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Abstract: As one of the most popular and well-recognized clustering methods, fuzzy  

C-means (FCM) clustering algorithm is the basis of other fuzzy clustering analysis methods 

in theory and application respects. However, FCM algorithm is essentially a local search 

optimization algorithm. Therefore, sometimes, it may fail to find the global optimum. For 

the purpose of getting over the disadvantages of FCM algorithm, a new version of the krill 

herd (KH) algorithm with elitism strategy, called KHE, is proposed to solve the clustering 

problem. Elitism tragedy has a strong ability of preventing the krill population from 

degrading. In addition, the well-selected parameters are used in the KHE method instead of 

originating from nature. Through an array of simulation experiments, the results show that 

the KHE is indeed a good choice for solving general benchmark problems and fuzzy 

clustering analyses. 

Keywords: clustering; krill herd; elitism strategy; swarm intelligence 

 
  

OPEN ACCESS



Algorithms 2015, 8 952 

 

 

1. Introduction 

Currently, fuzzy clustering is one of the important research branches in many fields, such as 

knowledge discovery, image processing, machine learning, and pattern recognition. With the expansion 

of scope of the study, more accurate clustering results are required from various aspects in scientific and 

practical application. Fuzzy C-Means (FCM) clustering is one of the most popular and well-recognized 

clustering methods. This method uses the concept of the geometric closeness of data points in Euclidean 

space. It allocates these data to different clustering, and the distance between these clusters is then 

determined. The FCM clustering algorithm is the basis of other fuzzy clustering analysis methods in 

theory and application respects, and it is therefore most widely-used among various clustering 

algorithms. However, the FCM algorithm is essentially a local search optimization algorithm. Herein, if 

its initial value is selected improperly, it will converge to a local minimum. Therefore, this drawback 

limits the FCM algorithm to be used in many applications. 

Aiming at the disadvantages of the FCM algorithm, researchers have proposed several methods to 

improve its performance. Apart from the traditional methods, recently, various metaheuristic algorithms 

have been proposed by the inspiration of nature and successfully addressed all kinds of application 

problems, such as grey wolf optimizer (GWO) [1,2], genetic algorithm (GA) [3], biogeography-based 

optimization (BBO) [4–6], animal migration optimization (AMO) [7], gravitational search algorithm 

(GSA) [8–10], cuckoo search (CS) [11–15], stud genetic algorithm (SGA) [16], wolf search algorithm 

(WSA) [17], multi-verse optimizer (MVO) [18], dragonfly algorithm (DA) [19], moth-flame optimization 

(MFO) [20], earthworm optimization algorithm (EWA) [21], harmony search (HS) [22,23], firefly 

algorithm (FA) [24–26], particle swarm optimization (PSO) [27–29], monarch butterfly optimization 

(MBO) [30], ant colony optimization (ACO) [31], bat algorithm (BA) [32–36], differential evolution 

(DE) [37–40], and interior search algorithm (ISA) [41]. Among them, swarm-based metaheuristic 

search, so called swarm intelligence methods, are one of the most well-known paradigms in  

nature-inspired algorithms. Due to its remarkable performance, they have dealt with a variety of 

applications, such as reliability [42,43], knapsack problems [44], quantitative interpretation [45], 

scheduling [46], path planning [47], parameter estimation [48], global numerical optimization [49–51], 

neural network training [52,53] and feature selection [54]. The KH method that is inspired by the krill 

herding behavior of krill in sea was first proposed by Gandomi and Alavi in 2012 [55,56]. Since it has 

high stability and strong robustness when solving optimization problems, many researchers have made 

in-depth studies about it and various improved version of KH methods have been proposed [57–60]. The 

main differences between the KH algorithm and other swarm intelligence algorithms is that the 

parameters used in the KH algorithm is fully originated from the real krill herd in nature. Here, a new 

version of KH algorithm with elitism strategy, called KHE, is proposed. Elitism tragedy can prevent the 

krill population from degrading. In KHE, the well-selected parameters are used instead of originating 

from nature [61,62]. Furthermore, the KHE method is applied to solve clustering problem for the purpose 

of escaping a local minimum. Moreover, with the aim of showing the performance of KHE method, it is 

compared with six other metaheuristic algorithms through seven complicated benchmark problems. The 

results show that the KHE method is able to find the better function values on given benchmark problems 

than six others; KHE is also a good choice of implementing fuzzy clustering analyses. 
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Section 2 provides a basic knowledge of FCM clustering algorithm. Section 3 reviews the optimization 

process of KH, and then a framework of KHE method is given. This is followed by the usage of KHE 

method to solve the clustering problem. With the aim of the showing the performance of the KHE 

method, several simulation results comparing KHE with other methods for general benchmark functions 

and clustering are presented in Section 4. The discussion and future work orientation can be provided in 

Section 5. 

2. Fuzzy C-Means (FCM) Clustering Algorithm 

Let X = {x1, x2, …, xn} be n data samples; c (2 ≤ c ≤ n) is the number of the divided categories for 

these data samples; {A1, A2, …, Ac} indicates that the corresponding c categories, and U is their 

similarity classification matrix, whose cluster centers are {v1, v2, …, vc}; μk(xi) is the membership degree 

of xi in the category Ak (abbreviated as μik). The objective function Jb can be expressed as follows: 

2
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where dik is the Euclidean distance that is used to measure distance between the i-th sample xi and the 

center point of the k-th category. It can be calculated as follows: 
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where m is the number of characteristics of the data sample; b is the weighting parameter and its range 

is 1 b≤ ≤ ∞ . The FCM clustering algorithm is to find an optimal classification, so that the classification 

is able to produce the smallest function value Jb. It is required that the sum of the values of membership 

degree for a sample in terms of each cluster is 1. That is to say, it can be described as 
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As stated before, μik is the membership degree of xi in the category Ak, and it can be updated as 
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Subsequently, all the cluster centers {vi} are calculated as 
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here, we suppose { | 2 ; 0}k ikI i c n d= ≤ < = . For all of category i, ki I∈ , μik = 0. 

The updating process mentioned above is repeated by Equations (4) and (5) until the method 

converges. When the algorithm converge, in theory, various cluster centers for each sample and the 

membership degree in terms of each category are obtained at this time, thus fuzzy clustering partition 
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has been done by now. Although FCM has a high search speed, it is essentially a local search algorithm, 

and is therefore very sensitive to initial cluster centers. If the cluster centers have the initial poor choice, 

it will converge to a local minimum. 

3. KHE Method for Clustering Problem 

3.1. KH Method 

Krill herd (KH) [55] is a novel swarm intelligence method for solving optimization problems. It is 

the simplification and idealization of the herding of the krill swarms in sea. The position of an individual 

krill is determined by three motions as: 

(i) movement induced by other krill individuals; 

(ii) foraging action; and 

(iii) random diffusion 

In KH, the Lagrangian model is used in a d-dimensional decision space as shown in Equation (6). 

i
i i i

dX
N F D

dt
≈ + +  (6)

where Ni is the motion induced by other krill individuals; Fi is the foraging motion, and Di is the physical 

diffusion of the i-th krill individuals. 

3.1.1. Motion Induced by Other Krill Individuals 

The direction of motion induced, αi, is approximately evaluated by the target effect, a local effect, 

and a repulsive effect. For krill i, it can be defined as: 

maxnew old
i i n iN N N= α + ω  (7)

where 

local target
i i iα = α + α  (8)

and Nmax is the maximum induced speed, ωn is the inertia weight of the motion induced, Nold 
i  is the last 

motion induced, αlocal 
i is the local effect provided by the neighbors and αtarget 

i  is the target direction effect 

provided by the best krill individual. 

3.1.2. Foraging Motion 

The foraging motion is influenced by the two main factors: The previous and current food location. 

For the i-th krill individual, this motion can be expressed as follows: 
old

i f i f iF V F= β + ω  (9)

where 

food best
i i iβ = β +β  (10)
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and Vf is the foraging speed, ωf is the inertia weight of the foraging, Fold 
i  is the last foraging motion, βfood 

i

is the food attractiveness and βbest 
i  is the effect of the best fitness of the i-th krill so far. 

3.1.3. Random Diffusion 

This motion can be expressed in terms of a maximum diffusion speed and a random directional vector. 

It can be formulated as follows: 
max

iD D= δ  (11)

where Dmax is the maximum diffusion speed, and δ is the random directional vector.  

Based on the above motions, the position of a krill individual from t to t + Δt is given by the  

following equation: 

( ) ( ) i
i i

dX
X t t X t t

dt
+ Δ = + Δ  (12)

It should be noted that Δt is a constant that can be determined by problem of interest. More details 

about the KH algorithm can be found in [55]. 

3.2. KH Method with Elitism Strategy (KHE) 

As stated before, the KH method can always include the best krill individual in the population.  

However, the positions of all the krill individuals in the population will be updated during the 

optimization process regardless of its good and bad. When the best one is being updated, there is a 

probability of worsening the best one. If this happens, the whole population will deteriorate so that it 

may lead to slow convergence. 

With the aim of preventing the krill population degrade, an elitism strategy is incorporated into the 

basic KH method. That is, in our current work, a new version of the KH method with elitism strategy 

(abbreviated as KHE) is proposed. In KHE method, certain best krill individuals are memorized, and 

then all the krill are updated by three motions. Finally, certain worst krill individuals in the new 

population will be replaced by the memorized best ones in the last generation. Elitism strategy can forbid 

the best ones being destroyed by three krill motions, and can guarantee the population can always 

proceed to the better status. Limited by the length of the paper, the more detailed process of elitism 

strategy can be referred to in [4,63]. 

3.3. KHE Method for Clustering Problem 

The clustering problem is essentially an optimization problem. Therefore, clustering problem can be 

solved by the KHE method. As per Sections 2, 3.1, and 3.2, the optimization process of KHE method 

for clustering problem can be simply represented as follows: 

(1) Initialize the control parameters. All the parameters used in KHE are firstly initialized. 

(2) Randomly initialize c cluster centers, and generate the initial population, calculate membership 

degree of each cluster center for all samples by Equation (4), and the fitness of each krill 

individual value fi, where i = 1, 2, …, NP. Here, NP is the number of population size. 

(3) Set t = 0. 
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(4) Save the KEEP best krill individuals as BEST. 

(5) Implement three motions and update the positions of krill individuals in population. 

(6) Replace the KEEP worst krill individuals with the KEEP best krill individuals saved in BEST. 

(7) Calculate c clustering centers, membership degree and fitness for each individual. 

(8) If the t < Maxgen, t = t + 1, go to Equation (4); Otherwise, the algorithm is over and finds  

the final global optimal solution. 

Based on the above steps, a brief presentation of KHE for clustering problem is shown in Figure 1. 

Output the best solution

Motion induced by other individuals

Foraging motion

Physical diffusion

Update the krill individual position

KH process

Replace the KEEP worst krill individuals with 
the KEEP best krill individuals saved in BEST

End

t=t+1

t<Maxgen

N

Y

Randomly generating initial 
population

Start

t=0

Initializing the control 
parameters

Calculating membership degree and 
fitness for each individual

Save the KEEP best krill individuals as BEST

Calculating c clustering centers, membership 
degree and fitness for each individual

 

Figure 1. Flowchart of FCM algorithm by using the KHE method. 
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4. Simulation Results 

In this section, after function evaluation through an array of experiments conducted in benchmark 

functions (see Table 1), the clustering problem is dealt with by the KHE method. More detailed 

descriptions of all the benchmarks can be referred to in [4,64,65]. Note that the dimensions of functions 

are thirty. In order to obtain fair results, all the implementations are conducted under the same conditions 

as shown in [59]. 

Table 1. Benchmark functions. 
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The parametric study about KH has been done in [61]. The parameters for KHE method are the same 

as [61], which are set as follows: Vf = 0.02, Dmax = 0.005 and Nmax = 0.01. For the parameters used in the 

other methods, their settings can be referred to in [4,63]. 

In order to remove the influence of the randomness and get the relatively representative statistical 

results, 200 implementations have been done independently on each benchmark. The population size 

and maximum generation number are set to 50 in the experiments conducted in Section 4.1. In the 

following experiments, the optimal solution for each test problem is bolded. 

4.1. Convergent Performance Compared KHE with Six Other Methods 

The performance of KHE was compared with basic KH and other five optimization methods  

(ACO [31], GA [3], HS [22,23], PSO [27,66] and SGA [16]) on seven optimization problems  

(see Table 2). 

From Table 2, it can be seen that, for the best, mean and worst function values, KHE has the best 

performance on all the seven benchmarks on average. For other methods, their obtained function values 

are similar. Carefully looking at Table 2, generally speaking, SGA has the relatively better final 

optimization values than the other five methods. The results in Table 2 indicate that the KHE method is 

the proper strategy for most optimization problems. 
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Table 2. Mean, best and worst function values obtained by different methods. 

 Function ACO GA HS KH KHE PSO SGA 

MEAN 

F01 3.36E5 1.25E5 8.26E5 1.55E5 18.90 2.77E5 8.64E3
F02 32.55 106.40 403.60 67.46 1.13 172.70 29.50 
F03 8.72E4 3.51E4 2.07E5 3.74E4 1.86 8.36E4 2.29E3
F04 5.92E3 1.88E3 6.06E3 3.70E3 36.01 2.47E3 182.80 
F05 17.75 7.92 54.68 10.14 4.44E−4 13.77 0.66 
F06 5.47E3 1.86E3 3.99E3 1.22E3 31.60 1.38E3 313.10 
F07 85.19 21.57 119.50 20.03 0.04 50.05 11.02 

BEST 

F01 1.14E5 1.71E4 3.13E5 5.31E4 3.37 2.44E4 1.41E3
F02 14.90 33.08 266.10 35.84 1.02 91.07 9.64 
F03 2.36E4 6.30E3 9.39E4 1.76E4 0.03 1.16E4 300.60 
F04 2.43E3 388.10 2.26E3 1.00E3 2.41 1.01E3 52.56 
F05 6.12 1.28 25.52 5.10 5.13E−6 4.22 0.08 
F06 3.73E3 513.10 2.20E3 697.30 28.19 508.00 137.50 
F07 55.53 5.80 70.20 10.44 3.84E−3 29.45 4.16 

WORST 

F01 8.46E5 3.63E5 1.26E6 2.85E5 167.60 2.39E6 4.90E4
F02 69.45 235.90 498.70 101.70 1.63 568.30 68.65 
F03 1.76E5 1.35E5 3.29E5 6.26E4 20.86 6.00E5 8.98E3
F04 8.89E3 4.42E3 1.07E4 6.35E3 218.40 4.72E3 558.50 
F05 37.48 28.87 81.76 17.74 7.82E−3 32.10 5.08 
F06 8.08E3 4.14E3 5.70E3 1.90E3 46.15 2.88E3 688.00 
F07 126.40 42.72 143.40 33.13 0.31 65.62 21.11 

4.2. Clustering Problem Compared KHE with Seven Other Methods 

As stated before, a clustering problem is essentially an optimization problem, so it can be solved by 

the KHE method. Here, KHE is compared with pure FCM and the other five metaheuristic methods 

including the basic KH method. The dataset used in this paper is the same with the data in [67]. The data 

have four-hundred data samples, and its characteristic dimension is two. Now, we will divide these data 

samples into four categories. Therefore, each krill contains eight elements. Population size and 

maximum generation number are set to 16 and 25, respectively. For other algorithms, their parameter 

settings are the same as Section 4.1. Figure 2 is the clustering results by pure FCM clustering algorithm 

when its final objective function value is 3.620176. Figure 3 shows the optimization process of KHE 

method for clustering problem. From Figure 3, we can see, KHE has a fast convergent speed for 

clustering problem. Figure 4 is the clustering results by KHE algorithm when its final objective function 

value is 3.303485. From Figures 2 and 4, we can see that, KHE method can obtain more accurate 

clustering results than pure FCM. More results can be recorded in Table 3. From Table 3, on average, 

the KHE method has the most accurate clustering results, and both SGA and KHE have the optimal 

performance for the best clustering results. For the worst performance, all the methods except FCM have 

the similar clustering results that are significantly better than pure FCM. For standard deviation (STD), 

KHE has the second performance that is only inferior to HS. From Table 3 and Figures 2–4, it can be 

see that, the KHE method can solve the clustering problem better than other comparative methods in 

most cases. 
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It should be pointed out that, each run may generate completely different results. This is because the 

clustering results are dependent on the initial clustering centers. 

Table 3. Optimization results for the fuzzy C-means (FCM) problem. 

 ACO FCM GA HS KH KHE PSO SGA 

MEAN 3.303556 3.368558 3.303527 3.303536 3.303624 3.303510 3.303542 3.303523 

BEST 3.303474 3.303478 3.303466 3.303468 3.303471 3.303462 3.303463 3.303462 

WORST 3.303766 3.728121 3.303766 3.303766 3.303766 3.303766 3.303766 3.303766 

STD 5.6032E−5 0.09555 5.9076E−5 4.0144E−5 1.1470E−4 4.6495E−5 5.0819E−5 5.1780E−5 

 

Figure 2. Clustering results of FCM algorithm. 

 

Figure 3. Optimization process for clustering problem of the KHE method. 
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Figure 4. Clustering results of the KHE method. 

5. Discussion and Conclusions 

In many application fields, fuzzy clustering, especially fuzzy C-means (FCM) clustering, is one of 

the important hot research branches. FCM clustering algorithm is the most widely-used one among 

various clustering algorithms and has been used to successfully solve several application problems. 

However, the FCM algorithm is essentially a local search optimization algorithm. Herein, if its initial 

value is selected improperly, it will converge to a local minimum. Aiming at the disadvantages of the 

FCM algorithm, a new kind of swarm-based metaheuristic search, called KHE, is proposed to solve the 

clustering problem. Elitism strategy used in the KHE method can prevent the krill population from 

degrading. In KHE, the well-selected parameters are used instead of originating from nature. 

Furthermore, the KHE method is applied to solve the clustering problem for the purpose of escaping a 

local minimum. Moreover, with the aim of showing the performance of KHE method, it is compared 

with six other metaheuristic algorithms through seven complicated benchmark problems. The results 

show that the KHE method performs well on given benchmark problems and fuzzy clustering analyses. 

Moreover, there are no additional operators added to the basic KH method. Therefore, the KHE 

method is simple and easy to implement. 

Despite the above advantages of the KHE method, two prospective research points should be oriented 

as follows. On the one hand, in the current work, there is no study of computational requirements. The 

research of computational requirements should be made in future. On the other hand, only a few test 

problems and the clustering problem is solved by the KHE method in the present work. More problems 

should be used to test the KHE method from various aspects, and then it is used to solve more application 

problems, such as image segmentation, constrained optimization, knapsack problems, scheduling, 

dynamic optimization, antenna and microwave design problems, and water, geotechnical and transport 

engineering. 
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