 

generalization ability in different loads’ arc fault detection. For future research, in terms of 

algorithm improvement, arc fault detection rate will be further advanced. Furthermore, this 

algorithm may be applied in direct current (DC) arc fault detection, such as arc faults in 

photovoltaic systems and automotive power supply systems.  
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