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Abstract: After wildfires, emergency actions and post-fire management are implemented to mitigate
fire damage. Salvage logging is a tool often applied to burned stands, but despite being a post-fire
forest management tool to restore ecosystem functions, its ecological effects remain poorly understood.
In the Mediterranean Basin, where land use and land-use change are bringing about changes in
drought periods and fire regimes, optimal treatments should be included in adaptive management
in order to increase resilience and reduce vulnerability. In July 2012, a mid- to high-burn severity
fire burned almost 7000 ha of an Aleppo pine forest (Pinus halepensis Mill.) in southeastern Spain.
Five years later (late spring 2017), we designed an experimental study to monitor four stand
categories on a burn severity basis (unburned mature stands, low-burn severity stands, and high-burn
severity stands) and a salvage logging operation carried out 6 months after the fire in high-burn
severity areas. We set 60 circular plots (15 in each treatment scenario) and 180 linear transects
(3 per plot, 45 per scenario) to check the ecological facilitation of pine trees and snags (canopy size
and/or perch effect). We estimated plant alpha diversity (floristic richness, abundance and dominance
indices) and post-fire plant recovery (pine recruitment and adaptive traits). Fire depleted the system’s
diversity, but in low-severity burning areas some basic functions remained intact (e.g., soil protection).
We found that high-burn severity very negatively impacted ecosystem functions through the removal
of duff and litter leaving unprotected soil. Collecting wood reduced pine regeneration and growth,
which was considerable in the areas that suffered high-burn severity. The burned snags did not
appear to act as perches resulting in seed dispersal. Obligate seeders were determined to be an
efficient strategy for facing high-severity fires, whereas resprouters response showed no clear burn
severity pattern despite being present in all the scenarios. Therefore, salvage logging did not affect
the recovery of some ecosystem properties/features (such as plant total cover or litter cover), although
retaining dead pines facilitated pine regeneration. Thus, leaving snags in areas affected by high-burn
severity in ecosystems mainly modelled by fires is proposed. However, the ecosystem response could
be widely variable and influenced by local abiotic factors, so restoration might not be as effective as in
the current proposal.
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1. Introduction

Wildfire is a natural phenomenon in many ecosystems around the world that shapes the community
and structure of ecosystems and was used by our earlier ancestors [1]. Mediterranean landscapes
and terrestrial ecosystems have been shaped by historical fire regimes which can be considered
unsustainable in recent decades due to changes in not only land use and climate [2], but also in
forest policies, such as fire suppression [3]. In the Mediterranean Basin, fire has been considered
an important driver of soil formation and erosive processes [4]. However, interactions between fire
and other disturbances, such as drought and pest attacks, increase the disturbance damage and the
vulnerability of forest ecosystems [5].

The resilience of forest ecosystems in fire-prone areas determines their ability to recover functions
after disturbance, such as plant cover, diversity, and structure [6]. The goal of adaptive forest
management, especially in Mediterranean semiarid areas, is to reduce vulnerability and strike a balance
in the ecosystem to allow it to cope with new forthcoming extreme disturbances [7]. Natural post-fire
recruitment and plant diversity have been inversely related to burn severity (sensu [8]), although
recurrence and soil interaction can influence that response [9,10]. For Mediterranean pine habitats,
plant communities are adapted to fire regimes characterized by mid to low severity and low recurrence
(more than 25 years) [11–13]. The direct negative impacts of wildfires on flora, fauna, and soil have
been well studied [14–16], but valuations on ecosystem services are still poor [17], even if there are
certain ecological and socio-economic benefits of sustainable fire regimes [1,18]. Post-fire management
may mitigate (or upsurge) impacts on functions, such as variation in carbon flux [19], soil protection or
plant diversity [20].

Fire-adapted plant communities are characterized by adaptions to a fire regime, with resprouting
being the most common post-fire regeneration trait (from protected buds), although conspicuous
seed germination (from a fire-resistant seed bank in combination with fire-cued germination) is also
common [1]. For serotinous pine species, the aerial seed banks enclosed in pine cones are insulated from
the heat of flames [21], and germination is triggered by post-fire conditions [22–25]. Pinus halepensis Mill.
(commonly named Aleppo pine) is a broadly distributed species in the western Mediterranean Basin [26]
that shows early cone production (to reduce the immaturity risk) and a dual reproductive strategy
including an aerial seed bank within persistent closed serotinous cones [27]. Despite these adaptations,
changes in fire regime and lack of forest management reduced the productivity and serotiny of Aleppo
pine stands, which could promote vulnerability [28,29].

In Aleppo pine stands, salvage logging reduces the recruitment of pine trees and increases the
vulnerability of the plant community to drought periods [30,31]. However, low-intensity cutting
combined with the remaining woody debris mitigates the negative impact of salvage logging on flora
and soil [32,33], and even on fauna by increasing rodent activity [34]. Even the release of deadwood on
the ground plays a facilitative role in regeneration recruitment [35]. In fire recurrence scenarios within
short-time intervals (<15 years), high-intensity salvage logging has been proven to be inadvisable
for sustainable management, but if fine and coarse woody debris remain after manual harvesting,
material legacies help the natural regeneration of trees and enhance ecosystem resilience to the next
disturbance [36]. Therefore, post-fire management can determine ecosystem dynamics by facilitating
the natural recovery of vegetation composition and structure [5]. Also, a proper post-fire restoration
could reduce vulnerability to new extreme events, reducing the time left for the immaturity risk period
and accelerating the recovery of pre-fire functions and ecosystem services [37].

For all these reasons, we evaluated the ecological facilitation associated with the size of trunks and
canopies of snags after a major wildfire in the southeastern Iberian Peninsula, combined with the effect
of burn severity and post-fire management on mid-term vegetation recovery. We hypothesized that,
in the mid-term, higher burn severity would promote alpha diversity and reduce the density and
height of pine saplings. In semi-arid Mediterranean ecosystems, where pine density and plant
diversity after fires are often very low, high-intensity salvage logging after fire can further reduce their
values, which could be improved if old snags are retained due to ecological facilitation for natural
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regeneration. Our preliminary observations in high-burn severity stands allowed us to hypothesize
that non-intervention related to biomass removal would mitigate fire effects and facilitate pine seedling
survival in the microclimate generated by wood debris and snag trees.

2. Materials and Methods

2.1. Study Area

The study area lies in the southeastern Iberian Peninsula (Donceles mountain forest), which has
remained unburned for at least 80 years (digital cartography provided by [38]). In July 2012 (July 1–6),
a wildfire burnt 6870 ha (Figure 1), with the ignition point located at 608309 E, 4254211 N; ETRS89
UTM 30N. The summarized weather conditions during the burning dates were as follows: maximum
temperature range: 31–37 ◦C; mean air humidity: 30%; and mean wind speed: 1–3 m s−1 (gusts of
15 m s−1).
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Figure 1. Location of the wildfire in the southeastern Iberian Peninsula (almost 6500 ha burned in
the summer of 2012). Plots sampled in June 2017 were set in unburned natural Aleppo pine stands
(UB; dark greenish-pine tree icon), low-burn severity (LS; light greenish-pine tree icon), high-burn
severity unmanaged (HS; blackish-pine tree icon), and high-burn severity with post-fire salvage logging
(HSSL; greenish-fallen pine tree icon).

The predominant climate was characterized as semiarid Mediterranean (dry period from June
to September, with relative humidity <50%). According to the Köppen-Geiger classification [39],
it is a cold semi-arid climate (type “BSk”) located on the upper meso-Mediterranean bioclimatic belt.
The mean annual precipitation and temperature were 286.30 mm and 15.96 ◦C, respectively (data from
1992–2017; provided by the Spanish Meteorological Agency), although annual rainfall was slightly
higher from 2012 to 2017 [40]. Soils were classified as Aridisols (Lithic Haplocalcids) (i.e., calcareous
soils with no water availability for plants for long periods (>90 days)) [41]. The main landforms were
composed of rocky slopes formed with dolomitic limestone (300–800 m a.s.l.).

The natural potential vegetation series corresponds to Rhamno lycioidis-Querceto cocciferae
sigmetum [42]. The pre-fire plant community was a Pinus halepensis Mill. forest accompanied
by scrub species such as Quercus coccifera L. (kermes oak), Pistacia lentiscus L. (mastic tree), Rhamnus
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lycioides L. (black hawthorn), and Genista spartioides subsp. retamoides (Spach) Rivas Godoy & Rivas
Mart (Broom), and the steppe-grass Macrochloa tenacissima (L) Kunth (alpha grass).

2.2. Burn Severity and Post-Fire Management

We calculated the delta-normalized burn ratio (dNBR), relating responses of red and near
infrared bands obtained from the Landsat 7 Enhanced Thematic Mapper Plus ETM+ (Level-3 from
https://earthexplorer.usgs.gov) in order to draw a burn severity map for the fire perimeter [43],
which was validated with field sampling (more details in [44]). In the autumn of 2012, the regional
forest service carried out post-fire emergency actions (hillslope stabilization and salvage logging) to
mitigate fire impacts; for example, an increase in soil quality was achieved by conforming contour-felled
log debris areas and log erosion barriers area in close areas [45]. We selected a hillside comprising
homogeneous pre-fire vegetation (similar cover and structure) that did not differ environmentally
(northern exposure and consistent terrain, slope, orientation, elevation, and soil quality) but showing
three different severity levels (unburned, low-burn severity, and high-burn severity). Thus, we defined
three study subareas in the wildfire zone based on burn severity: control unburned (UB), low-burn
severity (LS), and high-burn severity (HS). In addition, we also monitored a subarea defined by a
salvage logging treatment carried out 6 months after the fire in the high-burn severity zone (HSSL)
in order to test the appropriateness of this common post-fire practice for managing forest areas
severely affected by fires. We acknowledge this sampling design can undergo spatial pseudoreplication.
This fact, unavoidable in field studies, was however mitigated as much as possible by carefully selecting
a quite physical homogeneous zone (see above) to place subareas with different burnt severities and
post-fire treatments. Thus, it is expected that the effects of environmental gradients were minimized in
relation to those coming from fire factors.

2.3. Experimental Design and Field Sampling

This study was conducted late in the spring of 2017 on the selected hillslope (82.24 ha) (Figure 1).
Fifteen Aleppo pine trees per subarea (living pine trees in UB and LS, but dead charred snags in HS
and HSSL) were randomly selected, and coordinates were recorded with a Monterra GPS receiver
(Garmin International, Inc., Olathe, KS, USA).

We set circular plots whose center was a pine tree, with each plot’s size equal to the soil-orthogonal
projection of the pine tree canopy. We sampled plots with different sizes (not overlapping) as an
individual-based area of influence (the crown of a pine tree) to determine its ecological facilitation,
similarly to the “zone-of-influence for ecological facilitation” defined in [46], since competitive
interactions were significant at young stages [30,31].

We related the plot radius to the canopy projection for the live pine tree canopies in the UB
and LS subareas and obtained a regression model for the 30-centimetre aboveground trunk diameter
(PLOT radius = D30base × 17.73; R2 = 91.85%; n = 30). This model allowed the plot size to be defined
in the HS and HSSL subareas, where the pine tree canopy had been totally burned or removed. In 60
circular plots, three linear transects were established from the center to the edge (one oriented to the
maximum slope and then 120◦ from one to another, to prevent bias due to orientation).

The vegetation structure, species composition, and total plant cover were evaluated by recording
the coverage and plant abundance by a nested sampling technique and a line intercept method because
it was simple, unbiased, low-cost, and suitable for our study area [47]. Three samples were performed
in each plot: (a) a plant survey by recording the species intersecting the line on a perpendicular plane
according to the line transect method [48]; (b) a floristic inventory and coverages of all the species in
the entire plot, the latter being visually estimated and agreed on by two expert observers following the
Braun–Blanquet approach modified by [49]; and (c) pine sapling density and productivity by counting
individuals and recording their height in a square subplot (1 m2) located in the middle of each linear
transect. The nomenclature of plant species, life-form composition, and seed dispersal types were
classified according to [50,51].

https://earthexplorer.usgs.gov
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2.4. Post-Fire Plant Community

2.4.1. Plant Diversity

From the plant survey recorded in the line transects, α-diversity was characterized by calculating
three indices. We took floristic richness and heterogeneity, including the measure of species abundance
(Shannon Index; [52]) and dominance (Simpson index; [53]). The floristic richness (S, number of species)
was calculated as the number of plant species recorded on the sampling lines in each plot, plus those
that did not intercept transects but were detected by the floristic inventory in the entire plot. Shannon
Index (H′, adimensional) was measured as the relative abundance (interception length, in cm) of the
different species, including those in the plot which did not intercept lines, for which the minimum
interception value (i.e., 1 cm) was assigned in the calculations. The Simpson Index (D, adimensional)
evaluated the probability that two individuals chosen randomly would belong to the same species.

Similarly to [8,9], we also characterized the function related to soil protection by calculating
three variables based on their presence across the total transect length, thus expressed as %: (a) plant
coverage (PLANTcover) as the sum of all the species line interceptions, which could exceed 100% due
to plants overlapping; (b) the total bare soil (BAREsoil) as the sum of the uncovered soil length along
each linear transect; and (c) the surface organic matter (LITTER) as the sum of the litter duff and woody
debris covering soil, excluding plant cover.

2.4.2. Fire-Adapted Traits and Life Forms

We classified the species according to their fire-adapted trait following the plant trait database for
Mediterranean Basin species (BROT) [54]: non fire-adapted (R-S-), obligate seeder (R-S+), obligate
resprouter (R+S-), and facultative seeder (R+S+). In each plot, we estimated the fire-adapted trait value
(TRAIT) as the percentage of these fire-adapted traits in the community by grouping and averaging the
visually estimated species coverages of each trait type.

The life form composition was obtained by classifying plant species into categories: trees (TREE),
shrubs (SHRUB), dwarf shrubs (DWARF-S), perennial herbs (P-HERB), and annual herbs (A-HERB).
The life form value (LIFE-FORM) was calculated as the ratio (%) of the total averaged cover for each
form divided by the total recorded plant cover.

According to the seed dispersal mechanism of species, we calculated the contribution of species
classified as having a zoochory (ZOOC) primary dispersal strategy to the total number of species in the
plot (S) in order to assess the participation of the perch effect in the post-fire regeneration. The perch
effect is defined as the process in which trees are used as perches by frugivorous birds, enhancing the
recruitment of fleshy-fruited plants below the trees [55].

2.4.3. Pine Recruitment

In order to characterize Aleppo pine recruitment, we counted and recorded all the pine saplings
inside the three square subplots (1× 1 m, 1 m2) in each plot. Early pine recruitment was characterized as
the mean pine sapling density five years after the fire (RECRUIT, pine saplings ha−2). The average and
maximum heights of pine saplings (HEIGHTaver and HEIGHTmax, respectively, cm) were calculated
as an indirect biomass estimation.

2.5. Statistical Analyses

Generalized linear mixed models (GLMMs) were used to assess the effects of the selected factors
(burn severity and salvage logging) and the random effects (plot size) on the response variables (S, H′, D,
PLANTcover, BAREsoil, LITTER, RECRUIT, HEIGHTaver, and HEIGHTmax). Complementarily,
we carried out an analysis of variance (ANOVA) to check the significant differences related to severity
or the post-fire treatment in HS independently, since the treatments were aggregated rather than placed
between interleaved treatments. We carried out these analyses considering that the four selected areas
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did not differ environmentally in slope, orientation, elevation, soil quality, and structure, as well as
other physical and lithological features that could bias the results.

To test the normality and homoscedasticity assumptions, the original data were transformed as
required, but the tables and figures show untransformed values, including the mean and standard
error (±SE). The statistical analysis was tested for significant differences (p < 0.05) by a one-way
analysis of variance (ANOVA). F-value and Durbin–Watson statistics were used to test the residuals
and to determine if there was any significant correlation based on the order in which they occurred
in the data file. We used the Tukey honest significant difference (HSD) for the post hoc comparisons
in order to create confidence intervals for all the factor level means. A principal component analysis
(PCA) was carried out on the studied variables to explain their variance–covariance structure through
linear combinations and dimension reduction to the main components. We included the squared
cosine values to select the representation quality of a variable on an axis during rotation in order to
indicate a high value and proper representation quality. All analyses were run with RStudio [56] and
XLSTAT [57].

3. Results

Regarding α-diversity and coverage (Table 1), fire or post-fire treatments did not induce any
significant differences in the species richness (S) values. Shannon Index (H′) showed higher values
in the high-burn severity stands, regardless of post-fire treatment. Simpson Index (D) had higher
values in LS and HSSL than in UB and HS. Only high-burn severity induced a major shift in the
community LIFE-FORM composition: the UB and LS vegetations were dominated by TREE, A-HERB,
and SHRUB (in this order) (Figure 2). In contrast, high-burn severity considerably reduced TREE
cover and increased A-HERB, with A-HERB becoming the predominant form. The highest DWARF-S
value was found in HSSL. The plant families dominating the UB community cover were Pinaceae,
Gramineae, and Fagaceae (38.59%, 47.87%, and 20.33% of total cover, respectively). In HS and HSSL,
Gramineae (58.67% and 22.07% of total cover, respectively) and Cistaceae (25.33% and 11.73% of total
cover, respectively) dominated. In LS, ground forest species were eliminated, while obligate seeders
clearly predominated in Hs and HSSL. In addition, no significant difference in the relative abundance
of zoochores species (ZOOC) was related to either burn severity (ranging from 16.25% ± 9.39% in UB
to 15.00% ± 6.60% in HS) or salvage logging (17.08% ± 11.92% in HSSL).

Table 1. Analysis of variance (one-way ANOVA) of the recorded variables used to characterize
α-diversity (S, H′, D) and soil protection (PLANTcover, BAREsoil, LITTER,). Different lowercase letters
in each column indicate significant differences between the means of groups (Tukey honest significant
difference (HSD), p < 0.05). Significant values are highlighted in bold.

S H′ D PLANTcover LITTER BAREsoil

UB 20.3 ± 1.9 a 0.952 ± 0.049 a 0.738 ± 0.021 a 133.86 ± 9.91 a 31.10 ± 4.32 a 16.02 ± 4.47 a

LS 24.7 ± 2.3 a 0.872 ± 0.046 a 0.921 ± 0.011 c 149.52 ± 8.54 a 29.53 ± 7.29 a 28.86 ± 3.08 ab

HS 23.6 ± 2.0 a 1.122 ± 0.041 b 0.736 ± 0.021 a 119.86 ± 6.67 b 12.79 ± 1.83 b 19.55 ± 3.65 ab

HSSL 25.0 ± 2.3 a 1.170 ± 0.048 b 0.809 ± 0.010 b 93.90 ± 6.89 c 8.67 ± 0.98 c 30.25 ± 2.64 b

p-value 0.340 0.048 0.000 0.000 0.001 0.010
F-value 1.168 2.69 25.06 8.29 6.03 3.99

Pinus halepensis recruitment (RECRUIT) was significantly greater in HS (110,444 ± 9767 pine
saplings ha−1) than in UB or LS (444 ± 311 and 34,667 ± 5645 pine saplings ha−1, respectively),
but post-fire management reduced it in HSSL (30,889 ± 9702 pine saplings ha−1). We found no
significant differences in HEIGHTaver among the four zones, but HEIGHTmax indicated that pine
saplings were taller in HS (42.76 ± 3.29 cm) than in HSSL and LS (29.49 ± 2.30 and 26.74 ± 3.15 cm,
respectively). The plant community structure was negatively affected by increased burn severity,
comparing the three levels. PLANTcover and LITTER were significantly reduced by high-burn severity,
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especially when logging was carried out after fire (HSSL), which led to the highest BAREsoil values in
this stand (Table 1). Regarding adaptive plant trait strategies to fire (Figure 3), the presence of R-S-
species was generally scarce in the study area and was recorded only in the UB stand. Fire drastically
reduced the presence of the R+S+ species, especially when it occurred at high severity. Conversely,
the relative cover of the R-S+ species was favored by fire severity. The relative abundance of resprouters
(R+S-) did not show any clear pattern, but resprouters were notably present in all of the scenarios.
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Figure 2. Mean relative values (including standard error) of the life form composition (LIFE-FORM, %)
in the studied areas (UB: unburned; LS: low-burn severity; HS: high-burn severity; HSSL: salvage
logging in high-burn severity) according to the defined categories: trees (TREE), shrubs (SHRUB),
dwarf shrubs (DWARF-S), perennial herbs (P-HERB), and annual herbs (A-HERB).

A PCA was carried out on the studied variables to explain their variance–covariance structure
through linear combinations and dimension reduction to the main components. The PCA reduced the
dimension to a five-component solution (eigenvalues > 1), but we chose a simplified model for a biplot
component (axes PCA1 and PCA2; Figure 4). The first component accounted for 26.2% of variability,
while the second explained 15.9%. Plant community responses, mainly the pine recruitment and plant
diversity patterns response to burn severity and salvage logging, clearly clustered along the PCA1 axis,
whereas the post-fire vegetation cover related to adaptive traits was linked with the PCA2 axis. In the
PCA, we found that PCA1 related the pine recruitment and plant diversity patterns to burn severity
and post-fire management. The PCA1 axis included RECRUIT, HEIGHTaver, and HEIGHTmax (0.497,
0.545, and 0.580, respectively). The PCA2 axis showed an influence of post-fire adaptive traits. In PCA2,
the squared cosine values highlighted the variables R+S- (0.493) and R-S+ (0.671), which indicates that
obligate seeders predominated in high-burn severity areas.
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Figure 3. Box and whiskers ANOVA (limits of boxplots represent upper and lower quartiles, the central line
is the median, asterisks are outliers, and whiskers indicate the highest and lowest observations) showing
averaged coverages of visually estimated species (red cross) recorded according to post-fire trait adaptive
strategies (TRAIT, %)): non-adaptive post-fire traits (R-S-), obligate seeder (R-S+), obligate resprouters (R+S-),
and facultative seeder (R+S+). The plots sampled five years after the fire were set in unburned natural
Aleppo pine stands (UB), low-burn severity (LS), high-burn severity unmanaged (HS), and high-burn
severity after post-fire salvage logging (HSSL). Different lowercase letters in each column indicate significant
differences between the means of groups (Tukey honest significant difference (HSD), p < 0.05).
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Figure 4. The principal component analysis (PCA) biplot diagram for the studied variables. FACTOR:
burn severity and post-fire management; RECRUIT: pine sapling density; HEIGHTaver: average pine
seeding height; HEIGHTmax: maximum pine seeding height; PLOTsurface: surface of the sampling plot;
R+S-: relative cover of obligate resprouters; R-S+: relative cover of obligate seeders; R+S+: relative
cover of facultative seeders; D: Simpson’s Dominance Index; H′: Shannon’s Diversity Index; BAREsoil:
percentage of uncovered soil; PLANTcover: percentage of plant coverage; LITTER: percentage of
surface organic matter (duff and woody debris). Blue dots represent standardized values of variables
recorded after a wildfire event. PCA1: Pine recruitment and plant diversity patterns response to burn
severity and post-fire management; PCA2: Post-fire adaptive traits.

4. Discussion

Salvage logging after forest disturbances, particularly wildfires, is a controversial but commonplace
practice that remains quite poorly studied in Mediterranean countries [58]. In semiarid areas,
the interaction between treatment and climate could include non-additive effects between natural
disturbance and logging, which could lead to the exceeding of the recovery threshold [59]. We obtained
unbiased results that explained the random effects, but the aggregated effect of salvage logging on
high burn severity reduced the strength of the conclusions we obtained. We admit that our sampling
design shows pseudoreplication, which is often unavoidable in field studies. However, the careful
selection of a quite homogeneous zone for the study should minimize the effects of environmental
gradients and thus confers validity to our results.

We found that the effect of snags on ecological facilitation was negligible in terms of plant diversity
and community recovery patterns. Nevertheless, salvage logging had a negative effect on pine seedling
density and growth of the recruitment. According to [46], in stressed communities, such as the current
semiarid area, facilitation can affect biomass–density relations, but only in intermediate plant densities.
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We found no differences in the relative abundance of zoochores, despite salvage logging possibly
benefiting some bird species [60] and the activity of some of these species qualitatively and quantitatively
interacting as seed dispersers by shaping the vegetation distribution patterns in mature forests in the
southeastern Iberian Peninsula [61]. So, our hypothesis that older snags increase ecological facilitation
and promote vegetation recovery by increasing the recruitment of fleshy-fruited species [55,62] was not
corroborated. This functional group may generally be poorly represented in our system, unlike other
Iberian ecosystems in this semiarid southeastern area (e.g., [63,64]). Therefore, detailed information
about functional groups in the ecosystem is important when making post-fire management decisions.

In the mid-term, we corroborated that high-burn severity promotes alpha diversity. D showed
lower biodiversity in LS or HSSL because pine tree (adults and/or saplings) predominated, which
could be considered an indication of moderate disturbance levels according to ecological theories [65],
similar to other coniferous forests in the western USA [66]. The other diversity indices indicated that
burning had no effects (i.e., floristic richness showed no significant differences in the sampled area or
enhanced biodiversity, and H′ was higher in the areas burned with high severity independently of
the post-fire treatment, similar to other Mediterranean habitats) [67]. The composition of adaptive
traits in the study area indicated the importance of fire, as it forces species selection in these semiarid
Mediterranean ecosystems [68], as R-S- almost did not appear. Obligate seeders appeared to represent
an efficient strategy for facing high-severity fires in these ecosystems [54] (e.g., heliophiles, xerophiles,
plants with seed banks, frugality, invasive nature, etc.). Pine, even in salvage logged sites, is seen as a
pyrophyte species in these semiarid systems, as it positively responds to severe fires [27], which leads
to greater regeneration in high-burn severity areas.

Resprouters displayed no clear pattern in relation to fire severity in our study area, but are present
in all scenarios, which suggests that they have an efficient strategy that may go beyond adaptation only
to fire (i.e., water and/or edaphic stress) [69]. R-S- are barely represented in the ecosystem, which means
that distributions are profoundly modelled by fire regime, although the pattern is widely variable in
some areas and influenced by local abiotic factors, such as topographic or microclimatic conditions [70].

When we compared the high-burn severity subareas, both unmanaged and after salvage logging,
we assumed that the absence of biomass removal would facilitate survival in a microclimate (under pine
tree canopy) and would mitigate the effects of the soil losses documented in other studies conducted in
the Iberian Peninsula [71–74]. Obviously, burn severity impacted the plant community, with a greater
reduction in biomass with higher burn severity, and vegetation recovery depended on the time after
fire [75], although it apparently adapted to the succession pattern model of the Egler “initial floristic
composition” [76]. The effect on the variables describing soil protection (PLANTcover, BAREsoil,
and LITTER) highlighted that LS suffered weaker effects, and had recovered before 5 years had elapsed
after fire, as reinforced by the results related to LIFE-FORM and the main families found.

High fire severity also eliminates trees and allows dwarf shrubs and herbs, mainly annuals,
to predominate in pioneering stages along with many Cistaceae and Poaceae. Cistaceae plants
proliferated from the soil seed bank, and Poaceae invaded burned areas via the dispersal of
seed from adjacent spots. In this way, we found that salvage logging increased the negative
impact of fire on soil cover, thus reducing soil protection-related functions. Additionally, in the
wood-logged area, the obligate seeders predominated and the presence of DWARF-S increased, mainly
due to massive Cistaceae regeneration from the soil seed bank. The lower resprouters presence could
delay natural ecosystem regeneration and resilience, especially in these semiarid areas with little
primary productivity [77]. Indeed, Cistaceae shrubs have been revealed as dominant competitors
against P. halepensis saplings in early post-fire stages of similar ecosystems [78].

Salvage logging also amplified the negative impacts found in high-burn areas related to early
pine recruitment, characterized here as pine seedling density and the qualitative assessment of sapling
biomass (HEIGHTaver and HEIGHTmax), which involves a certain facilitative effect for wood debris,
as we detected greater stress (and less growth) for pine recruitment in areas where wood debris
was present. However, considering that some potentially influential variables, such as soil nutrients or
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biological soil properties [45], were not monitored, this could help to explain the above observations.
Although the post-fire felling effect depends on the treatment intensity and management practices
related to salvage logging [70,79,80], other more conservative treatments improve pine recruitment and
growth [81]. Other studies performed in nearby areas concluded that this practice could jeopardize
natural pine tree regeneration in Mediterranean P. halepensis forests [30,31]. When carrying out
salvage logging in areas with high risk of loss of ecosystem functions, the proposed practices should
be deeply studied before execution, including considerations of other important variables in the
monitoring process, such as land form or the pre-fire aerial canopy seed bank [82], in order to prevent
the possibility of further ecosystem damage.

5. Conclusions

As a general conclusion, we found affected diversity patterns and vegetation recovery in
burned areas. Our research was centered on studying living trees and snags in order to describe
differences in ecosystem damage related to the burn severity. We corroborated the negative effects,
similarly to other studies, of including a post-fire treatment as restoration tool. Due to the low pine
tree density, we focused on the effects of snag retention on the immediate environment, since random
sampling was diluting the possible effects of this factor.

Low-burn severity depletes the system’s plant diversity, but maintains other basic functions
(e.g., soil protection). High-burn severity strongly affects the community structure (cover, litter,
changes in taxonomic composition and biotypes, loss of predominating trees, etc.) and leaves a
considerable amount of soil unprotected. In addition, salvage logging amplifies the negative effects
related to high-burn severity, such as impacts on pine seedling density and pine sapling growth.
This could prolong the time needed to recover ecological functions despite a disturbance occurring in a
resilient habitat [9,11]. These findings supplement the results of other studies that have associated
greater environmental damage with high-burn severity, with examples of soil loss [83] and impacts on
plant abundance/diversity and soil productivity [84].

The salvage logging that has been usually used as a post-fire restoration tool promotes negative
effects on Aleppo pine forest functions, reducing the natural recovery of vegetation and changing the
post-fire composition and structure of the plant community, although will not be significant for the
regeneration of the general plant community (total plant and litter cover). This negative effect increases
the system’s vulnerability and extends the time required for the pre-fire functions and ecosystem
services to return.

We recommend increasing fire prevention to reduce fire risk and improve success in firefighting
in order to reduce the amount of burned surface and lessen burn severity [85], or at least to attempt to
reduce high-burn severity zones to prevent flora homogenization on the regional scale in semiarid
areas with changing fire regimes [86,87].

In the event of the occurrence of a wildfire in this habitat type, we suggest that the post-fire
management should plan to avoid salvage logging or should at least retain enough older snags
to prevent ecosystem damage. As a useful tool for ecosystem restoration, this strategy favors
pine regeneration and promotes landscape heterogeneity, interspersing felled and uncut areas to
promote diversity. However, changes in soil properties could be determining future natural recovery,
which should be considered in future research. This procedure will provide a suitable habitat for more
species and habitat type by increasing community resilience to future wildfires (sensu [88]). It will also
provide synergies with other functions and service ecosystems, mainly in special protection areas [89].
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