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Abstract: Free vibration analysis of a Euler-Bernoulli tapered column was conducted using the finite
element method to identify the vibration modes of an equivalent tree structure under a specified set
of conditions. A non-prismatic elastic circular column of height L was analysed, taking distributed
self-weight into account. Various scenarios were considered: column taper, base fixity, radial and
longitudinal stiffness (E) and density (ρ) and crown mass. The effect on the first natural frequency was
assessed in each case. Validation against closed form solutions of benchmark problems was conducted
satisfactorily. The results show that column taper, base fixity and E/ρ ratio are particularly important
for this problem. Comparison of predictions with field observations of natural sway frequency for
almost 700 coniferous and broadleaved trees from the published literature showed that the model
worked well for coniferous trees, but less well for broadleaved trees with their more complicated
crown architecture. Overall, the current study provides an in-depth numerical investigation of
material properties, geometric properties and boundary conditions to create further understanding of
vibration behaviour in trees.
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1. Introduction

Applied wind loads have a significant impact on the ecology, physiology and morphology of
land plants [1,2]. Responses of plants to applied wind loads range from minor movement of leaves,
branches and stems through to catastrophic failure [3]. In forests (as well as in other crop plant systems),
the catastrophic failure of single trees or groups of trees is a source of economic loss and can pose a
threat to human safety [1,2].

Previous studies have investigated how wind affects tree growth and development, the mechanics
of wind loading on trees and the risk of tree failure [1–6]. These studies have shown that the size,
shape and internal wood properties of a tree are the result of the applied forces acting on it, and that
these developmental responses improve the ability of the tree to resist these applied loads [2,5–7].
Several authors have developed models based on engineering principles to investigate the mechanical
response of trees to wind loading [8,9]. These models can be used to help investigate the mechanics of
tree failure or to provide the biomechanical inputs into investigations of tree developmental responses
to applied loads [2,6]. When modelling the interaction between wind and trees, it is important to
consider trees as dynamic structures and determine the important parameters, such as the fundamental
frequency and damping, that affect their response [10–12]. The dynamic behaviour of trees can
be affected by their geometric (e.g., mass distribution and cross-section along tree structures) and
material (e.g., density, viscous damping and modulus of elasticity) properties. It is also affected
by the characteristics of their root systems and the properties of the soil they are growing in [13].
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Several previous studies have focused on the effects of these properties on tree dynamic behaviour,
either experimentally [14–18] or theoretically [19–27].

Several common approaches to estimate the fundamental (lowest) frequency of trees are presented
in the literature. One approach is to assume that a tree can be approximated by a single degree of
freedom system, so that its fundamental angular frequency, ωn, is equal to the square root of the ratio
of its stiffness (k) to mass (m) [21].

ωn =

√
k
m

(1)

Milne [28] presented a method for estimating a whole tree’s fundamental angular frequency
which was based on the application of the principle of conservation of energy and sub-dividing it
into sections:

ωn =

√ ∑
0.5ηiθi∑
0.5x2

i mi
(2)

where the subscript i refers to a specific vertical section of the tree stem, xi is the maximum horizontal
displacement, mi is the mass, ηi is the bending moment in the stem and θi is the angular displacement
of the stem for the ith vertical section.

Another method proposed was derived from the dynamics of distributed property systems [29].
For this method, it is assumed that the modulus of elasticity and the mass are uniformly distributed,
and the cross-section is constant throughout the length of the tree stem.

ωn = α2
n

√
EI

mL4
& αn = 1.875, 4.694, . . . (3)

where E is the modulus of elasticity, I is the second moment of area (or moment of inertia), m is
uniformly distributed mass along the length (L) of the stem and αn are the solutions of the beam
equation and depend on the vibration mode. However, the cross-section of a tree stem is not constant
along its length, so it is more realistic to represent it as a tapered cantilever beam. The following
equation developed by Blevins [30] can be used to find the natural frequency (fn) of slender and tapered
cantilever beam elements:

fn =
λ2

2πL2

√
EI0

ρA0
=

ωn

2π
(4)

where I0 is the basal area moment of inertia, A0 is the area of the cross-section at the base of the
cantilever beam (stem), L is the length of the tree stem, E is the modulus of elasticity and ρ is the
material density. The unitless parameter, λ, changes due to variations in the physical properties of the
tree (such as shape, mass distribution, vertical or horizontal orientation, type of basal support, mode
of bending, taper of the beam and so on). Values for trees can be estimated through targeted data
collection for a specific species. For example, Milne [28] estimated the average value of λ to be 2.08
(standard deviation = 0.06) for Sitka spruce (Picea sitchensis (Bong.) Carr.) trees.

There have been several studies that have collected data on the natural frequency of trees in field
studies and then fitted regression equations to these data. For example, Mayhead [31] fitted a number
of models to the data collected during the 1960s by the British Forestry Commission. He found that
sway period (T) was best predicted using the following equation:

T =
1
fn

= 0.86 + 0.74
L
√

ML
DBH2 (5)

where M is the total mass of the tree, L is the height of the tree and DBH is the diameter at breast
height (approximately 1.4 m). More recently, Moore and Maguire [11] combined the results of several
previous studies and re-analysed the data for the relationship between tree height, tree diameter and
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tree natural frequency across eight different conifer species (a total of 602 trees). They presented the
following empirical formula based on regression analysis:

fn = 0.0948 + 3.4317
DBH

L2 − 0.7765IP
DBH

L2 (6)

where DBH is the diameter at breast height (cm), L is stem length (m) and Ip is an indicator variable
which has a value of 1.0 if the genus is Pinus and 0.0 otherwise. A more recent and comprehensive
analysis of tree natural frequency data by Jackson et al. [32] shows that the fundamental natural
frequency of conifer trees and broadleaved species with monopodial architecture can be predicted
using the equation for the vibration of a tapered cantilever beam. However, for some broadleaved
species with more complex architecture (i.e., a more decurrent form), this approximation to a tapered
cantilever beam no longer holds.

According to Equation (1), to estimate the modal frequencies of trees it is important to focus on
the variation in mass and stiffness matrices. The shape and internal wood properties of trees reflect
their life histories and changing biomechanical requirements over time [33,34]. Many wood science,
tree mechanics and allometry studies have focused on the variation in wood stiffness (E) and density
(ρ) within trees. For example, longitudinal gradients in both these properties were found for black
locust (Robinia pseudoacacia L.) by Niklas [35]. This was attributed to the transition from sapwood to
heartwood along the tree with age. Similar differences in physical properties have been observed along
the stems of a range of species [36–38]. However, no single pattern of variation in these properties
has been found. For example, in radiata pine (Pinus radiata D Don), an increase in E from the stem
base to approximately 20–30% of the stem height was found, followed by a decrease towards the top
of the stem [39,40]. Similar trends of increasing E with height up the stem over the lowest portions
of the stem were observed in Cryptomeria japonica (L.f.) D. Don [41] and Picea abies (L.) H. Karst [42].
In black locust, Niklas [35] found reduced wood density near the centre of the stem with an increase in
wood density with increasing radial distance from the pith as there was a transition from heartwood to
sapwood. He also found an approximately parabolic variation in radial stiffness and E/ρ variation
across the stem diameter. Similar non-linear radial variation in wood density and stiffness have been
found for many, mainly conifer, species [43–45]. In broad terms, there appear to be two main strategies
in trees for radial stiffness: (1) a stiff ‘crust’, with the outer layers stiffer than the inner, and (2) a more
rigid inner core [35].

Despite an awareness of the importance that variations in mass and stiffness within a tree have on
its dynamic behaviour, few if any quantitative analyses have explicitly considered these. In this paper,
we examine the effects of radial and longitudinal variations in stiffness and density on the fundamental
vibration frequency of a tree structure. We also examine the effect of taper, base fixity and crown
mass on the vibration modes. This work builds on the recently published study by Dargahi et al. [46],
which focused on the effects of material property variation, tree taper and base fixity on the buckling
behaviour of trees under self-weight loading.

2. Methods

2.1. Theoretical Basis for Vibration Analysis

A vibration analysis generally follows four steps. First, the structure or system of interest is
identified, its boundary conditions are estimated and its interfaces with other systems are identified.
Second, the natural frequencies and mode shapes of the structure are determined by analysis or
direct experimental measurement. Third, the time-dependent loads on the structure are estimated.
Fourth, these loads are applied to an analytical model of the structure to determine its dynamic
response. The crucial steps in the vibration analysis are the identification of the structure and the
determination of its natural frequencies and mode shapes [30].
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Any structure with mass and elasticity will possess one or more natural frequencies of vibration.
The natural frequencies are the result of cyclic exchange of kinetic and potential energy within the
structure. The kinetic energy is associated with velocity of the structural mass, while the potential
energy is associated with storage of energy in the elastic deformations of a resilient structure. The rate
of energy exchange between the potential and kinetic forms of energy is the natural frequency [30].

Figure 1 shows a straight-sided cantilever column without damping subjected to an external
variable load, P. The governing equation for transverse vibration of this column can be written as:

∑
Fy = 0⇒

∂ν(x)
∂x

= P(x, t) −m(x)
∂2u(x, t)
∂t2 (7)

where y is the lateral direction, x is the elevation from the base, u(x,t) is the motion of the column in y
direction, m(x) is mass per unit length and P(x,t) is the external transverse force.
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Figure 1. Schematic cantilever column without damping subjected to an external variable load.

We know that:

ν(x, t) =
∂M(x, t)
∂x

; M(x, t) = D(x)
∂2u(x, t)
∂x2 ; m(x) = ρ(x)A(x) (8)

where ν(x,t) is transverse shear, M(x,t) is the bending moment, ρ(x) is density and A(x) is the
cross-sectional area. Substituting Equation (8) into Equation (7) gives:

ρ(x)A(x)
∂2u(x, t)
∂t2 +

∂2

∂x2

[
D(x)

∂2u(x, t)
∂x2

]
= P(x, t) (9)

where D(x) = E(x)I(x) is flexural rigidity, E(x) is Young’s modulus and I(x) is the area moment of inertia.
This is the general governing differential equation for vibration of a non-prismatic Bernoulli beam

(column) under variable transverse force without considering damping. Setting P(x,t) = 0, the free
vibration equation is obtained.

In the above system of equations, the deflection due to the shear stress in the column was ignored.
The analysis of beam (column) vibration including both the effects of rotational inertia and shear
deformation is called Timoshenko beam theory, which is outside the scope of this paper.
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Considering the motion represented by harmonic vibration, the transverse motion of the column
is obtained using the following relation:

u(x, t) = ϕ(x)q(t) = ϕ(x).eiωt (10)

where φ(x) and ω are the mode shape function and angular natural frequency of the beam, respectively.
Substitution of Equation (10) into Equation (9) leads to:

d2

dx2

[
D(x)

d2ϕ(x)
∂x2

]
−ω2ρ(x)A(x)ϕ(x) = 0, 0 ≤ x ≤ L (11)

For simplicity, for a column with a non-prismatic circular cross-section, we can define a
non-dimensional coordinate ξ = x/L, then:

I(ξ) = I0(1− αξ)
4 (12)

where α is the taper ratio [(D0-Dt)/D0] and D0 and Dt are the diameters of the tree at the base and top
of the tree stem, respectively.

In general, we can rewrite the flexural rigidity and distributed mass as:

D(ξ) = E(ξ)I(ξ) = E0I0g(ξ)m(ξ) = ρ(ξ)A(ξ) = ρ0A0 f (ξ) (13)

where I0, E0, ρ0 and A0 are the area moment of inertia, Young’s modulus, density and cross-section
area at the base of the stem, respectively.

Consequently, Equation (11) can be transformed into a normalised form:

d2

dξ2

[
g(ξ)

d2ϕ(x)
∂ξ2

]
−

(
ω2H4ρ0A0

E0I0

)
f (ξ) = 0, 0 ≤ ξ ≤ 1 (14)

Therefore, we can define natural frequency parameter (λ) as:

ω2H4ρ0A0

E0I0
= λ4

⇒ ω =
λ2

L2

√
E0I0

ρ0A0
or f =

λ2

2πL2

√
E0I0

ρ0A0
(15)

The column base condition is bounded by two cases: clamped (fixed) and pinned. In general,
we can consider intermediate cases using a rotational spring restraint at the base of the column.
The deflection, u, is therefore related to the rotation angle, θ, by:

θ =
∂u(x, t)
∂x

=
∂u(ξ, t)
∂ξ

(16)

The boundary conditions applied to this column at the spring-supported end are:

u(0, t) = 0

EI ∂
2u(0,t)
∂x2 = k ∂u(0,t)

∂x

(17)

where K is the rotational spring stiffness and the spring is assumed to be massless.

2.2. Calculation of Natural Frequency Using Numerical Analysis

The first natural frequency parameter (λ) of a column was found with the generalised
eigenfrequency approach using the finite element analysis method. The commercial software SAP2000
(Computers and Structures Inc, Berkeley, CA, USA) and COMSOL Multiphysics (COMSOL Inc,
Burlington, MA, USA) were used to investigate the effect of the different parameters on the natural
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frequency of non-prismatic circular columns. A free end–fixed base case was modelled, with rigid
support for torsional moments and lateral translations. The column was discretised (sub-divided) into
finite elements, with the properties varying linearly across the elements. The effect of variations in
selected geometric and material properties on the vibration behaviour was investigated: column taper,
end fixity, radial and longitudinal stiffness/density variation and relative crown mass and location.

2.2.1. Effect of Base Fixity

We did not attempt to model the behaviour of the whole root–soil system explicitly. Since the
effect of the mass of the root–soil system on the overall behaviour has been found to be less significant
with higher centres of mass of the above-ground components [18], this has been ignored. In addition,
increases in the rooting depth will tend to increase the stiffness of the root–soil volume, counteracting
any changes in the root–soil mass [47]. Hence, we have only included a basal rotational spring stiffness
term (K) in the numerical models (assumed to be identical in the two orthogonal horizontal directions)
to test the effect of the overall root–soil system rigidity on tree vibration behaviour. Each rotational
stiffness was normalised by the stiffness magnitude to create a non-dimensional spring stiffness (K’) and
the results are presented herein using the non-dimensional rotational stiffness K’ = KL/E0I0. The value of
K’ will approach infinity for an equivalent clamped (fixed) case (θ→0) and zero for a pinned condition
(where M (base bending moment)→ 0). Validation of the models was conducted by comparison with
the previous analyses of Blevins [30].

2.2.2. Effect of Longitudinal Stiffness Variation

To model the longitudinal stiffness gradient variations for trees described in the literature, three
cases (see Figure 2a, (i) to (iii)) were chosen for these analyses: (i) elastic modulus decreasing linearly
from the bottom (Eb) to the top of the stem (Et), with Et/Eb = 0, 0.25, 0.5, 0.75 and 1, (ii) elastic modulus
increasing linearly from the bottom (Eb) to one-third of the stem height (Em), followed by a linear
decrease to the top of the stem (Et), with φ = 1/3, Et/Eb = 0.25 and Eb/Em = 0.25, 0.35, 0.5, 0.75 and 1 and
(iii) Et/Eb = 0.25 and Eb/Em = 0.5 and varying the position of the gradient change (point m) with L/3, L/2,
2L/3 and 5L/6. In each case, the density (ρ) has been held constant, thus the value of E/ρ changes in a
similar manner to that described in Equation (18).

E = Eb +
(

x
l

)
(Et − Eb), 0 ≤ x ≤ l Case (i) E = Eb +

(
x
φ.l

)
(Em − Eb), 0 ≤ x ≤ φ.l

E = Em +
(

x−φ.l
l−φ.l

)
(Et − Em),φ.l ≤ x ≤ l

Case (ii) and (iii)
(18)
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stiffness variation scenarios and (c) schematic of longitudinal density variation scenarios (i) to (iii).

2.2.3. Effect of Radial Stiffness Variation

To consider the effect of radial stiffness (E) variation on the vibration behaviour, a composite
section was defined with two concentric rings (see Figure 2b). Different stiffness moduli were assigned
to each ring to represent the two different tree strategies (stiff core and stiff outer ring) outlined in the
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literature. The modelling herein assumes the presence of two rings of different radii, with the same area
to represent the outer-wood and core-wood of the tree (i.e., Ao = Ac = 50% of the total area of the base
cross-section). The stiffness of each ring was then varied according to the ratios: Ec/Eo of 10−3, 0.1, 0.25,
0.5, 1 and 1.5. The same density was assumed for both the outer-wood and core-wood. To calculate the
values of first natural frequency parameter (λ), outer-wood properties at the base were used.

2.2.4. Effect of Longitudinal Density Variation

To model the longitudinal density gradients reported in the literature, three cases (see Figure 2c,
(i) to (iii)) were chosen for analysis: (i) density varying linearly from the bottom (ρb) to the top of the
stem (ρt), with ρt/ρb = 0, 0.25, 0.5, 0.75,1 and 1.25, (ii) density decreasing linearly from the bottom (ρb)
to half of the stem height (ρm), followed by a linear increase to the top of the stem (ρt), with φ = 1/2,
ρt/ρb = 0. 5 and ρm/ρb = 0.25, 0.5, 0.75, 1 and 1.25 and (iii) ρt/ρb = 0.5 and ρm/ρb = 0.25 and varying the
position of the gradient change (point m) with L/3, L/2, 2L/3 and 5L/6. In each case, the stiffness (E) has
been held constant, as shown in Equation (19).

ρ = ρb +
(

x
I

)
(ρt − ρb), 0 ≤ x ≤ I Case (i) ρ = ρb +

(
x
φ.I

)
(ρm − ρb), 0 ≤ x ≤ φ.I

ρ = ρm +
( x−φ.I

I−φ.I

)
(ρt − ρm),φ.I ≤ x ≤ I

Case (ii) and (iii)
(19)

2.2.5. Effect of Radial Density Variation

A similar approach to that used for radial stiffness variation was used to model the effect of radial
density (ρ) variation on vibration behaviour. A composite section was defined with two concentric
rings (see Figure 2b). Different densities were assigned to each ring to explore the two different
strategies (light core and heavy outer ring) proposed in the literature. Two rings of different radii were
defined, with the same area to represent the core-wood and outer-wood of the tree (i.e., Ao = Ac = 50%
of the total area of the base cross-section). The density for each ring was then varied according to the
ratios: ρc/ρo of 0, 0.25, 0.5, 1 and 1.25. The same elastic modulus was assumed for both the core-wood
and outer-wood. To calculate the values of first natural frequency parameter (λ), outer-wood properties
at the base were used.

2.2.6. Effect of Crown Mass

The effect of crown mass on the natural frequency was investigated by creating an equivalent
“crown” using an additional mass (Wc) at different locations along the stem (see Figure 3). (i) In the
first case, the additional crown mass was applied to the top of the stem, (ii) in the second, the same
crown-to-stem mass ratios were applied to the upper two-thirds (by volume) of the stem and (iii) in
the third case, they were applied to the upper half (by volume) of the stem. In all cases, we define
different crown-to-stem mass ratios (Wc/Ws) at these particular locations.Forests 2020, 11, x FOR PEER REVIEW 9 of 23 
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2.3. Estimating Natural Frequency for Coniferous and Broadleaved Trees

Fundamental vibrational frequencies (fn) were collated from the literature on field studies of
703 broadleaf and conifer trees growing at different sites and under different conditions, spanning
height and DBH ranges of 5.9–35.4 m and 6.9–82.8 cm, respectively [11,12,15,28,31,48–53]. These field
data were used to validate the tapered cantilever beam model and provide further fundamental
understanding of the sway behaviour of conifer and broadleaf trees. Results from these studies were
used to estimate the natural frequencies and damping ratios of trees with the presence or absence
of foliage, and for full and de-branched crowns, enabling the effects of the crown architecture to
also be assessed. The field sway data covers thirteen different species: (a) conifers—Sitka spruce
(Picea sitchensis), Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), Norway spruce (Picea abies), white
spruce (Picea glauca (Moench) Voss.), Lodgepole pine (Pinus contorta Dougl.), Scots pine (Pinus sylvestris
L.), Corsican pine (Pinus nigra Arnold) and red pine (Pinus resinosa Ait.), and (b) broadleaves—red
maple (Acer rubrum L.), sugar maple (Acer saccharum Marsh.), shagbark hickory (Carya ovata (Mill)
K. Koch), red oak (Quercus rubra L.) and lime (Tilia europaea L.). Data on the stiffness (E), density (ρ),
taper (α) and crown/stem mass ratio (Wc/Ws) were found for each species in the literature and are
summarised in Table 1 (see the Electronic Supplementary Material, Tables S1 and S2). While these
properties can all vary substantially within a species due to genetic and environmental factors, we
only had species-level average values as data for the individual trees were not available. Instead, we
assumed that these properties were normally distributed with a standard deviation that was equal to
5% of the mean value. We then ran 100 simulations of the model to test the sensitivity to variations
in these properties. The data were split into four groups for analysis: (1) conifers with full crowns,
(2) broadleaves with full crowns, (3) debranched conifers and (4) leafless broadleaves. The natural
frequency parameter (λ) was assumed to be 1.5, except for the case of conifers with their branches
removed, when it was assumed to have a value of 2.5. Ordinary least squared regression was used
to investigate the relationship between tree fundamental frequency and DBH/L2. This relationship
was compared among the four analysis groups described above. Due to the limited overlap in values
of DBH/L2 for several of the broadleaved species, it was not possible to test whether this relationship
differed among species. The level of agreement between the predictions from the tapered cantilever
beam model and the field observations of fundamental natural frequency for these groups was assessed
using Lin’s concordance correlation coefficient [54,55].

Table 1. Average values of wood properties (modulus of elasticity of green wood, Eg, and density ρ),
tree taper (α) and the ratio of crown mass to stem mass (Wc/Ws) for each species used in the analysis
to estimate fundamental natural sway frequency. The number of trees (n) for which sway data were
obtained from the literature is also given.

Code Tree Species n Eg (GPa) ρ (kg/m3) Eg/ρ Taper (α) Wc/Ws

CP Corsican pine (Pinus nigra) 57 8.70 657 0.013 0.85 0.34

DF Douglas-fir (Pseudotsuga menziesii) 17 9.83 583 0.017 0.77 0.16

LP Lodgepole pine (Pinus contorta) 40 6.90 487 0.014 0.83 0.33

NS Norway spruce (Picea abies) 32 6.23 598 0.010 0.90 0.32

RP Red pine (Pinus resinosa) 300 8.80 410 0.021 0.81 0.22

SP Scots pine (Pinus sylvestris) 20 7.33 700 0.010 0.90 0.29

SS Sitka spruce (Picea sitchensis) 175 7.53 447 0.017 0.84 0.50

WS White spruce (Picea glauca) 6 7.40 466 0.016 0.91 0.34

Averages 7.77 551 0.015 0.85 0.31
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Table 1. Cont.

Code Tree Species n Eg (GPa) ρ (kg/m3) Eg/ρ Taper (α) Wc/Ws

LT Lime (Tilia europaea) 18 11.7 530 0.022 0.84 0.18

AR Red maple (Acer rubrum) 7 9.6 524 0.018 0.67 0.22

QR Red oak (Quercus rubra) 11 9.9 665 0.015 0.75 0.32

CO Shagbark hickory (Carya ovata) 5 10.8 649 0.017 0.76 0.39

SM Sugar maple (Acer saccharum) 15 10.7 560 0.019 0.79 0.18

Averages 10.54 585.6 0.018 0.76 0.26

3. Results

3.1. Effect of Base Fixity

The relationship between the first natural frequency parameter, λ, and the non-dimensional
rotational stiffness, K’, for tapered (cylindrical) columns is found to be non-linear (Figure 4a). There is
very little increase in natural frequency for large changes in rotational stiffness above a value of K’ = 10.
However, once the non-dimensional rotational stiffness (K’) falls below 10, the natural frequency
begins to drop rapidly. Comparison between our numerical modelling and Blevins’ solutions show
differences of less than 1%. For columns with different rates of taper (α), the variation in first natural
frequency parameter, λ, with the non-dimensional rotational stiffness, K’, is shown in Figure 4b.
The non-dimensional rotational stiffness was varied from K’ = 0.01 (equivalent pinned condition) to
100 (approaching a clamped condition). For more tapered stems, basal rotational restraint had a greater
effect on the natural frequency.
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3.2. Effect of Longitudinal Stiffness Variation

For cylindrical columns with constant E, the first natural frequency parameter, λ, increased with
increasing column taper ratio (α) (Figure 5a–c). With a linear decrease in E from the bottom to the
top of the stem, the natural frequency parameter decreased compared with the case of constant E.
The effect of this change in stiffness was relatively small for cylindrical columns (up to 7%), but more
significant for highly tapered columns (up to 12%) (Figure 4a). This is due to the more rapid changes
in stiffness compared to the sectional area. Under the assumption of a peak in stiffness at half stem
height, the natural frequency increased relative to the uniform E case (up to 17%), with the greatest
increase occurring for the more tapered stems (Figure 4b). Under the case of the varying changepoint
height for E, the largest increases in natural frequency occurred at the lowest change point and for the
most highly tapered stems. However, the magnitude of increase was very similar for all changepoint
heights (up to 10%).
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Figure 5. (a) Taper ratio versus first natural frequency parameter ratio with longitudinal stiffness
variation linearly from the bottom to the top end of the tree (first scenario), (b) taper ratio versus first
natural frequency parameter ratio with longitudinal stiffness variation linearly from the bottom to
one-third of the tree height, followed by a linear variation till the top end of the tree (second scenario)
and (c) taper ratio versus first natural frequency parameter ratio with longitudinal stiffness variation
linearly from the bottom to L’, followed by a linear variation till the top end of the tree (third scenario).
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3.3. Effect of Radial Stiffness Variation

The value of the natural frequency parameter decreased with reducing stiffness ratio
(i.e., outer-wood E > core-wood E), up to 7% for both cylindrical and tapered columns (Figure 6).
According to the model results, the elastic ratio of 10−3 is a lower bound for the behaviour. Beyond this
point, the behaviour of the stem approaches that of a hollow section. For the stiffness ratio of Ec/Eo = 1.5,
an increase in the natural frequency of up to 3% was found.

1 
 

 

Figure 6. Taper ratio versus first natural frequency parameter ratio with radial stiffness variation.

3.4. Effect of Longitudinal Density Variation

For a cylindrical column with no taper, a reduction in density from the base to the top resulted in
an increase in λ (up to 50%) (Figure 7a). The effect of this reduction in density on λ was less significant
for highly tapered columns (up to 40%). This is due to the less rapid changes in mass compared to the
sectional area. For the case of a change in density at the midpoint height of the column, the natural
frequency increases (up to 23%), and this change was more evident for the highly tapered columns
(Figure 7b). Even when the density at the midpoint height was greater than at the base, λ still increased
as we assumed that density at the top of the column was 50% of the value at the base. For the case
where the height of the minimum value varied up the column, the natural frequency increased, and
the largest increase occurred with the highest change point (Figure 7c). However, the magnitude of the
increase was very similar for all the changepoint heights (up to 27%).
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Figure 7. (a) taper ratio versus first natural frequency parameter ratio with longitudinal density
variation linearly from the bottom to the top end of the tree (first scenario), (b) taper ratio versus first
natural frequency parameter ratio with longitudinal density variation linearly from the bottom to the
half of the tree height, followed by a linear variation till the top end of the tree (second scenario) and (c)
taper ratio versus first natural frequency parameter ratio with longitudinal density variation linearly
from the bottom to L’, followed by a linear variation till the top end of the tree (third scenario).

3.5. Effect of Radial Density Variation

The value of the natural frequency parameter decreased with reducing ratio of core-wood density
to outer-wood density ratio, for both cylindrical and tapered columns (Figure 8). According to the
model results, the density ratio of 0 is an upper bound for the behaviour. This condition approaches
that of a weightless core section.
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3.6. Effect of Crown Mass

The natural frequency reduces as the relative crown weight increases (by up to 60%) (Figure 9).
When there is no additional crown mass (i.e., Wc/Ws = 0), taper has a noticeable effect on the natural
frequency parameter. However, as the ratio of crown mass to stem mass increases, the natural frequency
becomes invariant to changes in taper, particularly when the crown mass is added at 2L/3 and L/2
(Figure 9b,c). This suggests that the crown weight is dominating the taper effect to some extent.
However, adding a crown mass to the very top of a tapered column reduces the natural frequency
while increased taper ratio in the absence of a crown mass increases natural frequency (Figure 9a).
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Figure 9. (a) Taper ratio versus first natural frequency parameter ratio with crown mass ratio
(first scenario; the additional crown mass was applied to the top of the stem), (b) taper ratio versus
first natural frequency parameter ratio with crown mass ratio (second scenario; the additional crown
mass was applied to the upper two-thirds (by volume) of the stem) and (c) taper ratio versus first
natural frequency parameter ratio with crown mass ratio (third scenario; the additional crown mass
was applied to the upper half (by volume) of the stem).

3.7. Estimating Natural Frequency for Coniferous and Broadleaved Trees

There was a strong relationship between tree natural frequency and the ratio of diameter at
breast height to total tree height squared (Figure 10). However, the slope of this relationship differed
significantly among the four different categories (p < 0.0001). The slope was lowest for broadleaved
trees with full crown and was steepest for conifers with their branches removed. There was some
indication that the relationship may be non-linear, especially for the broadleaved trees with full crown;
however, this is mostly due to the dataset for lime trees which has several high leverage points
(i.e., trees with high values of DBH/L2 and comparatively low natural frequency). The fundamental
natural frequencies predicted by the model proposed in this paper were in general agreement with
field observations for conifers with full crown (concordance correlation coefficient = 0.79) (Figure 11).
The model overpredicted the natural frequencies of coniferous trees with their branches removed and
had much poorer performance for broadleaved trees, particularly those with full crown (concordance
correlation coefficient < 0.3). This latter result was mostly driven by the dataset for lime trees where
there was a weak relationship between tree natural frequency and DBH/L2. With the exception of these
data, all the simulations produced results that were in general agreement with field observations.
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4. Discussion

As well as the stem geometry and material properties, the crown and branch architecture has
been shown to influence the sway frequency, damping and dynamic amplification factor of trees under
dynamic loading [15,22,25,32]. The crown shape of trees can vary according to the species and is due
to a combination of the inherent form and their growth environment. McCurdy el al. [56] identified six
distinct crown shapes: oblong, round, oval, vase, pyramidal and weeping. In forest settings, crown
shape is often influenced by tree position relative to other trees in the canopy (although the basic
shape is characteristic for all species). The primary factor determining these characteristic crown
shapes is apical (epinastic) dominance (i.e., the upward growth of a leader at the expense of the lateral
shoots) [57]. Tree species with strong apical dominance usually have height to width dominance and a
single dominating trunk and leader. Examples of tree species of this type are sweet gum (Liquidambar
styraciflua L.), Yellow tulip poplar (Liriodendron tulipifera L.), cottonwoods (Populus section Aigeiros),
alders (Alnus spp.) and most conifers. These are termed excurrent crowns and favour oblong and
pyramidal shapes [58]. In contrast, decurrent trees with weak apical dominance have crown widths
that grow nearly as fast as their height (especially when open-grown) and this creates large spreading
crowns. These species tend to have no predominant leader and can have similar multiple forks in the
central trunk. These trees have crowns that tend to favour round or oval shapes and typical species are
broadleaf trees such as oaks (Quercus spp.) and maples (Acer spp.) [58].

The tapered cantilever beam sway model proposed in this study adequately predicts the natural
frequency for conifers, but not for broadleaves. As other researchers have found, excurrent trees have
natural frequencies which are proportional to the product of DBH/L2 [11,32]. Interestingly, the presence
of a crown seems to reduce the natural frequency and improves the fit of the model compared with the
situation where the model is applied to a stem with the crown removed. Broadleaves tend to have a
more complex geometry, with multiple close natural frequencies and are therefore more dependent
on the branch/crown architecture and presence of leaves [17,32,53]. For the broadleaves with crowns,
the model fit is generally quite poor, and as would be anticipated, this improves with the removal of
the leaf mass. As occurs with excurrent trees, the natural frequency of decurrent trees also reduces
with the removal of the leaf mass from the crown, although this change is relatively small compared to
that for excurrent trees. These findings are supported by field studies [8,11,15,28], where pruning and
seasonal changes have more profound effects on excurrent trees. The change in natural frequency with
pruning have mostly been associated with mass change, but numerical studies by Kerzenmacher and
Gardiner [19] showed that mass change alone could not completely account for the change in natural
frequency, as trees went from a fully-branched state to a de-branched state. They hypothesized that
branch swaying also had an effect on overall dynamic behaviour of trees.

In decurrent trees, the branch sway has much greater importance with relation to the natural
frequency [53], leading to the divergence from the proposed mechanical sway model. The distribution
of mass in conifers is also quite different, with a greater proportion of mass in the upper half of the
crown, compared to broadleaves with a more distributed branch mass. Broadleaves may also have
what is known as multiple resonance damping [17,24]. Transfer of mechanical energy can occur due
to the overlap of the resonance spectra of the large branch structures, which increases the structural
damping. The frequency of these large branches can be close to the natural frequency of the entire tree
and the action of the primary and higher-order branches therefore combine to produce the overall
sway response [59–61]. The energy exchange between these different branches is related to their
amplitudes, frequencies and the phase relations, and this creates a coupled damped oscillation system
with characteristics very different from the proposed tapered cantilever beam model. It may be feasible
that the simpler pendulum response and crown architecture of excurrent trees may make them more
vulnerable to dynamic wind damage and higher wind-induced forces.

Previous studies modelling tree dynamic behaviour have generally assumed uniform wood
properties in both the radial and longitudinal directions [19,25,50]. However, this ignores the typical
patterns that are observed in practice. In many wood science studies, radial and longitudinal patterns
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of wood density and stiffness are measured, typically at a standard moisture content [33,43–45].
In standing trees, these gradients may differ due to moisture content differences between sapwood and
heartwood. In our simulations, we accounted for both moisture content differences and gradients in
wood properties through varying the ratio of core-wood and outer-wood properties and incorporating
different longitudinal gradients. These encompassed the full range of patterns that are expected to
exist in nature. Our results showed that varying the internal wood properties’ distributions has a
significant effect on tree dynamic behaviour. As expected, placing the stiffer material on the periphery
of the stem increases natural frequency as this material is located further from the neutral axis of the
stem. While the application of the model to predict natural frequencies of conifers and broadleaves
trees used published values of wood density and modulus of elasticity from wood science literature,
there is large variation in these properties among individuals within a species and across geographical
gradients [45,62,63]. Differences in values of density-specific stiffness (E/ρ) may explain some of the
differences between observed and predicted fundamental natural frequencies.

The proposed model also enabled the effect of base fixity on natural frequency to be accounted for.
Previous studies that have used the equations of motion for a taper cantilever beam as the basis to study
tree oscillations have either assumed the tree to be rigidly anchored and adjusted the effective stem
stiffness or represented the whole root–stem system as a spring with a given rotational stiffness. This is
because there is a significant body of study is available for the vibration analysis of fixed base-free end
columns. Much less work has been done on columns with reduced basal rotational restraint. This is a
situation encountered in civil engineering for columns connecting to foundations with relatively ‘soft’
bases and electro-mechanics where nanostructures are fixed to elastic substrates. This problem has
been modelled by introducing rotational spring restraint in place of the fixed (clamped) column base
condition. For trees, this represents a scenario where the rotational restraint of the root plate is relatively
low, e.g., from loss of soil, reduced soil strength/stiffness or root damage [64]. The effect of changing
the root system stiffness may be approximately assessed by inspection of the classical equation for
rotational stiffness (K) of a rigid circular plate located on the surface of an elastic half-space [65]:

K =
8GR3

3(1− ν)
(20)

where G is the composite shear modulus of the soil and roots, R is the radius of the root plate and ν is
the Poisson’s ratio of the soil and roots. This model is often applied to foundation problems, but in
the current case, G and ν are related to the composite behaviour of the soil and roots in the root plate.
This suggests that quite significant changes in soil packing (density) or moisture content are required
for the rotational root plate stiffness to affect the vibration behaviour, particularly for trees with high
taper ratios.

Overall, the modelling approach employed here has enabled the relative effect of variation in tree
taper, internal wood properties, crown mass distribution and the base fixity on tree dynamic behaviour
to be investigated. It provides an important advancement over earlier models that make much simpler
assumptions for these factors and enables the various biomechanical strategies employed by trees to
be investigated. Although the proposed model appears to predict the behaviour of conifers adequately,
modelling the mechanical behaviour of broadleaved trees can still be undertaken using the finite
element method, but will require a more detailed description of the tree topology. New technologies
such as terrestrial laser scanning systems provide a means for capturing the data required to generate
realistic descriptions of tree architecture and the resulting mass and stiffness distributions needed to
predict their dynamic behaviour [32].

5. Conclusions

Finite element-based vibration analysis was used to investigate the behaviour of free end–fixed
base columns. A non-prismatic elastic circular column of height L was analysed, taking self-weight
into account. Various scenarios were considered: column taper, base fixity, stiffness (E) and density (ρ)
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variation along the height and cross-section, and crown mass. The effect on the sway natural frequency
was assessed in each case. Validation against benchmark problems was conducted satisfactorily.
The results indicate that column taper, base fixity, ellipticity and E/ρ ratio are particularly important for
this problem. Comparison with published literature results from actual field-based tree swaying tests
shows that the model is able to adequately represent the behaviour of conifer trees but is less suited to
broadleaved trees with their more complex architecture. Due to the simple presentation, use of the
results contained in the paper should improve estimates of natural frequency for trees and allow more
subtle characterisation and understanding of the problem.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4907/11/9/915/s1:
Supplement 1: Sources of information on wood properties, tree mass and taper values used to predict tree sway
frequencies (Tables S1 and S2).
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