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Abstract: Anthropogenic emissions have impacted terrestrial forest ecosystem processes in North
America since the industrial revolution. With the passage of the Clean Air Act in 1970 in the United
States, atmospheric inputs of nitrogen (N) and sulfur (S) into forests in the Appalachian Mountains
have declined, which have, potentially, mitigated their effects on processes such as decomposition and
nutrient cycling. Activities of microbial extracellular soil enzymes (ESEs) mediate many rate-limiting
nutrient transformations in forest soils and play important roles in the decomposition of complex
organic compounds. Soils in high-elevation red spruce forests are characterized by low pH and high
carbon (C):N ratios and, having historically received extremely high levels of N deposition, may
exhibit legacy impacts of deposition on nutrient availability and decomposition. We utilized four sites
along a modeled gradient of N deposition in central Appalachia to assess contemporary ESEs in bulk
soil under Acer rubrum L., Betula alleghaniensis Britt., and Picea rubens Sarg. in May, June, and July 2016.
Increasing N deposition led to increases in organic fraction C and N and decreases in phosphorus
(P). Sites receiving higher N also exhibited greater mineral fraction C, N, and P. ESEs were highest
in organic fractions with acid phosphatases (AP) exhibiting the highest activity. There was little
influence of N deposition on organic fraction ESEs, but strong evidence for a positive relationship
between N deposition and activities of AP, β-glucosidases (BG), and chitinase (NAG) in mineral
fractions. Species effects on ESEs were present with high AP in organic fractions under spruce and
high mineral fraction fungal laccase (LAC) under birch. The sampling season demonstrated little
effect on ESEs. ESEs were more strongly influenced by plot-level factors, such as tree species diversity
and abundance of ectomycorrhizal (ECM) tree species, than temporal or soil factors or nutrient status
related to modeled cumulative N deposition across these sites. Decreases in AP, BG, and NAG
activities with greater abundance of broadleaf deciduous species and increases in activities with ECM
host abundance indicate that microbial communities driven by these plant functional groups are
responsible for the differences in ESEs observed in these high-elevation mixed red spruce stands.
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1. Introduction

Microbial extracellular soil enzymes (ESEs) serve important ecosystem functions by facilitating the
biogeochemical cycling of soil organic matter (SOM) and increasing the concentration of plant-available
nutrients in the soil solution [1]. Except for acid phosphatases secreted by plant roots, ESEs are
generally synthesized and secreted by microbes, and act as drivers for many of the rate-limiting steps
in nutrient transformations for resource-scavenging in ecosystems [2]. Both the plant community
structure, through the direct influence on microbial communities and indirect effects on litter quality,
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and soil disturbance, such as acid deposition and accompanying nutrient inputs, will affect the structure
and function of soil microbial communities and the production of ESEs [3].

Plant species influence root-zone microbial communities, which influence nutrient turnover and
acquisition by the root [4]. Plant nutrient status is especially influenced by the mycorrhizal associations
that significantly enhance phosphorus (P) acquisition [5]. Differences in ectomycorrhizal (ECM) versus
arbuscular mycorrhizal (AM) fungal communities selected by trees and the quality of detrital inputs
from different hosts will influence the microbial community structure and function related to nutrient
scavenging. Therefore, it is important to consider tree species effects on the soil microbial community
and tree functional characteristics as important drivers of nutrient cycling in forested ecosystems.
For example, high-elevation red spruce forests develop an organic soil horizon consisting of large
quantities of nutrient-poor, recalcitrant organic matter. In these ecosystems, microbial ESEs will play
important roles in the decomposition of high carbon (C): nitrogen (N) compounds, such as chitin,
cellulose, hemicellulose, and lignin [6], and nutrient cycling as a whole.

Nutrient fertilization is another major driver of soil microbial community composition and
may promote additional feedbacks by altering the plant communities that influence soil microbial
diversity [7]. Although some soil microbial communities exhibit functional resilience despite reductions
in microbial diversity [8], ESE profiles often shift as microbial communities change with nutrient
enrichment [9–11]. While functional redundancy among soil microbes can minimize the impacts of these
community changes on ESE profiles, microbial communities experiencing elevated nutrient availability
may lack the microbial taxa and genes to produce certain enzymes needed to mediate nutrient
transformations. This includes potential implications for decomposition and related processes [12].
Schimel and Bennett (2004) portrayed the depolymerization of organic nitrogen forms in soil organic
matter as the rate-limiting step for soil N cycling [13]. There are also indications that ESE responses to
N fertilization are closely intertwined with soil P status in acid forest soils. Chronic N fertilization has
been shown to suppress hydrolytic enzyme activities in spruce-fir forests, while nutrient acquisition
was governed by inorganic P rather than N [14].

Due to the site preferences of red spruce for high elevations within the Appalachian Mountains,
USA, these ecosystems have received, and continue to be influenced by, elevated levels of acidic
deposition that contain high levels of N and sulfur (S). Despite reductions in acidic inputs due to the
Clean Air Act that curbed industrial emissions in the United States, these N inputs may have impacted
soils/soil processes in these forest ecosystems. Elucidating patterns of soil enzyme activities and the
factors influencing their activities could aid in identifying changes in nutrient cycling and, therefore,
potential disruptions to ecosystem processes in high elevation red spruce forests.

The objective of this study was to observe differences in ESE activity profiles from organic and
mineral fractions of the bulk soil below the canopies of three of the most abundant tree species in
high-elevation Appalachian forests, Acer rubrum L., Betula alleghaniensis Britt., and Picea rubens Sarg., at
four sites along a modeled gradient of inorganic N deposition. In this case, we report the activities of
acid phosphatase (AP) catalyzing organic P liberation, β-glucosidases (BG) yielding simple C forms
from celluloses, chitinolytic N-acetyl-glucosaminidases (NAG) that release N, and fungal laccases
(LAC), which are a subset of phenol oxidases that are multicopper oxidases expressed by certain
taxonomic groups of fungi. We specifically evaluated the following hypotheses: (1) soils beneath
different tree species will have significantly different ESE activities, which correspond to differences in
host-specific soil C:N ratios and/or controls on microbial communities, (2) ESE activities will increase
with N deposition reflecting shifts in N and P availability, and (3) seasonal differences in ESE activities
from May, July, and October will reflect changes in C inputs during the growing season in these soils.

2. Materials and Methods

Four high-elevation red spruce stands were selected based on site elevation (>1100 m), tree species
composition (mixed hardwood-red spruce), and position along a gradient of modeled acid deposition,
which ranged from 326 to 400 kg N ha−1 over the past 27 years in central Appalachia, as outlined by



Forests 2020, 11, 468 3 of 13

Crim et al. (2019) [15]. Site selection for modeled acid deposition relied upon data from the National
Atmospheric Deposition Program (NADP) from 1985 to 2012. Each site consisted of a single 100-m
diameter plot about a center point established in an area with red spruce as the predominant tree species.
Three individual trees of A. rubrum, B. alleghaniensis, and P. rubens were selected at each site from the
canopy-dominant or co-dominant individuals that were greater than 45-cm diameter at breast height
(DBH). Plot tree diversity characteristics are presented in Appendix A. Two soil samples were collected
parallel to the slope on opposite sides of each tree midway between the bole and canopy edge and
composited. Samples were collected from the same trees once each in May, July, and October using a
soil corer with a 2-cm sampling tube to a depth of 15 cm. Samples were carefully separated into organic
(O) and mineral (M) fractions and then composited by soil fraction for each individual tree of each
species at each site. Following collection, samples were stored in plastic Ziploc® bags and immediately
placed on ice. In the lab, samples were sieved using a 2-mm (No. 10) screen and stored at −20 ◦C [16].

Soil subsamples were dried at 65 ◦C to calculate soil moisture with subsamples for C, N, and P
analysis air-dried and stored in the dark at 4 ◦C. C and N were measured using a Thermoquest Elemental
Analyzer. P was analyzed following Mehlich III extraction by inductively coupled plasma optical emission
spectroscopy (ICP-OES). Subsamples for enzyme measurements were thawed and assayed field-moist.
Fluorimetric assays were performed for the hydrolytic enzymes acid phosphatase (AP), arylsulfatase
(ARS), β-glucosidase (BG), and N-acetyl-glucosaminidase (NAG). Colorimetric assays were completed
for the oxidative enzymes polyphenol oxidase (PO) and peroxidase (PER) [1]. The pH of the extracting
buffer used in the assays was adjusted to pH 3.5 to approximate the pH of the native soils [17,18]. Enzyme
activities were measured for both the organic and mineral fractions of the bulk soil. The reaction of
L-3,4-dihydroxyphenylalanine (L-DOPA), the substrate for PER and PO that produces a chromophore as
it is oxidized, has a pH optimum approaching 9 [19], which, potentially, results in low measurements
given our assay conditions [20]. While colorimetric assays for LAC were consistent with literature values
reported in forest soils [20–22], PER and PO activities were low or undetectable, which indicated that
L-DOPA was ineffective as a substrate given the assay conditions simulating the low pH of the native soil
at these sites. These data and data for ARS, which were also low, were not analyzed further.

Measurement of extracellular enzyme activities in soils is a challenge since enzymes can be
adsorbed to soil constituents such as clays, humic compounds, and other colloidal entities with
locally strong charges that can result in strong physical and/or chemical binding of the enzyme [23].
An additional colorimetric assay for oxidative enzyme activity optimized for low pH samples was
performed using 2,2′-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) as a substrate to measure
the activity of fungal laccases (LAC) [24]. This method, which is specialized for soil samples, is
3–40 times more sensitive than alternative protocols for soil assays of laccases and provides an effective
proxy for soil oxidative enzyme activity [20,25]. Extinction coefficients for chromophores of ABTS in
these soils were generated and tested for temporal stability over the course of the soil incubations
using lyophilized mushroom tyrosinase (Sigma-Aldrich product #T3824-25KU) [26], and were similar
to literature values for forest soils [16,25].

Soil C, N, and P concentrations were evaluated as functions of N deposition and tree species using
regression analyses. ESE activities were log-transformed to meet the assumptions of normality and
then evaluated using a nested mixed analysis of variance (ANOVA) model including sample month,
total deposition, species, tree within species (repeated measure), and their interactions. Additionally,
multiple linear regression was used to evaluate site variable influences, including tree species diversity
(Shannon Index), mycorrhizal host type (ECM vs. AM), broadleaf relative importance value (BL RIV),
ectomycorrhizal host relative importance value (ECM RIV), soil C:N ratio, N deposition, and soil pH, on
ESE activity. Broadleaf RIV and ECM RIV values were calculated as the sum of the relative frequency of
BL or ECM species, the relative density (individuals per area) of BL or ECM species, and the relative basal
area of BL or ECM species within the plots. Principal component (PC) analysis was used to evaluate the
influences of plot-level factors on ESE activities. Exploratory data analysis was performed in SAS JMP Pro
14.0 [27]. Statistical analyses were performed using R core functions in the R statistical environment [28].
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3. Results

3.1. Soil C, N, and P Responses to N Deposition

Enhanced N deposition led to increases in organic fraction C and N across the N deposition
gradient while organic fraction P declined across the sites (Figure 1). Mineral soil C and N increased
more substantially than increases in the organic fraction, whereas P increased in the mineral fraction
across the N deposition gradient (Figure 1). There was little evidence of species differentiation in soil
C, N, or P concentrations among the sites (Figure 1).
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Figure 1. Mean soil C, N, and P concentrations for organic and mineral fractions as functions of
estimated total N deposition into high elevation spruce forests. Each symbol represents the mean
beneath three replicate trees of each species. Regression lines are best fits across all species. Slopes ± SE
[(mg kg−1) (kg N ha−1)−1] for the regressions are: Corg, 1133 ± 574, Cmin, 2421 ± 435, Norg, 64.7 ± 25.9,
Nmin, 131.0 ± 20.9, Porg, −3.76 ± 0.70, and Pmin, 2.36 ± 0.56. All slopes are significant (p < 0.05).
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3.2. Soil Fraction and Species Effects on ESE Activities

Soil enzyme activities, pooled across time points and sites, consistently exhibited higher mean
rates (p < 0.001 for AP, BG, NAG, and LAC) in the organic fraction than in mineral soils (Figure 2). Rates
of AP were the highest of the ESEs measured and, for the species evaluated, organic fractions beneath
P. rubens exhibited the highest AP (Figure 2). In the mineral fraction, the activity of LAC beneath
B. alleghaniensis was greater than that of P. rubens; LAC activity beneath A. rubrum was intermediate
between the other two species.
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Figure 2. Extracellular soil enzymes (ESE) activities pooled across sites and sampling times by tree
species for organic (left) and mineral (right) soil fractions. Stacked bars represent the mean activity for
each enzyme for three replicate trees of each species assayed at four sites and at three times (n = 36).

3.3. Temporal, Depositional, and Stand Diversity Effects on ESE Activities

Seasonal effects on ESE activity in organic fractions were significant for BG (p = 0.008) and NAG
(p = 0.021) (Table 1) with BG and NAG activity peaking in mid-summer. Soil ESE activities in mineral
fractions displayed little temporal change in activity.

ESE activity in the organic fraction was little affected by N deposition (Table 1). In contrast, AP, BG,
and NAG were strongly affected by N deposition in mineral fractions (Table 1). In each case, activity
increased with increasing N deposition (Figure 3). The significant species × deposition interactions
noted for AP and BG resulted from these ESE responses to N being the greatest in soils beneath P. rubens,
and less so beneath A. rubrum, with little response to N in soils collected beneath B. alleghaniensis.

Evaluation of ESE activity as functions of local soil-level and plot-level factors excluding N
deposition indicated that ESE activity was not influenced by soil nutrient factors related to N
deposition, but rather by plot-level factors that influence the microbial community (Table 2). As noted
above, ESE activities were greater in the organic fractions than in mineral fractions (Table 2). In addition,
greater plot broadleaf representation depressed AP, BG, and NAG activity, whereas plot tree diversity
associated with ectomycorrhizal hosts increased ESE activity as did overall plot tree diversity (Table 2).
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Table 1. F-statistics for three-way ANOVA tests for soil extracellular soil enzymes (ESE) activities.

Factor DF AP BG NAG LAC

Organic Fraction ESE Activity

Month 2 0.666 3.149 * 4.640 * 1.385
Total Deposition 1 0.004 1.684 0.710 0.718

Species 2 7.317 ** 0.060 1.643 1.113

Month × Deposition 2 0.741 0.325 0.120 1.049
Month × Species 4 0.145 0.602 1.180 0.706

Deposition × Species 2 0.134 0.576 0.877 1.635
Month × Deposition × Species 4 0.582 2.110 0.448 0.786

Mineral Fraction ESE Activity

Month 2 0.271 2.627 1.480 0.360
Total Deposition 1 17.883 *** 25.011 *** 17.741 *** 1.914

Species 2 1.874 0.782 0.286 3.637 *

Month × Deposition 2 2.346 1.183 2.254 0.669
Month × Species 4 2.891 * 1.196 1.055 1.171

Deposition × Species 2 4.949 * 3.634 * 2.320 0.793
Month × Deposition × Species 4 1.987 0.467 3.377 * 0.921

* p < 0.05, ** p < 0.01, *** p < 0.001.
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Figure 3. Activity of AP, BG, NAG, and LAC in mineral soil fraction as functions of estimated total N
deposition into high elevation spruce forests. Each symbol represents the activity in samples beneath
three replicate trees of each species. Regression lines are best fits across all species. Slopes ± SE
[ln(µg g−1 h−1) (kg N ha−1)−1] for the regressions are: AP, 0.0115 ± 0.0027 (p < 0.001), BG, 0.0173 ± 0.0036
(p < 0.001), and NAG, 0.0161 ± 0.0041 (p < 0.001), LAC, 0.0026 ± 0.0018 (p = 0.161).
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Table 2. Parameter estimates for multiple linear regression of soil-level and plot-level predictors of
ESE activities.

Factor AP BG NAG LAC

Soil C (%) 0.0073 0.0127 −0.0098 −0.0056
Soil N (%) −0.1606 −0.3901 0.3888 0.1173

Soil P (mg kg−1) −0.0001 −0.0001 −0.0001 0.0001
Mycorrhizal Type [ECM–AM] † 0.0012 −0.0561 0.0103 0.0169

Soil Fraction [O–M] † 0.7489 *** 0.8020 *** 1.076 *** 0.3232 ***

Plot Broadleaf RIV −0.0629 *** −0.0762 *** −0.0624 ** −0.0285
Plot Shannon Diversity 1.827 ** 2.429 *** 1.602 * 1.158 *

Plot ECM RIV 0.0747 ** 0.1272 *** 0.0627 * 0.0473 *

R2 0.4748 0.4431 0.5245 0.1534
Pmodel <0.0001 <0.0001 <0.0001 <0.001

† Parameter estimate for the difference in response between ECM and AM hosts and between mineral (M) and
organic (O) fractions, respectively. * p < 0.05, ** p < 0.01, *** p < 0.001.

Principle component analysis for soil-level and plot-level predictors of ESE activities highlighted
separation among sites driven by N deposition, soil nutrient concentrations, and stand species
composition (Figure 4). For the organic fraction, the first two principle components (PCs) explained
54.1% of the variation with N deposition, soil C and N, and ECM RIV having positive influences
while soil P, tree diversity, and broadleaf RIV had negative weights on PC1 (Table 3). PC2 reflected
the strong correlation of activities among the ESEs measured (Figure 4). In the mineral fraction, the
first two PCs accounted for 56.4% of the variation. As with the organic fraction, N deposition, soil C
and N, and ECM RIV positively loaded PC1 while broadleaf RIV and tree species diversity negatively
weighted PC1 (Table 3). In contrast to the PC1 for the mineral horizon, soil P loaded positively to PC1
in the mineral horizon (Figure 4). PC2 for the mineral fraction highlighted the negative correlation
between ESE activity and soil N and C. It is evident from Figure 4 that patterns in the data existed with
increasing deposition (symbol color intensity) along the first PC in each soil fraction, which supports
soil compositional changes highlighted in Figure 1 and ESE activity responses in Figure 3.
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Figure 4. Principle component analysis for soil extracellular enzyme activities and soil-level and
plot-level predictors of ESE activities in the organic and mineral horizons, respectively. Symbol color
intensity reflects N deposition at each site (light blue, low, to dark blue, high, N deposition).
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Table 3. Principle component loadings for soil-level and plot-level factors, ESE activities, and N
deposition in high elevation red spruce forests. ESE activities were natural log transformed. Values
marked with * contribute disproportionately to the PC loadings.

Organic Fraction

Factor PC1 PC2 PC3 PC4

% Variation 35.3 18.8 15.4 8.2

Ln AP −0.0123 0.6876 * −0.3729 * −0.0655
Ln BG 0.1550 0.6539 * −0.0518 0.2456

Ln NAG 0.1823 0.7893 * −0.0361 −0.1083
Ln LAC −0.0755 0.5304 * −0.1304 0.4710 *

Soil C (%) 0.5201 * 0.2760 0.7677 * −0.1472
Soil N (%) 0.5802 * 0.2127 0.7500 * −0.1279

Soil P (mg kg−1) −0.6600 * 0.1510 0.0101 −0.3866 *
Plot Broadleaf RIV −0.6803* −0.1070 0.4515 * 0.4662 *

Shannon Index −0.8951 * 0.0968 0.3541 * 0.1685
Plot ECM RIV 0.7857 * −0.2749 0.0089 0.4019 *
N Deposition 0.9467 * −0.1418 −0.2222 0.0678

Mineral Fraction

% Variation 39.6 16.8 14.4 9.0

Ln AP 0.5479 * 0.4771 * 0.4186 * −0.2655
Ln BG 0.5474 * 0.5809 * 0.2683 −0.0050

Ln NAG 0.5443 * 0.5108 * 0.3081 −0.2963
Ln LAC 0.1788 0.3263 0.3637 * 0.6830 *

Soil C (%) 0.4375 * −0.6663 * 0.5397 * −0.1597
Soil N (%) 0.4908 * −0.6549 * 0.5378 * −0.0700

Soil P (mg kg−1) 0.6149 * 0.0096 −0.1796 −0.0634
Plot Broadleaf RIV −0.6711 * 0.0030 0.4961 * 0.3031

Shannon Index −0.8681 * 0.0951 0.4336 * −0.0292
Plot ECM RIV 0.7540 * −0.1556 −0.0425 0.4547 *
N Deposition 0.9187 * −0.1164 −0.2800 0.1805

4. Discussion

The long-term inputs of N-containing acidic precipitation into high-elevation forests in the
eastern United States have had numerous impacts on trees and soils in these ecosystems. With the
implementation of the Clean Air Act, N and S inputs have declined into these systems, although N
deposition is still substantial. Increases in soil N, concomitant reductions in cations, and inputs of
metals in these soils [15] have the potential to alter microbial community structure and function. In this
study, we evaluated the activity of a suite of microbially-produced soil enzymes involved in SOM and
nutrient cycling in soils along a modeled N-deposition gradient in the central Appalachian Mountains.

4.1. Soil C, N, and P Responses to N Deposition

Nitrogen inputs into these sites, ranging from 326 to 400 kg N ha−1 between 1985 and 2012,
stimulated C and N accretion in both the organic and mineral horizons. However, the observed
changes were proportionally greater in the mineral than organic fractions (Figure 1). In contrast, P
declined in the organic fraction, but increased substantially in the mineral layers, which suggests
an acid-induced redistribution of P from the organic to mineral horizons. We also noted substantial
redistribution of cations and metals in these soils [15]. Such changes are typical of N-deposition
impacted soils [29–32] and have the potential to alter microbial communities and their activity directly
or indirectly though changes in tree rhizodeposition. ESEs function to access energy and nutrients
stored in recalcitrant organic matter in forest soils [33,34]. Alterations for the processes driving
decomposition have important consequences for nutrient cycling and C storage within forests [35].
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4.2. Soil Fraction and Species Effects on ESE Activities

The predominance of thick, well-developed organic fractions at these sites was typical of the
spodic soils that develop under red spruce [36]. Substantially higher enzyme activities in the organic
versus the mineral fractions (Figure 2) follow the inverse relationship typically observed between
soil microbial biomass and soil depth [37–40]. In the organic fractions, the growth of microbes is
stimulated by SOM, and the ramification of mycorrhizal fungal hyphae and their associated microbial
communities in the litter enhance degradation of SOM via nutrient scavenging [4,33]. The mineral
fractions, which contain lower quantities of organic matter, exhibited lower ESE activities that are
related to differential microbial communities established due to lesser influence of host tree litter and
roots [41–43].

The microbial community and the activity of ESEs may also respond to changes in the soil
environment brought about by variation in the dominant vegetation. The soil microbial community is
indirectly influenced by plant diversity through plant traits that influence soil nutrient availability [43].
Quantitative and qualitative differences in litter inputs and differences in root-mycorrhizal associations
have large influences on the soil abiotic environment and will influence microbial community structure
and function [4,43,44]. In the current study, there were minor differences in ESE activity in soils
beneath the three species investigated, such as the higher AP activity beneath red spruce (Figure 2).
Multivariate analyses confirmed the importance of function diversity of the forest plots in structuring
soil properties and ESE activities (Tables 2 and 3, Figure 4). ESE activities as a whole were not influenced
by the mycorrhizal functional status (ECM vs. AM) of the tree of collection, but rather were more
responsive to plot-level characteristics, such as broadleaf RIV and ECM RIV (Tables 2 and 3), which may
influence plot litter quality. We previously reported [15] that, while foliar nutrient concentrations varied
extensively among the tree species on these sites, soil nutrient pools were relatively homogeneous.
This suggests that plot-level redistribution plays an important factor in establishing soil characteristics
and the activity of the microbial community [45,46].

4.3. Temporal, Depositional, and Stand Diversity Effects on ESE Activities

Temperature and moisture are important factors driving microbial activity and decomposition
in soils. Even minor increases in soil temperatures can accelerate microbial activity and litter decay
rates under the red spruce [47,48]. Soil amino acid pools, primarily utilized by microbes over plants,
have been shown to increase during dormant periods and decrease during the growing season [49].
In the current study, the activity of the hydrolytic enzymes, BG and NAG, in the organic horizon were
significantly higher in July than in May or October, which is consistent with Kittredge et al. (2018) who
demonstrated sensitivity of these enzymes to organic fraction warming [50]. The mineral fractions,
which contain lower quantities of organic matter, are additionally buffered from changes in the surface
environment, such as moisture and temperature fluctuations, which may minimize seasonal patterns
of microbial population growth and activity.

In the current study, we found the activity of AP, BG, and NAG increased significantly across
the modeled N deposition gradient at our sites in the mineral, but not organic fractions (Table 1,
Figure 3). This mineral-fraction response may reflect the proportionately greater enrichment of this
horizon with C, N, and P as N deposition increases when compared to organic fractions (Figure 1),
which may stimulate/alter the growth, metabolic activity, and or diversity of the microbial community.
This hypothesis is supported by the relationships between variables in PC1 for the mineral fraction
(Table 3), where ESE activities are positively weighted with soil N, C, and P. In contrast, suppression
of ESE activities concurrent with N fertilization has been observed in several studies [3,51,52].
An evaluation of organic fraction soils across a gradient of N deposition in the Adirondack Mountains
of Upstate New York showed a trend between N deposition and organic soil N, but stronger relationships
with other site factors such as growing season degree days [50].

In addition to the effects of N deposition, we found that activity in the mineral horizon was
negatively correlated with broadleaf RIV and tree diversity, which indicates that, across the depositional
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gradient, differences in stand broadleaf composition (and the quality of leaf and root litter inputs) may
also affect ESE activity. Deposition of N and S impacts not only the microbial community structure, but
also biotic interactions between fungi, bacteria, and plants. Chronic NH4NO3 addition has been shown
to increase mycorrhization in black spruce (Picea mariana (Mill.) B.S.P.) as well as other species [53,54].
There is evidence that differences in mycorrhizal fungal type, AM or ECM, exert considerable differences
in ESE activities. In a similar mixed northern hard-wood/coniferous forest in New England, Brzostek
and Finzi (2011) examined the effects of Acer saccharum (AM), Fraxinus americana (AM), Tsuga canadensis
(ECM), and Fagus grandifolia (ECM) on ESE activities and found that roots of AM tree species exhibit
little influence on ESE activities relative to their ECM counterparts [55]. The effects of mycorrhizal type
on ESE activities in the current study were difficult to assess, however, as these stands had very similar
mycorrhizal compositions (Appendix A) and the effect of plot mycorrhizal status was more prevalent
than a tree sample mycorrhizal type (Table 2).

One cannot rule out that specific site factors, such as mineralogy and elevation, may be playing a
role in organizing soil microbial communities and affecting ESE activity profiles. These factors will
influence tree stand structure and function. While tree species diversity declines across the depositional
gradient, broadleaf RIV is lower only in the site receiving the highest N deposition and ECM RIV is
lowest only at the site receiving the lowest deposition (Appendix A). Given that these factors also affect
ESE activity (Tables 2 and 3), it is difficult to unequivocally ascribe N deposition to the changes in ESE
activity observed. Smith et al. (2016) found that broadleaf RIV was the primary driver of nitrogen
transformations across a broader modeled N deposition gradient that included our plots [45]. Similarly,
Zheng et al. (2018) noted that vegetation change, and the concomitant changes in litter inputs, was the
primary controller of soil microbial community structure across an elevational gradient in the eastern
Tibetan Plateau [44]. Thus, it may be the quality of N (and other nutrients) cycling in soils across our
sites, and not the quantity of N, that is driving patterns of ESE activity observed in this case.

5. Conclusions

Nitrogen deposition into high elevation spruce forests in the Appalachian Mountains has increased
soil organic fraction C and N and mineral fraction C, N, and P, whereas P concentrations in organic
fractions have declined. These changes are also associated with site differences related to tree species
composition, including broadleaf deciduous RIV, tree diversity, and ECM RIV. Soil ESE activities
increased with modeled deposition across the four sites sampled, and ESE activities for most enzymes
were negatively associated with broadleaf RIV and tree diversity while positively correlated to ECM
RIV. Sampling time had little effect on the activities of most enzymes, and the paucity of differences
observed between seasons may indicate that enzyme activities mediating many of the rate-limiting
steps in nutrient transformations are relatively robust against differences in ambient temperatures and
precipitation across small temporal scales at these sites. The enzymes most influenced by changes in soil
quality relate to P availability and decomposition of complex carbon compounds, which, potentially,
results in greater rates of litter decomposition, lower C storage, and a transition towards P limitation
as N deposition increases in these forest soils.
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Appendix A

Table A1. Tree stand composition of the four field sites. Data from Smith et al. (2016).

Site AM RIV 1 ECM RIV 2 Broadleaf Deciduous RIV 3 Shannon Index

FLR 15.78 84.22 20.76 0.403
MCG 11.97 88.03 50.15 0.287
CGL 20.83 79.17 49.22 0.500
LSB 28.80 71.20 53.16 0.574

1 Arbuscular mycorrhizal host tree relative importance value. 2 Ecctomycorrhizal host tree relative importance
value. 3 Broadleaf tree relative importance value.
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