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Abstract: (1) Background: Early research in natural forests on decennia implanted conviction concerning
the patchy patterns of their structural heterogeneity. Due to the variety of methodological approaches
applied, verification of this fundamental assumption remains open. The aim of this study was to
discuss the methodological limitations associated with the use of moving windows with overlap for
the delineation of homogeneous patch mosaics in forest ecosystems. (2) Methods: The “patchiness”
hypothesis was tested in six old-growth forests formed by Abies alba Mill., Fagus sylvatica L., and
Picea abies (L.) H. Karst. localized in Bosnia and Herzegovina and southern Poland. In each stand,
the tree diameter at breast height (dbh) was recorded on circular sample plots of 154 m2 regularly
distributed in a 20 × 20 m lattice over an area of 10 ha. (3) Results: Computer simulations showed that
patch classification based on overlapping windows results in apparent patchiness, even for completely
randomized tree distributions. Analyses carried out on the empirical data indicated prevalent random
patterns of structural heterogeneity. (4) Conclusions: Patchiness is not a universal feature of the
investigated forest communities. The size of the moving window and the noise-smoothing procedure
exert strong effects on the biasedness of patch classification, the frequency of structural types, and the
mean patch size.

Keywords: patch mosaic; developmental cycle; steady-state conditions; spatial pattern; structural
diversity; multiaged forests

1. Introduction

The spatial patterns of plant communities are valuable sources of knowledge of the
disturbance history, intraspecific competition, and mechanisms of species coexistence [1–3],
although the extent to which these processes may be uncovered by analysis has been a
subject of debate in ecology for many years [4]. In forest ecosystems, the processes of tree
maturation and growth, senescence, renewal, and disturbances create spatial structural
heterogeneity and constitute the life cycle of forests [5,6]. Analysis of the spatial distribution
of young tree cohorts in relation to dead or live overstory trees can provide valuable
information on generation replacement patterns [7–10] and resilience mechanisms [11–13],
which are still poorly understood in ecosystems driven by natural dynamics and climate
change [14].

Since the pioneering study by Watt [5], the spatial relations between trees representing
different size or age cohorts are frequently generalized and depicted in the form of a
spatially explicit patch-mosaic model [15–24]. A central idea inherent to this concept is that
the locations of trees and/or their attributes (e.g., size, age, and species) are distributed not
purely randomly but are subjected to systematic spatial segregation by ecological processes
linked in space and time. The deterministic associations between growth and competition-
dependent mortality, growth and unavoidable senescence, and senescence and renewal
generate patch-mosaic patterns (patchiness), that is, nonrandom spatial ordering of tree
distributions, which manifests in the repulsion or aggregation of tree locations and/or
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spatial dependence between tree attributes. Although the details of patch classification
systems proposed in the literature differ, a general framework involves division into struc-
tural types distinguished by the quantitative frequencies of young, mature, or senescent
veteran trees [15–17,19,25,26].

The seminal papers by Leibundgut [15] and Korpeĺ [16] based on the subjective
delineation of patch-mosaic patterns in the natural montane forests of the Balkans and
Carpathians caused the concept of spatially explicit developmental stages (phases) of
decennia to become in Europe a leading paradigm describing the dynamics of forest
communities formed by shade-tolerant species. Intuitive and attractive due to its theoretical
elegance, the assumption of patchy patterns of structural stand heterogeneity was not
explicitly tested in these early studies. The development of refined numerical methods
dedicated to the analyses of spatial patterns [27–30] and efforts undertaken to collect
extensive empirical data in natural forests brought new knowledge to the topic. However,
the picture that arises from these newer studies, even when they concern similar site
conditions and forest communities, is not coherent and evokes deepening controversy.

On the one side, there is a growing body of literature that indicates that among live and
dead canopy trees, the decisive factors affecting the spatial biomass distribution dominate
close-to-random distribution patterns, and a major nonrandom component is aggregated
patterns of young tree cohorts; however, these dissipate rapidly with increasing sizes of
young trees and competition from the overstory [31–35]. From this point of view, close-to-
random structural heterogeneity results from the overlap of a variety of ecological processes
including external disturbances, which may act in opposite directions and on diverse
spatial and temporal scales, disrupting the ontogenetic sequence of maturing–senescence–
renewal, even in small stand fragments. Thus, such findings question the presence of
patchiness being understood as the nonrandom spatial ordering of tree locations and/or
their attributes and therefore impair the patch-mosaic paradigm. It remains symptomatic
that results of this kind are reported mostly by studies concerned with the lowest level of
stand structure organization; that is, they are based on single tree-oriented analyses that
consider the forest structure as the realization of a spatially marked point process [36].

On the other hand, research focused on the structural attributes of tree collectives
and patch classification is accumulating [17–19,22,24]. Characterizing patchiness requires
the explicit delineation of patches. In recent years, a methodology for the delineation of
structural types based on the moving windows segmentation that is well known from
computer graphics and image processing procedures [37]. In this technique [22], a window
of a defined size and shape is moved over a stand, and all trees located within the window
section are used to classify the kernel cell of the window into a given structural type
according to a predefined classification protocol. Then, noise-smoothing techniques are
used to obtain an easy-to-interpret two-dimensional model of the distribution of structural
types. In contrast to methods using direct analyses of spatial tree distributions, moving
window segmentation is based on the classification of tree collectives within the window
sections. The smoothed raster models obtained by this approach usually reveal clear-cut
patchy patterns and are interpreted as evidence of structural patchiness in the investi-
gated forest ecosystems [22,38]. Thus, the results obtained using methods based on the
classification of tree collectives and on the direct analysis of spatial patterns of tree distri-
butions conducted under similar site conditions and forest communities frequently lead to
contrasting findings.

It seems that the main source of the discrepancy between these two approaches is the
different definitions of the term patchiness. While in the first, it is used sensu stricto as spatial
segregation to express a nonrandom distribution (aggregated or regular) of tree locations
and/or a nonrandom labeling of the locations by a given tree attribute (e.g., size, age, and
species), in the second, it is extended to include any spatial structural variation, no matter
whether this variation has random or nonrandom character. However, this distinction is
not irrelevant. It is noteworthy that patchiness sensu largo has acquired a broad, blank
meaning because spatial structural variation occurs in all tree populations, except in cases



Forests 2021, 12, 96 3 of 24

in which all individuals have the same size and are regularly distributed in the space. In
contrast, patchiness sensu stricto has a subtler functional sense and links structural stand
heterogeneity with the spatial pattern of the developmental pathways of the individual
trees. Specifically, this definition introduces a distinction between a “random forest” in
which the only level of forest structural organization is formed by individual trees with their
unique surroundings and individual development pathways and a “patch-mosaic forest”
in which the patches constitute a higher level of forest structural organization defined by
the synchronization of developmental trajectories and similar growth patterns of trees
representing the same age cohorts within the patches. While in a “random forest”, the
structural attributes of forest fragments alternate randomly in space within the boundaries
determined by stand-level characteristics, in a “patch-mosaic” forest, they show clear
spatial dependence.

The different understanding of the term patchiness has also its methodological conse-
quences. In particular, research focused on patch classification are usually purely explo-
rative, and to my best knowledge there is a lack of papers referring to temperate forests
formed by shade-tolerant species that involve statistical inference to evidence that the
frequency and spatial ordering of the predefined structural types (phases) indeed differ
from these expected for completely random tree distributions. Moreover, the segmentation
with overlapping moving windows used for patch delineation artificially generates patchi-
ness itself, and results obtained by this way are difficult to interpret. Therefore, a sound
debate is needed to avoid misunderstanding of the patchiness concept and to develop
sound methods focused on tree collectives and capable of distinguishing between random
structural heterogeneity and patchiness sensu stricto.

The present study has three objectives relevant to this debate. The first is to discuss
consequences of using sliding window segmentation for the analysis of structural hetero-
geneity in multiaged forests. Specifically, the study shows the effects of the moving window
size and pattern-smoothing techniques on the frequency, mean patch size, and selected
summarizing statistics (basal area, stem density, diameters at breast height (dbh) differenti-
ation) of spatial units representing predefined structural types. The second objective is to
evidence that the procedure of moving windows with overlap generates intrinsic autocor-
relation, which may lead to misinterpretation of the original random patterns (patchiness
sensu largo) as patch mosaics (patchiness sensu stricto). The third objective was to test
whether the empirical patterns of structural heterogeneity correspond with the concept of
patchiness sensu stricto. In this part, the data from six old-growth Abies-Picea-Fagus forests
were analyzed using a robust methodology based on the classification of tree collectives
obtained from spatially independent (non-overlapping) samples.

2. Materials and Methods
2.1. Patch Classification

The term “patch” used through this paper is defined as an integral forest fragment
with explicitly determined boundaries, which represents a given type of forest structure
(phase). The boundaries of the stand patches were delineated using the moving window
technique, or, in the part of this study based on empirical data, were explicitly linked with
the sample plots. The basic structural criteria used for the patch classification were (1) the
local biomass accumulation (herein expressed as the local basal area), (2) the differentiation
of tree diameters at breast height (dbh), and (3) the proportion of the local basal area
fallen relative to trees of young and mature tree generations. These generations were
distinguished based on the stand-level median basal area tree diameter, i.e., the dbh, which
divides the cumulative basal areas of trees ordered according to ascending or descending
dbh into two equal parts. The trees with dbh values lesser or greater than this reference
dbh were regarded as young or mature generations, respectively.

Structural differentiation in the stand patches was expressed as the ratio of the em-
pirical dbh variance to a hypothetical variance of the uniform dbh distribution with a
predefined lower and upper bound [39]. To put more emphasis on the dbh differentiation
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among subcanopy trees, which strongly contributes to vertical stand heterogeneity, instead
of the dbh, the natural logarithm of this characteristic was used. The ratio, hereafter termed
the index of dbh differentiation (Id), was calculated as

Id =
S2

E
S2

U
, (1)

where S2
E is the empirical variance of the logarithm of the tree dbh and S2

U = (ln dbhmax−
ln dbhmin)2/12 is the theoretical variance of the uniform dbh distribution bounded by the
minimal and maximal values dbhmin and dbhmax, respectively. The values 7 and 60 cm
were assumed as the lower and upper bounds, and in the calculation of the Id index
empirical variance S2

E, the dbh values of all the trees larger than dbhmax were replaced
by the value of 60 cm. This transformation was motivated by the need to construct a
dbh-based measure that more strongly corresponds to the vertical structural differentiation
than to the absolute dbh variation. Depending on the species and site, in the study region,
trees with a dbh of approximately 60 cm attain an average height of 32–35 m. This seems
to be a sufficient qualification by which to regard them as individuals from the overstory,
considering the average heights for maximal tree dbh classes as being in the range between
42 and 47 m. Thus, the cooccurrence of trees with dbh ≥ 60 cm with other under- and
midstory individuals provides a satisfying condition for the assignment of such a forest
patch to a multistory, plenter-like type of forest structure. In general, the Id index attains
low values for tree collectives with low dbh differentiation, which are values considerably
greater than 1 for bimodal dbh distributions, and intermediate values for tree collectives
with high dbh differentiation, and the overrepresentation of small trees compared to the
uniform distribution. For dbh distributions defined by a geometric sequence

ni = n1q(i−1),

where ni denotes the stem density in the ith dbh class. In the formula, q is the common ratio,
q coefficient values are between 0.7 and 0.9 (for a dbh class width of 4 cm), and basal areas
are between 35 and 40 m2 ha−1, which are a set of values typical for balanced plenter-like
structures and single-tree selection forests in Central Europe, the Id values are in the range
between 0.7 and 1.1.

The classification protocol used in this study distinguishes four types of stand struc-
tures (phases): culmination (CU), early accumulation (EA), late accumulation (LA), and
steady-state phase (SS) (Figure 1). The patches with the highest basal areas of live trees (here,
within the upper quartile of this characteristics) were grouped into the culmination phase.
Thus, this phase groups stand patches with the highest proportion of large diameter trees.
The absolute value of the upper quartile is scale-dependent, and prior to patch classifica-
tion, it was determined from empirical data (case studies in the Carpathians and Dinaric
Mts.) or simulations (in simulation studies). In the latter case, the randomization of tree
locations in the subsequent simulations causes the effect in which even for a fixed threshold
value of the local basal area, the frequency of patch assignment to the culmination phase
fluctuates. By analogy to the concept of dbh equilibrium well-known from single-tree
selection forests, the criteria for the steady-state phase were (1) dbh differentiation typical
of plenter-like structures and (2) a moderate basal area level. Specifically, the steady-state
phase was assigned when the basal area of live trees was equal to or lower than the overall
stand-level average and the Id index value was between 0.7 and 1.1. Such a definition
warrants that for an ecosystem in a state of dynamic equilibrium (which manifests in
insignificant fluctuations in the dbh distribution, biomass level, and species composition
over time), increasing spatial scale of analysis will result in an increasing proportion of the
steady-state phase. The late accumulation or early accumulation phases were represented by
patches that fulfilled the criteria of neither the culmination nor steady-state phase and had
a majority of trees representing old or young tree generations (i.e., those with dbh greater
than or smaller than the stand-level median basal area tree diameter) in the local basal
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area (Figure 1). It is assumed that all the threshold values used in the classification, i.e.,
the average and the upper quartile of the basal area of live trees and the median basal area
dbh, are determined for an ecosystem in a state of dynamic equilibrium on a sufficiently
large area to minimize scale-dependent fluctuations.

Figure 1. Scheme of the patch classification used in this study. BA(i)—local basal area in the ith
stand patch, BA75—75th percentile of the local basal area as estimated by sampling, BAss—threshold
maximal basal area for the steady-state phase, Id(i)—index of diameters at breast height (dbh) differ-
entiation in the ith stand patch, BAY(i)—total basal area of all the trees within the ith stand patch with
a dbh lower than the median basal area tree diameter (dbhBA).

2.2. Simulation Study

In the part of this study based on simulations, the same model stand was used. The
dbh distribution was obtained as a geometric sequence (de Liocourt’s distribution) with the
parameters (minimal dbh = 7 cm, n1 = 95 stems per ha, and q = 0.811 for 4 cm-width dbh
classes) fit to yield a stand basal area of 37 m2 ha−1 and stem density of 500 ha−1, i.e., the
values approximately corresponding with the empirical parameters found in old-growth
stands in the Western Carpathians [35]. In the first step, simulation tests were performed to
demonstrate the effect of the size of the filter used in the moving window procedure on the
patch classification outcomes. In subsequent simulations (n = 100), the trees representing
the model stand were randomly distributed within a plot of 100 m × 100 m, and the
marked point patterns obtained (i.e., tree locations labeled with dbh) were subjected to
classification into culmination, early accumulation, late accumulation, and steady-state
phases, as defined in the classification protocol (Figure 1). In the classification procedure,
circular moving windows with diameters of 10, 15, . . . , 35 m and a moving distance
of 1 m were applied. Edge effects were avoided by using toroidal shifts [28]. For each
window diameter variant, 95% envelopes for the phase frequencies, mean patch size, and
selected summarizing statistics (basal area, stem density, and index of dbh differentiation)
were determined. As a result of the strongly skewed patch size distributions with high
frequencies of fine patches, the phase-specific mean patch size sj was calculated as a
weighted average

sj =
∑n

i=1 wijsij

∑n
i=1 wij

, (2)

where the summation was conducted over all identified patches and weights wij (∑ wij = 1)
to represent the proportion of the stand area occupied by the ith patch of the jth type (phase)
and an area sij.
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In the second step, the original raster models of patch classification (100 × 100 cells)
were subjected to noise smoothing by using a majority filter with kernels of 3 × 3, 5 × 5,
or 7 × 7 cells. Before replacement in the filtered pattern can occur, the majority filter
must satisfy two criteria: (1) the number of neighboring cells of the same value must be
the majority of all the cells within a kernel of defined size, and (2) those cells must be
contiguous about the center of the filter kernel to minimize the corruption of the cellular
spatial patterns. In the simulations (n = 100), for each single cell (1 × 1 m), the structural
type (phase) was assigned based on the tree collectives located within the window section,
and then a few runs of the majority filter were conducted until the output raster was
stabilized (no further changes occurred), and a smoothed pattern was obtained. Then, 95%
simulation envelopes for the phase frequencies, mean patch size, and selected summarizing
statistics (dbh distribution, basal area, stem density, and index of dbh differentiation) were
determined for the individual phases and compared between the original and filtered
(smoothed) patterns.

The third simulation experiment was programmed to illustrate that the moving
windows with overlap applied for random spatial patterns of tree distribution artificially
generated spatial dependence of phase distributions (patchiness). The intensity of the
overlap was defined as the ratio of the window diameter to the moving distance. Under
this formulation, the neighboring moving windows did not contain common trees for the
ratio equal to 1, and the proportion of shared trees increased for the ratio values greater
than 1. In the subsequent simulations (n = 100), random tree distributions of the model
stand were generated on a 100 m × 100 m plot (10,000 cells). Then, the patch classification
(window size = 15 m) and, as additional variants, smoothing procedures with the kernel
sizes of 3 × 3, 5 × 5, or 7 × 7 cells were performed. Within the plot, the cells were selected
in a square lattice to produce window diameter: moving distance ratios between 0.5 and
4.0, and the classification outputs for these cells were recorded. Finally, for each overlap
ratio and smoothing variant, the proportion of positive indications of spatial dependence
(i.e., significant departures from the null hypothesis assuming random labeling of the
sample plots with phase qualifiers) was compared. As a measure of spatial dependence,
the mark connection function was used [40], which, here, determines the probability that a
randomly selected pair of sample plots located at most r distance units apart represent the
same phase:

p(r) = Nr
−1 ∑Nr

i=1 nr. (3)

In the formula Nr denotes the number of all distinct pairs located at most r distance
units apart, maximal r is 50 m, and nr equals 1 when the sample plots belong to the same
phase and 0 otherwise. A Monte Carlo procedure based on 10,000 simulations was applied
to test the significance of the departures from the null hypothesis, assuming random
labeling. The overall intensity of the positive spatial dependence was expressed as the
average positive deviation

k−1
r ∑[p(r)− Er][Ur − Er]

−1, (4)

where the summation is applied over kr, the number of all distance units r so that p(r) > Ur,
Ur is the upper simulation envelope, and Er is the mean value of p(r) for random labeling.
All the computations were programmed by the author in the Visual Basic for Applications
programming language (VBA).

2.3. Randomness vs. Patchiness—Empirical Examples

The empirical data used herein originated from six strict reserves located in the Dinaric
Mountains (Janj, Lom, and Perućica) and Western Carpathians (Baniska, Oszast, and
Żarnówka) (Table 1). The strict reserves selected for this study are relic, old-growth forests
of the lower montane belt in Europe formed by silver fir Abies alba Mill., European beech
Fagus sylvatica L., and Norway spruce Picea abies (L.) H. Karst with no documented history
of past forest management. The term “old-growth forests” is used here to underscore
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that the core zones of the reserves bear no signs of direct human activity (stumps, cut
trees, logging trails, under-planting, simplified vertical stand structure). Nevertheless,
plunder-like cuttings of single trees may have occurred in the past. The Janj, Lom, and
Perućica reserves have been officially strictly protected since the 1950s, but there is also
evidence that strict nature protection in these areas goes back to the 19th century during
the Austro-Hungarian Empire [41]. Although the periods of formal strict protection differ
in the Baniska, Oszast, and Żarnówka reserves (Table 1), this factor cannot be treated as a
measure of the human impact on stand dynamics. In all the reserves, the primary reason
for protection was the high level of preservation of natural stands, which was probably
stemming from terrain inaccessibility, past patterns of extensive forest land utilization,
and the economic infeasibility of logging. The study stands certainly belong to the best
maintained mixed-species forests in the Dinaric Mts. and Western Carpathians [42].

Table 1. Site characteristics of the studied stands.

Characteristics JA LO PE BA BG OS

Location Dinaric Mts (Bosnia and Herzegovina) Western Carpathians (Poland)
Reserve Janj Lom Perućica Baniska Żarnówka Oszast

Coordinates 44◦08′ N
17◦18′ E

44◦27′ N
16◦29′ E

43◦18′ N
18◦43′ E

49º27′ N
20º37′ E

49º35′ N
19º33′ E

49◦25′ N
19◦11′ E

Altitude
(m a.s.l.)

1260
–1400

1280
–1360

1420
–1480

900
–1050

930
–1020

1020
–1080

Exposure W NE SW NW N NW
Inclination (º) 0–10 10–25 10–20 10–20 10–20 15–25

Bedrock Dolomites Limestones Limestones Flysch Flysch Flysch

Soils Cambisols
Rendzinas

Cambisols
Chernozems

Luvisols
Cambisols Cambisols Cambisols Cambisols

Formal protection
since (year) 1951 1956 1952 1916 1936 1971

The Dinaric Mountains harbor one of the most volume-rich mountain primeval forests
on the continent, with growing stocks commonly exceeding 1000 m3 per ha. In contrast, in
the Western Carpathians, which are the northernmost region of occurrence of such forests,
average stand volumes are only half of those reported in the Balkans, which probably is
attributable to a more a severe disturbance regime in this region [43]. Thus, the study
sites selected for this research characterize a possibly wide range of climatic conditions
and disturbance regimes in which the remnants of the former pristine fir–beech–spruce
forests still can be found. Data on the location, site conditions, and protection history are
summarized in Table 1.

In each of the reserves, one close-to-rectangular research area of approximately 10 ha
in size with a minimal length of the narrower side of 160 m was established. The fragments
selected for the survey were as homogeneous as possible in terms of site conditions, species
composition, and terrain orography and showed no signs of direct human activity. In each
research area, between 237 and 259 circular sample plots with a radius of 7 m were localized
in a regular lattice of 20 m× 20 m. The dbh and species of all live trees with dbh≥ 7 cm were
registered on the sample plots. In this spatial scale, the mean stem densities were between
4.4 and 10.4 and the 10th percentiles were between 2 and 5 trees, which provided a sufficient
basis for the classification of the structural types (phases). On the other hand, the diameter
of the sample plots (14.0 m) was considerably larger than the nearest-neighbor distances
among trees classified into the old generation (i.e., with dbh greater than the stand-specific
median basal area tree diameter) assuming their random distribution (7.5−9.2 m), and close
to the nearest-neighbor distance for a hexagonal distribution, i.e., the maximal packing
of such trees (14.4−17.6 m). Considering that the crown radii of average canopy trees are
less than the radius of the sampling plots, even for very regular distribution patterns, the
sampling design warranted the identification of hot spots for generation replacement—that
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is, stand fragments without trees representing the old generation. Table 2 contains the basic
stand characteristics and stand-specific reference values used in the patch classification
(Figure 1)—that is, BA75, BAss, and dbhBA. Insignificant variation of the reference values
within the geographic regions (i.e., Dinaric Mts and Western Carpathians) suggests that they
provide reliable estimates for hypothetical steady-state conditions. The dbh distributions
and selected characteristics of spatial tree distributions in the studied stands (e.g., the
randomness and independence of the distribution across tree size categories and the spatial
variation of the basal area and dbh differentiation) were published formerly [35,43,44].

Table 2. Basic characteristics and stand-level threshold values used in the phase classification protocol in six old-growth
forests in the Dinaric Mountains and Western Carpathians.

Characteristics JA LO PE BA BG OS

Sample plots 244 255 256 237 259 255
Stem density Total N ha−1 569 532 430 682 288 464

Abies % 16 27 63 13 16 4
Fagus % 72 55 32 84 65 80
Picea % 12 18 5 3 19 16

Basal area Total m2 ha−1 65.9 56.8 65.2 37.1 36.1 36.7
Abies % 45 37 54 33 29 11
Fagus % 19 31 38 64 45 39
Picea % 36 32 8 3 26 50

Volume m3 ha−1 1004 903 1134 478 522 574
Id - 1.67 1.89 1.26 1.10 1.72 1.09

BA75 m2 ha−1 80.6 70.2 82.6 44.3 49.2 48.8
BAss m2 ha−1 65.9 56.8 65.2 37.1 36.1 36.6

dbhBA cm 77 69 69 57 65 61

Notes: Id—dbh differentiation index calculated for the entire stand (see Methods), BA75—75th percentile of the stand basal area (determined
on circular plots 154 m2), BAss—threshold maximal basal area for the steady-state phase, dbhBA—median basal area tree diameter.

The underlying null hypothesis of random patterns of structural heterogeneity was
divided into two hierarchical components: (1) the random assignment of tree dbh to the
sample plots and (2) the spatial independence of the distribution of the sample plots
representing given structural types (phases). In the first case, the original tree counts on the
sample plots were maintained, the trees were randomly assigned to the sample plots, and
the sample plots were classified according to the rules defined above. Based on subsequent
simulations (n = 10,000), 95% envelopes for the phase frequencies were constructed and
compared with the classification outputs based on the empirical sets. Thus, the empirical
values lying above/below the simulation envelopes indicate the over/underrepresentation
of a given phase compared to the frequency expected for the random assignment.

In the case of testing the spatial independence of the phase distribution, in the simula-
tions, the sample plots were randomly labeled with phase qualifiers (n = 10,000 simulations),
and 95% envelopes for the statistics based on the mark connection function p(r) defined
above were constructed and compared with the empirical data. In this case, empirical
values greater than the upper simulation envelopes indicated a positive spatial correlation
(aggregation = patchiness), and values lower than the lower envelopes indicated a negative
spatial correlation of the phase distribution (segregation = intermingling stronger than ex-
pected from random labeling). The tests were performed for all the phases pooled together
(null hypothesis: spatial independence of the phase distribution) and separately for each
phase (null hypothesis: spatial independence of the distribution of a given phase). In this
latter case, the subsequent tests were not independent (e.g., the aggregation of one phase
involves the apparent aggregation of the other). To avoid this linkage, a stepwise procedure
was applied. First, the phase showing the largest significant departure from the random
labeling hypothesis was found. In subsequent simulations, the labeling of the sample plots
representing this phase was preserved but carried out randomly for other plots.
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3. Results
3.1. Effect of the Moving Window Size

Applying the technique of the moving windows with overlap (i.e., the moving distance
is smaller than the window diameter) for the classification of tree collectives assembled by
chance (based on random tree distributions) produced patch-mosaic patterns with clear
aggregation of the classification outputs. The moving window diameter had a substantial
effect on the patch-mosaic pattern (Figure 2). A general trend was that with increasing
window sizes, the patterns changed from fine- to coarse-grained. This tendency emerged
for all the phases except for the early accumulation phase in which the average patch area
decreased with increasing window diameters (Figures 2 and 3). When the window size
was ≤15 m, the largest patches formed the early accumulation phase, but for larger filter
sizes, the aggregations of the steady-state phase dominated. Increasing window diameters
strongly increased the absolute variation of the average patch area for the steady-state
phase and decreased it for the early accumulation phase (Figure 3).

Figure 2. Raster models of patch classification dependent on the moving window size (original
classification without smoothing). The classification outputs were assigned to the center cells of
the sliding circular windows with diameters of 10 (a), 15 (b), 25 (c), and 35 m (d) and the moving
distance of 1 m. The points represent randomly distributed trees in the model stand: stem density of
500 ha−1, basal area of 37 m2 ha−1, a negative exponential dbh distribution, and dbh range between
7 and 90 cm. The point size is proportional to the tree dbh.
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Figure 3. Mean size (a) and frequency (b) of the patches assigned to the early accumulation (EA), late
accumulation (LA), culmination (CU), and steady-state (SS) phases, depending on the diameter of the
moving window (range 10–35 m). The bars, boxes, and whiskers illustrate the median, interquartile
range, and 5th and 95th percentile values obtained from 100 simulations of random tree distributions
in the model stand (see Figure 2). Note the break on the Y-axis in the upper panel (a).

The spatial scale of the neighborhood considered in the classification procedure also
strongly influenced the proportions of the area assigned to the structural types (Figure 3).
This effect was particularly noticeable in the case of the early accumulation and steady-state
phases and less evident in the late accumulation phase. The frequency of the culmination
phase remained insensitive, because the fixed value of the local basal area was predefined
as a minimal threshold in the classification protocol. The dominant tendency was that
the early accumulation phase strongly diminishes and the steady-state phase increases
its proportion with the increase in the window diameter. Increasing window diameters
tended to increase the absolute variation in the frequencies of the culmination and late
accumulation phases but not of the early accumulation and steady-state phases (Figure 3).

The window diameter affected also the variation in the basal area, stem density, and
dbh differentiation between the phases (Figure 4). Except for the smallest filter (10 m),
the general tendency was that the between-phase variation diminished with increasing
window diameters. Particularly scale-sensitive were the basal area of the culmination and
early accumulation phases and the dbh differentiation of the early accumulation phase. The
diverging behavior of the summarizing characteristics for the smallest window diameter
(10 m) was attributable to differences in variable distributions, which, in opposition to
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the bell-shaped forms found for larger filters, in this case, was truncated at low values of
the variables.

Figure 4. Basal area (a), stem density (b), and index of structural differentiation (c) in the stand
patches assigned to the early accumulation (EA), late accumulation (LA), culmination (CU), and
steady-state (SS) phases, depending on the diameter of the moving window (range 10–35 m). The
bars, boxes, and whiskers illustrate the median, interquartile range, and 5th and 95th percentile
values obtained from 100 simulations of a random tree distribution in the model stand (see Figure 2).
The stand-level values are marked by the horizontal dotted lines.
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3.2. Effect of Noise Smoothing

Figure 5 portrays the effects of noise smoothing by using a majority filter algorithm
with kernels of 3 × 3, 5 × 5, and 7 × 7 cells (filtered patterns). The smoothing procedure
considerably changed the classification outputs of the single cells. The simulations showed
that the proportion of altered cell values ranged between 20% and 60% and tended to
increase with increasing kernel sizes (Figure 6). The proportion of changes is important, as
it may be viewed as a bias introduced by the smoothing procedure.

Figure 5. Effect of applying a majority filter on patch classification (example): original classification
without noise smoothing (a) and after filtering with kernels of 3 × 3 (b), 5 × 5 (c), and 7 × 7 cells (d).
In the classification procedure, the moving window diameter was 15 m, and the moving distance
was 1 m.

Figure 6. Proportions of incorrectly classified cells depending on the moving window size used for
the patch classification and the kernel filter size used for the noise smoothing.



Forests 2021, 12, 96 13 of 24

The pattern attributes derived from the original and filtered patterns differed in
terms of both the phase frequency and the average patch size of the individual phases
(Figure 7). With increasing kernel sizes, the filtered patterns became more coarse-grained,
and the average patch size increased for all the phases. The noise-smoothing procedure
also increased the representation of the phases that were more frequent in the original
pattern. The phase-specific dbh distributions constructed for the filtered patterns were
characterized by a higher variation of tree counts in the dbh classes compared to those
derived from the original patterns, particularly in the case of the phases of low frequency
(Figure 8).

Figure 7. Mean size (a) and frequency (b) of the patches assigned to the early accumulation
(EA), late accumulation (LA), culmination (CU), and steady-state (SS) phases for the original
(NS = without smoothing) and smoothed (MF = majority filter) classification outputs. The bars,
boxes, and whiskers illustrate the median, interquartile range, and 5th and 95th percentile values
obtained from 100 simulations of a random tree distribution in the model stand (see Figure 2). In
the classification procedure, the moving window diameter was 15 m, and for the noise smoothing, a
majority filter with the kernel 5 × 5 cells was used.

3.3. Effect of Overlapping Windows on the Spatial Dependence of the Phase Classification Outputs

The tests indicated that the technique of moving windows with overlap artificially
produces spatial dependence between classification outputs, even for random tree distribu-
tions (Figure 9). For the original raster models of phase classification, the proportions of
positive identifications of spatial dependence were 93 and 100% for the overlap ratios of
2.0 and 4.0, respectively. Moreover, noise smoothing using the majority filter additionally
intensified the spatial dependence between the neighboring stand patches, and this effect
was stronger with larger kernel filter sizes. Noise smoothing evoked spatial correlations,
even for spatially independent tree collectives—that is, for nonoverlapping windows. For
the overlap ratio of 1 and kernels between 1/5 and 1/2 of the window size, the proportion
of positive identifications of spatial correlation was between 16 and 31% (Figure 9). Thus,
these results indicate that the spatial correlation found in the phase distribution patterns
generated by the procedure of moving windows with overlap should not be directly inter-
preted as evidence of spatial correlation in the original tree distribution pattern, which, in
the simulations used here, was completely random. For unbiased inference, the samples
should be spatially independent, or the spatial dependence inherently produced by the
spatial overlap of the moving windows should be considered in the testing procedure.
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Figure 8. Simulation envelopes for tree counts in the dbh classes obtained for the original (shaded
area, 5th and 95th percentiles) and filtered patterns (points—mean values, whiskers—5th and 95th
percentiles) of the phase distribution. The dotted line shows the dbh distribution for the model stand.
In the classification procedure, the moving window diameter was 15 m. For the noise smoothing, the
majority filter with the kernel 5 × 5 cells was used.

Figure 9. Effect of the overlap ratio (window diameter to moving distance) on the proportion of
positive identifications (a) and intensities of the spatial dependence between the phase assignments
obtained from the moving window procedure (b). For overlap ratios ≤ 1, the tree collectives within
the neighboring window segments share no common trees. The spatial dependence was determined
for the original (not smoothed) and filtered (majority filter, kernel size 1/5, 1/3, or 1/2 of the window
diameter) raster models of phase distributions based on 100 simulations of random tree distributions.
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3.4. Randomness vs. Patchiness-Empirical Examples

For testing the spatial dependence in real stands, the datasets from six old-growth
Abies–Fagus–Picea forests from the Dinaric Mountains (JA, LO, PE) and Western Carpathi-
ans (BA, BG, OS) were used (Tables 1 and 2). Figure 10 displays the empirical phase
frequencies on the backgrounds of the simulation envelopes for the expected frequen-
cies resulting from the random assignment of tree dbh to the sample plots. Except for
several cases, the empirical frequencies did not deviate from the values obtained in the
simulations. The analyses indicated that the early accumulation phase was significantly
underrepresented in one stand (BA; in BG, the null hypothesis was close to rejection) and
overrepresented in one stand (OS). The steady-state phase was underrepresented in one
stand (OS), and the late accumulation phase was overrepresented in two stands (BA and
BG) (Figure 10). Nonetheless, compared to the expected frequencies, represented here by
the simulation envelops, the deviations were minor.

Figure 10. Empirical phase frequencies in six Abies–Fagus–Picea stands (dotted lines) and 95%
simulation envelopes for the frequencies obtained from the random assignment of the trees to the
sample plots (shaded areas). The empirical values lying above/below the simulation envelopes
indicate the over/underrepresentation of a given phase compared to the simulations. The frequency
of the culmination phase was not tested because the proportion of this phase is directly linked to the
classification rules.

The null hypothesis of an independent phase distribution (all phases pooled together)
could be rejected in two stands at the scale of 800 m2 (BG and OS) and two stands at
the scale of 1600 m2 (BA and BG). However, the deviations were weak, and in the latter
case, they were both positive (BG stand) and negative correlations (BA stand) (Table 3). A
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deepened analysis revealed that in the OS stand, the deviations toward aggregation were
mainly attributable to the positive spatial dependence of the early accumulation phase
and, in the BG stand, they were mainly attributable to the culmination phase (Figure 11).
Significant aggregation was also revealed for the culmination phase in the JA stand and for
the culmination and steady-state phases in the PE stand, but these effects were too weak to
generate a positive spatial correlation for all the phases pooled together. Compared to a
pattern that fulfills the majority criterium used by the smoothing procedure (i.e., half of the
neighboring plots represent the same phase as the central plot), in the empirical patterns,
the spatial aggregation of the phases was very weak (Figure 11).

Figure 11. Testing of the spatial independence of the phase distribution in six Abies–Picea–Fagus
stands: mark connection function p(r) for the empirical distributions (dotted lines) and 95% envelopes
(shaded areas) obtained from random labeling simulations for the eight nearest-neighbor cells (3 ×
3 cells, spatial scale 40 m × 40 m = 1600 m2). The empirical values above the envelopes indicate
positive spatial correlations of the classification outputs (aggregation = overrepresentation compared to
random labeling), and the values below the envelopes indicate negative spatial correlations (segregation
compared to random labeling). The solid lines point out the expected values of the p(r) for the pattern in
which half of the neighboring eight plots represent the same phase as the central plot.
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Table 3. Results of testing for the spatial independence of the phase distribution in four (800 m2) and
eight (1600 m2) nearest-neighbor cells.

Phase JA LO PE BA BG OS

Spatial Scale 800 m2

All phases n.s. n.s. n.s. n.s. A A
Early accumulation n.s. n.s. n.s. n.s. A A
Late accumulation n.s. n.s. n.s. n.s. n.s. n.s.

Culmination A n.s. A S A n.s.
Steady-state n.s. n.s. A n.s. n.s. n.s.

Spatial Scale 1600 m2

All phases n.s. n.s. n.s. S A n.s.
Early accumulation n.s. n.s. n.s. n.s. A n.s.
Late accumulation n.s. n.s. n.s. n.s. n.s. n.s.

Culmination A n.s. A n.s. A n.s.
Steady-state n.s. n.s. A n.s. n.s. n.s.

Notes: n.s.—no significant departures from random labeling (significance level 0.05), A—positive correlation
(aggregation), S—negative correlation (segregation).

4. Discussion
4.1. Remarks on the Phase Classification Protocol

In the literature, several methods of phase classification dedicated to multiaged forests
have been proposed. In the classical founding works [15,16,45–47], the classification criteria
were verbally expressed and associated with anticipated changes in the stand growing
stock, canopy closure, vertical stand structure, proportion of individuals representing
distinct age cohorts, or the necromass of dead trees. More recently, methods based on
quantitative criteria have been developed, which help make the distinction objective
and repeatable [17–19,22,48]. Nevertheless, different classification systems can lead to
largely deviating results [26,48]. In addition, some of these propositions are based on
scale-sensitive standards (e.g., the presence/absence of trees from given dbh classes), and
the classification outputs strongly depend on the spatial scale being considered [19,22].
Feldmann et al. [26] proposed a scale-independent approach based on the relative frequen-
cies of trees representing three ontogenetic stages [49]. However, it seems that this method
circumvented the problem by eliminating from the classification the type of multisized
stand structures (here, represented by the steady-state phase), whose proportion usually
increases at the expense of other phases along with increasing the spatial scale of the
analysis. In this study, the local basal area, the proportion of trees with dbh above the
given dbh threshold (median basal area dbh), and the dbh differentiation expressed by
the Id index were used as classification criteria. Unlike other propositions, the structural
differentiation was considered explicitly only for the steady-state phase. In addition, the
upper boundary for growing stock in this phase was defined to underline the dynamic
attributes of this type of structure and its link with the balanced dbh structures known
from managed forests under single-tree selection systems. Herein, the threshold value was
set arbitrarily as the mean stand basal area, with the consequence that increasing the spatial
scale results in increasing the proportion of the steady-state phase, concordantly with
J-shaped dbh distributions and the all-aged character of the study stands. This threshold
value may be easily adapted to local conditions, depending on the site, species composition,
and local knowledge of the dynamics of structured forests [50–52]. Nonetheless, neglecting
this factor and using only structural diversification as the sole criterion for the steady-state
phase may lead to its overrepresentation and discrepancies with the results of classical
studies indicating relatively small proportions of this planter-like phase in primeval forests
containing European beech, Norway spruce, and silver fir [45,53].

The culmination phase groups stand patches with the highest basal area and therefore
is similar to the optimum phase defined in earlier studies [15,16,47]. Nonetheless, in
opposition to these classical works, the culmination phase was not linked with a low level
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of structural differentiation. The sole criterion here was a high level of basal area associated
with local overrepresentation of the overstory trees. This seems justified by the results
of studies showing that in European natural montane forests formed by shade-tolerant
species, multisized structures are dominant, even at small spatial scales [34–38,54–57], and
that stand biomass accumulation at the local scale does not entail simplification of the
forest structure. Indeed, the small-scale analyses conducted in the six stands used in this
study revealed that even for the highest levels of growing stocks, the stem numbers were
evenly distributed among the dbh classes [58].

The classification protocol used in this study passed over dead trees, which are usually
regarded as imprints of the past stand dynamics and are frequently included in phase
classification systems [16,19,22,48]. However, Král et al. [59] found a dominant role of
acyclic transitions between “structural” phases in the natural forests of the temperate zone,
which weakens the indicative value of dead trees. In addition, the relationships between
the necromass of dead trees and the growing stock of living trees are usually weak [9]. In
the stands studied here, the Pearson’s correlation coefficients between these characteristics
were in the range between −0.10 and −0.25 [58], no matter whether single plots (with
a diameter of 14 m) or larger blocks of neighboring plots were considered. These weak
relationships are attributable to the fact that coarse woody debris—especially those from
conifer species—are recognizable over several decennia [25,60–64], that is, at the temporal
scales upon which substantial changes among live trees usually occur [65–67]. On the
other hand, recent disturbances resulting in the presence of fresh deadwood also affect
the structural attributes of living tree collectives. Thus, information on dead trees seems
excessive, and in some situations in which the time since tree death is difficult to determine,
it may burden the reconstruction of the local development pathway.

4.2. Limitations of Using Moving Windows with Overlap for Patch Classification

The simulation study clearly demonstrates that in multiaged forests with reversed
J-shaped dbh distributions, the frequencies, patch sizes, and variation in phase-specific
structural attributes (e.g., basal area, stem density, dbh distributions, etc.) strongly depend
on the window size and kernel used in the smoothing procedure and that results obtained
using different settings of these parameters should not be compared. The results resemble
former findings indicating that phase classification outputs depend on the spatial scale
being considered [23,68,69] and that rapidly increasing proportions and average patch
sizes of the stand fragments with complex dbh structures close to the overall stand-level
distribution are a universal feature of multiaged forests with strongly randomized patterns
of structural heterogeneity [18,35,43,56,70–72].

Areas between 100 and 500 m2 are commonly treated as the basic spatial units in
analyses of structural heterogeneity [17–19,48,73,74]. The present study shows that increas-
ing window sizes results in more and more smooth patterns of structural heterogeneity,
decreases between-patch variation, and leads to losses of information on the local config-
urations of trees and the patterns of tree generation replacement (single-tree vs. group
replacement). On the other hand, areas that are too small involve a risk of overlooking
overstory trees growing in the close neighborhood and thus impeding the ingrowth of
understory individuals and misinterpreting such fragments as hotspots of generation
replacement. From this point of view, a plausible recommendation is to keep the basic win-
dow diameter (or plots used for sampling) close to the average area occupied by overstory
individuals, assuming their more-or-less regular distribution, as frequently reported by
studies of natural forests [31,35,43]. Regarding trees with dbh over the median basal area
dbh as a mature generation, the maximal nearest-neighbor distances for their hexagonal
distribution in the studied stands were within a relatively narrow range between 14 and
18 m. Under real conditions, such a regular distribution of the canopy trees is unlikely,
and the nearest-neighbor distances will certainly be smaller. This range gives an average
area per individual of approximately 150−250 m2, which corresponds well with the gap
area distributions found in close-to-primeval montane forests formed by shade-tolerant
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species in Europe, indicating the dominance of small gaps caused by the deaths of single
trees or small groups of trees [10,17,75–80]. Nevertheless, depending on the objective of the
analysis (the types of forest structure, growing stock of living or dead trees, stem density,
etc.) the optimal plot sizes differ [81–84].

The original pattern of cell classification (without smoothing) most fully reflects the
frequency and phase-specific characteristics. In particular, it provides estimates concordant
with these derived from sampling using inventory plots of the same size as the moving
window. The smoothing procedure based on the majority filter distorts the original pattern,
generally diminishes the proportions of phases underrepresented in the original image, and
causes the estimates obtained from hypothetical inventory plots to not converge to those
derived from the smoothed pattern. The simulations showed that this biasedness, even for
3 × 3 kernels producing relatively fine-grained patterns with a considerable proportion of
very small patches, is between 20 and 30% and strongly increases with the kernel size to
an unacceptable level. Thus, patch classification outputs obtained from sampling based
on inventory plots (including the rather extreme case of absolute contiguous plots) and
moving window procedures with noise smoothing, as a rule, are different, and the level of
biasedness may easily exceed the phase frequencies.

The main problem associated with using patterns transformed by the moving window
technique is that this procedure inherently produces positive spatial correlations, as over-
lapping windows, depending on the moving distance and window size, share the same
trees. Therefore, such transformed patterns are characterized by patchiness sensu stricto,
even for completely random tree distributions. As evidenced by the simulation experiment,
the completely randomized patterns transformed by using sliding windows overlapping
by one-half of their diameters were falsely classified as patchy in approximately 93% of
the cases, and after smoothing, this proportion was 100%. Moreover, the noise smoothing
imposed spatial correlations even for independent tree collectives from nonoverlapping
windows. Therefore, the technique of moving windows with overlap is helpful for visual-
izing spatial structural heterogeneity but inappropriate for testing whether this variation
is random. For this purpose, spatially independent samples must be used (for example,
contiguous windows), or the spatial correlation unavoidably generated by the overlapped
samples should be taken into account in the testing procedure. Grabarnik et al. [85] also
stressed the importance of considering the spatial dependence in hierarchical multiscale
tests in which a range of distances is simultaneously being tested. More recently, an inter-
esting method of patch delineation was proposed [79]. In this method, instead of setting
an arbitrary fixed window diameter, the scale was allowed to “float” as a function of the
actual spatial positioning of trees, and neighborhood patches were identified through
spatial tessellation. Nevertheless, because each tree was a component of several other
neighborhoods and the patches overlapped, this approach also seemed to suffer from the
spatial dependence problem.

4.3. Randomness vs. Patchiness-Empirical Examples

The analyses based on empirical data indicated that in a majority of the cases, the null
hypothesis assuming the random assignment of tree sizes to the sample plots could not be
rejected. Similar results provided tests of the spatial independence of the phase distribution.
Moreover, in all the empirical stands, the aggregation of the phases was much weaker than
in a hypothetical pattern in which the majority of the nearest-neighboring four to eight
plots represent the same structural type as the center plot. Although the tree distribution
patterns were analyzed here at a discontinuous spatial scale (plots at 154 m2 and their
neighborhood at 400 and 800 m2), it seems unlikely that this factor could significantly
influence the results, since, as shown in the simulations, within the range of spatial scales
considered in this analysis, the changes in structural attributes follow a gradual and not
erratic manner. The obtained results indicate on the dominance of random components
in forming structural heterogeneity and thus contradict the presumption that patchiness
sensu stricto is a common and general feature of the studied forest communities.
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This conclusion well corresponds with research suggesting that structural hetero-
geneity occurs primarily in small areas and diminishes rapidly with increasing spa-
tial scales [70,71,81]. Although homogeneously structured patches occur, they cover
a smaller proportion of the total forest area than those that are heterogeneously struc-
tured [34,35,43,54–57,86]. Glatthorn et al. [87] concluded that forest development takes
place on a continuous scale and that discrimination between development stages splits
continuous datasets at selected thresholds. Recently, Zenner et al. [71] proposed a gap-
patch reabsorption model that assumes that gaps continuously and stochastically created
through individual tree mortality and even intermediate-intensity disturbances are quickly
reabsorbed back into the general fabric of the highly heterogeneous background forest
matrix in which they are embedded. Therefore, patchiness is predominantly a fine-scale
phenomenon, and individual patches are often transient.

The concept of patchiness sensu stricto implies that the stand patches maintain their
spatial integrity over time and evolve in a cyclic sequence dependent on the maturing
and senescence of trees forming the overstory. However, Christensen et al. [88] and
Král et al. [59] showed that over the long term, frequent partial disturbances followed by
quick recovery results in highly stochastic connections between different multiaged phases,
and the proportion of cyclic transitions is significantly less frequent than that of acyclic
transitions along theoretical pathways. Thus, these results also indicate the prevalent role
of random mortality among the overstory trees and contradict the concept of patchiness
sensu stricto.

The dominance of random components in forming structural heterogeneity does
not exclude that some processes generate nonrandom effects. Repulsion or attraction
among trees representing different species or size classes is commonly reported by stud-
ies concerned with the structural heterogeneity of forest communities and attributed to
intraspecific competition [89,90], interspecific facilitation [91,92], environmental heterogene-
ity [93], dispersal limitations [94], or factors responsible for tree mortality phenomena [95].
The methodology based on the classification of tree collectives also has the potential to
provide information concerning spatial relationships between tree subpopulations and
underlying ecological processes. It operates on a higher level of structural organization of
forest communities and therefore may help solve problems for which statistical models
based on spatial point processes become complicated [96]. Nonetheless, passing from
description to interpretation necessitates a fundamental distinction between random and
nonrandom patterns.

5. Conclusions

This paper aimed to emphasize the distinction between spatial structural heterogeneity
(patchiness sensu lato) and patchiness sensu stricto viewed as the spatial ordering of tree
attributes differently from a random pattern. While the first is a common feature of all
forest stands except those formed by equisized and regularly distributed individuals, the
second has functional interpretation and is attributable to working ecological processes
that spatially organize the structural heterogeneity of forest communities.

This study showed that the outcome patterns produced by the sliding window with
overlap are characterized by inherent spatial correlations and are falsely interpreted as
patch mosaics, even for originally completely random tree distributions. Thus, this tech-
nique is a useful tool for portraying the spatial structural heterogeneity of forest stands but
inappropriate for the assessment of the random or nonrandom character of the observed
pattern. In the latter case, the samples must fulfill the criterion of spatial independence, and
the windows used for classification of the tree collectives should not overlap. The moving
window size strongly affects the patch frequency, mean patch size, and between-patch dbh
differentiation, and therefore, the choice of this parameter should consider the aim of the
analysis. For studies focusing on the pattern of generation replacement, a starting point
would be the window size corresponding to an average area of a single overstory tree.
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The analyses carried out in six stands from the Dinaric Mountains and Western
Carpathians using a methodology based on spatially independent samples indicated that
patchiness sensu stricto is not a general feature of the forest communities formed by silver
fir, European beech, and Norway spruce. The study shows that in addition to random
patterns of structural heterogeneity, spatial segregation and aggregation of structural types
can also occur. A further study is warranted concerning the issue of whether the general
pattern of structural heterogeneity changes over time and which processes are behind such
possible shifts.
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