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Abstract: The relative importance of different biotic and abiotic variables for estimating forest
productivity remains unclear for many forest ecosystems around the world, and it is hypothesized
that forest productivity could also be estimated by local biodiversity factors. Using a large dataset
from 258 forest monitoring permanent sample plots distributed across uneven-aged and mixed forests
in northern Iran, we tested the relationship between tree species diversity and forest productivity and
examined whether several factors (solar radiation, topographic wetness index, wind velocity, seasonal
air temperature, basal area, tree density, basal area in largest trees) had an effect on productivity.
In our study, productivity was defined as the mean annual increment of the stem volume of a
forest stand in m3 ha−1 year−1. Plot estimates of tree volume growth were based on averaged plot
measurements of volume increment over a 9-year growing period. We investigated relationships
between productivity and tree species diversity using parametric models and two artificial neural
network models, namely the multilayer perceptron (MLP) and radial basis function networks. The
artificial neural network (ANN) of the MLP type had good ability in prediction and estimation
of productivity in our forests. With respect to species richness, Model 4, which had 10 inputs,
6 hidden layers and 1 output, had the highest R2 (0.94) and the lowest RMSE (0.75) and was selected
as the best species richness predictor model. With respect to forest productivity, MLP Model 2
with 10 inputs, 12 hidden layers and 1 output had R2 and RMSE of 0.34 and 0.42, respectively,
representing the best model. Both of these used a logistic function. According to a sensitivity analysis,
diversity had significant and positive effects on productivity in species-rich broadleaved forests
(approximately 31%), and the effects of biotic and abiotic factors were also important (29% and 40%,
respectively). The artificial neural network based on the MLP was found to be superior for modeling
productivity–diversity relationships.

Keywords: biotic and abiotic factors; forest productivity; parametric and nonparametric models; tree
volume growth

1. Introduction

The relationships between forest structural characteristics, biodiversity indicators, and
forest productivity have been investigated in recent studies for different forest conditions
and forest regions, and it has generally been shown that biodiversity has a profound posi-
tive effect on the services produced by forest ecosystems, especially on a global scale [1,2].
However, the relationship between tree diversity and ecosystem functions in many cases
depends on local environmental conditions [3]. For example, the structure of a forest
ecosystem, its plant and animal diversity, and the conditions of a site affect the productivity
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of a forest ecosystem [4]. However, Ouyang et al. [5] noted that the relationship between di-
versity and productivity may not differ along a gradient of the environment and that stand
age and tree density may be more important than biodiversity in describing productivity.
Tilman et al. [6] offered two main hypotheses to elucidate the positive impact of forest
biodiversity on productivity: the niche complementary effect and the selection-probability
effect. Thus, as a result of the niche complementary effect, it is assumed that by differentiat-
ing and facilitating niches, increased biodiversity can enhance productivity. In contrast, the
selection-probability effect suggests that increasing species richness increases productivity
in a forested community by improving the chances of having highly productive species [7].
These two effects can also have a positive, simultaneous effect on biodiversity and forest
ecosystem services [7].

As mentioned above, the relationship between forest biodiversity and productivity
varies among different studies. In some studies, this relationship has been positive and
significant [2,8–11]. In others, negative relationships were observed [12], and in some
cases, a nonsignificant relationship was reported [13]. Therefore, it can be concluded that
biodiversity conditions might influence the growth and productivity of trees, depending on
the situation, by affecting the characteristics of environmental resources, especially water
and soil [14,15]. As a result, the relationship between diversity and productivity largely
depends on these factors [5,9,12].

In this study, we employed species richness, Shannon Wiener, and Simpson indices to
estimate biodiversity. Even though there may be a broader set of biodiversity indicators,
because some indicators are based on similar or common concepts, in most studies, espe-
cially in modeling, to prevent the production of large amounts of data, the most important
and widely used indicators are used. Peet [16] suggests that a combination of species
counts (richness, such as Margalef index) and relative species abundance, which together
form heterogeneity indices (such as Shannon Wiener and Simpson index), can be used to
estimate beneficially the diversity of an ecosystem. As a result, the Shannon Wiener and
Simpson indices have been used often in forest research, while other biodiversity indicators
are used less often [17,18].

Moreover, there are several indicators that might help estimate the productivity of
mixed and uneven-aged forests. In some studies, the heights of dominant trees at different
elevations above sea level were considered as a productivity index, and in others, the
above ground biomass increment or annual volume increment (ton, kg/hectare/year) have
been used to determine the productivity in the forest [2,8,19,20]. Nevertheless, measuring
indices based on height of trees is costly and time consuming; therefore, it is preferable
and reasonable to determine the productivity using indicators that are based on diameter
at breast height, such as biomass estimates and annual volume increment [21]. Therefore,
to determine productivity, in the current study, we used the annual volume increment. In
mountain forests, there are many biotic and abiotic factors, which may affect biodiversity
and productivity, based on the results of previous research [22–30]. These indicators in-
cluded topographic wetness index (TWI), wind velocity, elevation, and basal area of the
largest trees (BAL) [31]. Huang, Chen, Castro-Izaguirre, Baruffol, Brezzi, Lang, Li, Härdtle,
Von Oheimb, and Yang [19] also showed that the effect of species richness on tree yield was
positive for a large-scale tropical forest in China. They conducted this study at two different
sites with different species composition and different factors such as functional traits leaf
duration, specific leaf area, and wood density. This study, like our study, examined a
combination of tree species. Paquette and Messier [8] examined the effect of biodiversity
on tree productivity across a gradient from boreal to temperate forests. They used abi-
otic factors that included average annual temperature, organic layer depth, intensity of
competition, and BAL, along with biodiversity indices that included functional diversity,
phylogenic diversity, species richness, and phylogenic species variability. Compared to
Paquette and Messier [8], our current study used more abiotic factors, such as slope, aspect,
elevation, and azimuth. Further, we used stepwise regression and artificial intelligence
(ANN) methods combined to explore the biodiversity–productivity relationships. Prior
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studies indicate that both productivity and biodiversity of a forest can be affected by many
factors, such as local climatic conditions, soil characteristics, biodiversity, and even the
type of management practices employed. Environmental factors are key variables that can
help determine the diversity and distribution of plant species, and in our research, the
following factors were considered: solar radiation, air temperature, topographic wetness
index (TWI), and wind velocity. Solar radiation is one of main abiotic factors that can affect
the growth and distribution of tree species. Air temperature in the lower troposphere is
one of the important factors that controls the growth and metabolism of plants. As a result,
plant growth is related to annual heat input indicators. However, soil water requirements
and tolerances vary by tree species. Wind was assumed an important and influential non-
biological factor in plant production [32,33]. Wind speed exerts both positive and negative
physiological and biomechanical effects on plants. In low wind velocity environments,
large boundary-layer resistances between the air and leaf surface can hinder the transfer of
carbon dioxide to plants [34], leading to a decreased growth rates in the plants [35].

Forest variables such as productivity, mortality, tree survival, and diversity have been
modeled with regression analysis to help understand forest dynamics [32,36]. However,
these models often assume a linear or nonlinear relationship exists between the depen-
dent variable and the independent variables, and they may not adhere well to regression
assumptions such as normally distributed sample data and others. Machine learning meth-
ods such as artificial neural networks (ANNs) have largely overcome these problems and,
in recent years, have proven to be a good alternative to regression methods for estimating
environmental conditions [37]. ANNs are an alternative to traditional regression modeling
approaches [38], they have the ability to model nonlinear and complex relationships be-
tween different parameters, and they are more flexible than regression models in solving
problems related to multiple interacting variables [39]. ANNs are more generalizable
than regression models and can be less sensitive to the effects of outliers and noise in
data. Therefore, in this study, some specific issues were investigated: (i) the relationships
between tree species diversity and forest productivity using different variables in the
Hyrcanian forests of northern Iran (the main objective); (ii) the potential use of parametric
and nonparametric models for describing these relationships; (iii) the potential use of two
artificial neural networks (i.e., the multilayer perceptron (MLP) and radial basis function
(RBF) networks) to, for the first time, describe these relationships; and (iv) whether biotic
and abiotic factors (solar radiation, topographic wetness index, wind velocity, seasonal air
temperature, basal area, number trees per hectare, and basal area in largest trees) had an
effect on forest productivity.

2. Materials and Methods
2.1. Data Collection

The Gorazbon forest is located about 22 km from the Caspian Sea in the north of Iran
at an elevation of 1010 to 1380 meters above sea level (Figure 1). This forest is located
8 km from the port city of Nowshahr [40]. The soil of this area is karst in nature, and
calsisols are the most common type. Several factors were considered in selecting the
study site, including limited human interference and exploitation, representativeness of
mountain Hyrcanian forests, and high biodiversity. In addition, to determine the volume
increment for productivity index of the forest, plots were needed that were measured at
least twice. Several potential sites that were only surveyed during one period in time
could therefore not be used for this study. As a result, after several searches, the forest
site of Kheyroud was selected for our study. In this study area, plot centers were recorded
with a Global Navigation Satellite System (GPS) receiver with an accuracy of around 2 to
5 m. The receiver accessed a constellation of satellites signals from space that transmitted
positioning and timing data, and the receiver then used these data to determine plot center
locations [41]. A total of 258 circular fixed area plots of 0.1 hectares were systematically
placed on a rectangular grid of 150 m × 200 m across the Gorazbon section.



Forests 2021, 12, 1450 4 of 21
Forests 2021, 12, x FOR PEER REVIEW  5  of  22 
 

 

 

Figure 1. The location of study area in northern Iran represents the broader boundary of the study area; the network of 

permanent sample plots are in the form of red dots. 
Figure 1. The location of study area in northern Iran represents the broader boundary of the study area; the network of
permanent sample plots are in the form of red dots.

The close-to-nature forest management process implemented in northern Iran has led
to the development of a typical heterogeneous, uneven-aged, mixed forest within the study
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area (Table 1). The main tree species in the study area were Fagus orientalis Lipsky, Carpinus
betulus L., Tilia platyphyllos Scop., Acer velutinum Boiss, Alnus subcordata C.A. Mey, Quercus
castaeifolia C.A.M., Fraxinus excelsior L., Cerasus avium (L.) Moench, Sorbus terminalis (L.)
Crantz, Ulmus glabra Hudson, Acer cappadicium Gled, Parrotia persica C.A. Mey, Diospyros
lotus L. Ulmus minor Miller, Petrocarya fraxinifolia (Lam.), and Taxus baccata L. Regeneration
of oriental beech (Fagus orientalis Lipsky), a preferred tree species, seems to be occurring
sufficiently, even in light of competition from European hornbeam (Carpinus betulus L.) in
the smaller diameter at breast height (dbh) classes [24].

Table 1. Characteristics of the study area based on permanent forest monitoring plots in typical uneven-aged and mixed
forests in northern Iran.

Variable Mean Minimum Maximum Standard Deviation

Trees per hectare 421.0 20.0 1220.0 241.0
Stand basal area (m2 ha−1) 36.8 0.0 113.0 14.0

Mean diameter (cm) 30.1 14.0 175.0 10.9
Basal area in largest trees (m2 ha−1) 29.4 0.0 113.0 14.5

Volume in year 2003 (m3 ha−1) 335.5 220.0 425.0 61.6
Volume in year 2012 (m3 ha−1) 406.4 329.0 443.0 47.3
Productivity (m3 ha−1 year−1) 4.0 2.2 7.0 3.14

The dbh of all trees >7 cm were measured before the growing season in 2003 and
again after the growing season in 2012. In both measurement periods, dbh was measured
in the same manner and direction. According to the protocol explained by Bayat, Pukkala,
Namiranian, and Zobeiri [40] in mixed and uneven-aged forests to obtain height curves,
the height of the largest tree and the closest tree to the plot center were also determined
and recorded. Using these field data, this study involved productivity (growth and yield)
analysis, development of remotely sensed geographic information system (GIS databases),
and modeling (Figure 2).
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2.2. Forest Productivity Analysis

The structure of the forest was quantified by using the dbh available from all trees
within all permanent sample plots. We used the following functions developed for the
Gorazbon forest [37] to calculate the volume of each tree in individual forest plots.

Fagus v = 0.0001000 dbh 2.503 (1)

Carpinus v = 0.0000999 dbh 2.470 (2)

Other species v = 0.0002996 dbh 2.273 (3)

where v represents stem volume (m3), and dbh (cm) is the diameter at breast height of
each tree. In order to check the accuracy of the following models, a number of cut trees
were excluded from the modeling process, and their estimated volume was compared
with their actual volume. In our study, productivity was assumed to be represented by
the mean annual increment of the volume of trees in a forest stand (m3 ha−1 year−1). Plot
estimates of mean annual increment were based on growth increment over a 9-year period
(2003–2012). For both time periods, basal area and volume were computed for each tree,
summed to the plot level, and extrapolated to a per-hectare estimate. In addition, the
square of the basal area per hectare from 2003 was used as a variable in the modeling effort.
Additionally, slope, aspect, altitude, temperature, and precipitation data associated with
each permanent plot were compiled. Gross growth, including ingrowth, from 2003–2012
was calculated as follows [42]:

VI = (VE + VH − VB)/years (4)

where VI is the average annual gross growth including ingrowth over the measurement
period (2003 to 2012), VE is the volume at the end of the measurement period (2012), VH is
the amount of volume that was harvested or that died between 2003 and 2012, VB is the
volume at the beginning of the measurement period (2003), and years represents the length
of the measurement period (9 years).

2.3. Abiotic Landscape Variables
2.3.1. Solar Radiation

In this study, we evaluated the solar radiation as a function of (i) a digital elevation
model (DEM)-based analysis that involved slope, aspect, view factor, terrain configuration
factors, and horizon angle; (ii) typical solar-illumination angles and sun–earth geometry
during the growing season; and (iii) solar-flux calculations at the top of the atmosphere
during the growing season, based on calculations with the LanDSET (Landscape Distri-
bution of Soil Moisture, Energy, and Temperature) model [43,44]. Ultimately, an estimate
of the amount of solar radiation reaching the landscape, expressed as the growing-season
cumulative cloud-free solar radiation (MJ m−2), was developed (Figure 3a).

2.3.2. Seasonal Air Temperature

As an indicator of growing season heat input, the average air temperature at different
elevations across the landscape was measured [10] (Figure 3b). Both air temperature and
precipitation data were interpolated from records that were obtained from the geographi-
cally closest climate stations. These data were based on records collected from 1977 to 2005,
and in the interpolation process, the greatest weight was applied to data records from the
closest stations (7 stations).

2.3.3. Topographic Wetness Index

In this study, prior to calculating the amount of soil water, the raw DEM was processed
using the System for Automated Geoscientific Analyses (SAGA) system, an Automated
Geoscientific Analyses, using the pit-filling algorithm of Planchon and Darboux [45] by
removing false depressions. We then calculated the upslope contribution area in the
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calculation of TWI (SAGA’s modified topographic wetness index) from the mass-flux
method available with the software (Figure 3c).
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2.3.4. Wind Velocity

In the present study, we used a computational fluid dynamics (CFD) simulator to
model wind velocity across the complex terrain of the study area (Figure 3d), which was
facilitated by the DEM. CFD is a method for addressing complex three-dimensional and
time-dependent relationships and can be used to numerically model various environmental
variables in a virtual environment. This method is used in many fields of engineering,
forestry, agriculture, etc. [33]. This model is able to accommodate three-dimensional
Navier–Stokes equations, which include thermal processes and the effect of atmospheric
turbulence [46,47]. The calculations are also based on a boundary-fitted coordinate system,
where the initial boundary conditions are characterized by (i) average air temperature of the
growing surface (as before) and wind velocity and direction (i.e., 1.7 m s−1 and 333◦ from
true North; Figure 1) based on Nowshahr station climate records (1977–2005), and (ii) an
assumed average wind velocity of 6 m s−1 at 500 m above mean sea level. Atmospheric tem-
perature stratification is assumed neutral in the calculations (i.e., 9.86 ◦C km−1), a common
state of the planetary boundary layer under windy and cloudy daytime conditions [48].

2.4. Biotic Variables
2.4.1. Basal Area

Basal area is a very important index in forest management and ecology and is the
basis of stand structure measurements. BA was computed for each tree; then values per
hectare were obtained by dividing the basal area of each plot by the total plot area (0.01 ha).
These BA values per hectare are widely used for all forestry studies [24]. BA for each for
each tree was calculated as follows:

BA =
π

4
DBH2 (5)

where BA is basal area per tree (m2), DBH is diameter at breast height (m), and π = 3.142.
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2.4.2. Basal Area in Largest Trees

The basal area in largest trees (BAL) is an index that provides an effective measure
of tree dominance in a stand. It is very flexible and can easily be modified to a spatially
explicit measure of competition by calculating it specifically for an influence zone around a
tree. BAL is also a very suitable competition index for trees in small-sized sample plots [49].
BAL was calculated as follows:

BAL =
π

4
.

n

∑
j=1

(
TFj.DBH2

j

)
(6)

where DBHj > DBHi (i.e., all trees larger than some assumed subject tree i), DBH is measured
in meters, TFj is a tree factor, i.e., the number of trees represented by jth tree in a hectare),
and π = 3.142 [50].

2.4.3. Number of Trees per Hectare

Stand density is an important indicator of stand biodiversity and one of the important
indices in forest management. It is defined as the density of a stand or the number of living
trees in a given area. This measurement is an indicator of the area occupied by trees and is
clearly related to the structure of a stand. The number of trees in a forest stands depends
on their size, which is why BA is commonly used to describe the density of a stand [51].
The number of trees per unit land area is calculated as follows:

N =
n
a

(7)

where N is density or the number of tree per hectare, n is the average number of trees in
plots, and a is the area of a representative plot in hectares.

2.5. Biodiversity Indicators

In this study, we used species richness, Shannon Wiener, and Simpson indices to
estimate biodiversity. Even though there may be a large number of biodiversity indicators,
because some indicators are based on similar concepts, in most studies, especially in
modeling, only the most important and widely used indicators are presented. Moreover, a
combination of species counts (richness) and relative species abundance, which together
can be viewed as indices of heterogeneity, can be very beneficial in the representation of
the diversity of an ecosystem [17].

The species diversity values for each permanent sample plot were calculated using
the following indicators in STATISTICA, SPSS, and Excel software:

1. Species richness index: Species richness refers to the number of species on a
particular surface or specimen, regardless of the number of individuals studied in any
species. The species richness index indicates the presence of different species and is
obtained by counting the unique number of plant species in an area [24].

2. Heterogeneity index (heterogeneity): Heterogeneity indicators involve a combina-
tion of species richness and uniformity, and these indices summarize the two values of
species richness and uniformity in a single measure. In this study, the Shannon Wiener and
Simpson methods [52] were used to estimate species diversity (Table 2).

Table 2. Biodiversity indicators used in the study (Modified after Krebs [53].

Diversity Component Index Name Formula

Species richness Richness index R = S

Species heterogeneity Shannon Wiener H = −∑ pi ln(pi)
Simpson λ = ∑ pi

2

S = Number of species; pi = Relative frequency of species i; H = Shannon Wiener diversity index; λ = Simpson
diversity index.
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3. Modeling Approaches
3.1. Artificial Neural Network

Artificial neural networks (ANNs) are a form of artificial intelligence that involve
generalizable methods for understanding relationships and, compared to other methods,
are less sensitive to data outliers and noise [37]. Within an ANN, the MLP process includes
neurons that are divided into layers, input and output, along with one or more hidden
layers. The root mean square error (RMSE), which measures the amount of error between
observations and predictions, is used in this study to validate the results. The coefficient of
determination (R2) and the bias were also used along with the RMSE to evaluate the results
of the ANN model (Equations (8)–(10)), as suggested by previous works [54,55].

RMSE =

√
1
n∑n

i=1 (psi − p̂s)2 (8)

R2 = 1 −

n
∑

i=1
(psi − p̂s)

2

n
∑

i=1
(psi − p̂s)

(9)

Bias =
1
n

n

∑
i=1

(psi − p̂s) (10)

where Psi is observed productivity, Ps is estimated productivity, p̂s is the mean of observed
productivity, and p̂si is the mean of estimated productivity. A set of training and test input
data is required for each network. Here, we used 70% of the dataset for network learning
and the remaining 30% for testing. In this research, the number of neurons contained in the
input layer and the output layer are equal to the number of input and output variables [56].
Deciding upon the number of hidden layers and the number of neurons in each hidden
layer is a challenging task. In the present study, we followed the conventional trial-and-
error procedure method to determine the appropriate number of hidden layers and their
neurons. We used tan–sigmoid and log–sigmoid functions for the hidden layers and a
linear activation function for the output layer to develop the network architecture.

Radial Basis Function (RBF) is a multilayered feedforward neural network that is
similar to MLP and is used to solve classification problems. Each archive in an RBF model
has two important factors that describe the location of the function’s center and its deviation
or width. The distance between the input data vector and the RBF center is measured in the
hidden unit, which is used along with the function’s deviation to obtain the output [57].

3.2. Poisson Regression

Poisson regression is a generalized linear model form of regression analysis used to
modeling and was performed and analyzed using the stepwise method. For this analysis,
the dependent variables were productivity and species richness, and the independent
variables were solar radiation, air temperature, TWI, wind velocity, square of plot basal
area, plot basal area, basal area in largest trees (BAL), and species richness.

3.3. Sensitivity Analysis

In the regression approach, we used stepwise regression to select the most effective fac-
tors. Using stepwise regression, we selected the most important factors that had the greatest
impact on productivity. In the ANN approach, a sensitivity analysis was performed using
STATISTICA software to prioritize inputs and their effectiveness in predicting outputs.
By creating networks, training and testing; making sure the artificial neural network is
working properly; and confirming that the network is able to accurately predict untrained
data, we examined the impact of each independent input variable. In order to determine
the sensitivity of each independent variable, the values of other independent variables
were held constant at their nominal value (e.g., average), and the values of the tested
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variable were changed to determine the model response (productivity). The productivity
rates were considered most sensitive to changes in each of the independent variables. This
course of action was repeated for all independent variables, and an assessment was made
of greatest change in productivity (increase or decrease) as a result of varying the inputs by
one percent [56].

4. Results

Across the sample plots, there was quite a lot of variation in tree density per ha, but
interestingly, much less variation in basal area per ha. The diameter distribution of trees
sampled in the study area for the first and second measurement periods describes the typi-
cal reverse J-shaped frequency distributions of uneven-aged forests (Figures 4 and 5). The
volume distribution by diameter class in the study area during both measurement periods
indicated that oriental beech had the greatest footprint from a tree volume perspective,
particularly in the higher dbh classes (Figures 6 and 7). The tree species with the greatest
density, European hornbeam, had high volume distributions in the smaller dbh classes.
Due to the fact that volume is based on dbh and height, while there are more trees in the
smaller diameter classes, larger amounts of per-hectare volume can be found in the larger
diameter classes. From an analysis of the data, we determined that the average growth rate
of the plots in the study area was about 4 m3 ha−1 yr−1. Interestingly, neither the shape or
magnitude diameter distribution nor the shape or magnitude of the volume distribution
changed much between the measurement periods.

The results of regression modeling effort, using species richness as the dependent
variable, are as follows (11):

SR = 2.90 − 0.05 BA + 0.06 BA2 + 1.19 SH − 0.61 EV + 0.08 WIND (11)

where SR is the species richness, SH is Shannon Wiener index, EV is evenness, BA is the
basal area (m2/ha) in 2003, and WIND is the general speed of wind in the area of the
plot. The coefficient of determination (R2) of this modeled equation was 0.92, the RMSE
was 0.55 m2/ha, and the relative RMSE was 17.39%. As can be seen, species richness had
a significant relationship only with species evenness and Shannon Wiener index, wind
velocity, and basal area. In addition, as in the above relationship, the relationship of species
richness with the evenness factor is negative. This suggests that, with increasing species
richness, species evenness decreased. According to field data from permanent sampling
plots, in these forests, the range of Shannon Wiener index and the Simpson index was 0.5
to 1.5. A good relationship was observed between actual and modeled species richness
based on the conditions within each permanent plot.

The neural network structure consisted of a multi-input layer, a hidden multilayer,
and an output layer, with a minimum of 6 and a maximum of 30 layers (Tables 3 and 4).
The independent variables of BA2, BA, BAL, WIND, TWI, EV, AIRTEM, and ASOL were
input layers, and the dependent variable (species richness) was the output layer. For
each of the MLP- and RBF-based ANNs, five models were examined. MLP-based ANNs
and RBF-based models for data collection and test data are shown with R2 = 0.94 values
in Tables 3 and 4, indicating that a strong linear relationship existed between the actual
measured species richness and the predicted species richness by the MLP. Tables 3 and 4
show the statistics for the two models RBF and MLP and the ANN model for two stages
training and evaluation, respectively. For each step, 10 models are used, and in these tables,
the selected models are highlighted based on their low RMSE and bias values. With respect
to model training and valuation, the multilayer perceptron (MLP 10-6-1 with R2 = 0.94 and
RMSE = 0.008) model was noted as being the most effective at predicting species richness.
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Figure 4. The diameter distribution for uneven-aged and mixed forests in 
the Gorazbon section in year 2003. 
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Figure 4. The diameter distribution for uneven-aged and mixed forests in the Gorazbon section in year 2003.
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Figure 5. The diameter distribution for uneven-aged and mixed forests in the Gorazbon section in year 2012.
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Figure 6. The volume distribution based on diameter class in the Gorazbon 
section in 2003. 
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Figure 6. The volume distribution based on diameter class in the Gorazbon section in 2003.
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Table 3. Characteristics of RBF and MLP-based ANNs and associated metrics for SR model training.

Index Network
Name Algorithm Error

Function
Hidden

Activation R2 RMSE % RMSE BIAS % BIAS

1 MLP 10-9-1 BFGS 171 SOS Tanh 0.94 0.051 1.57 0.0046 0.144
2 MLP 10-10-1 BFGS 68 SOS Logistic 0.94 0.046 1.44 0.0018 0.043
3 MLP 10-8-1 BFGS 105 SOS Tanh 0.94 0.059 1.84 0.0035 0.108
4 MLP 10-6-1 BFGS 67 SOS Logistic 0.94 0.008 0.24 0.0015 0.0009
5 MLP 10-7-1 BFGS 59 SOS Logistic 0.94 0.061 1.90 0.0033 0.104
6 RBF 10-30-1 RBFT SOS Gaussian 0.92 0.51 15.73 1.820 5.600
7 RBF 10-26-1 RBFT SOS Gaussian 0.90 0.58 18.15 1.706 5.250
8 RBF 10-27-1 RBFT SOS Gaussian 0.93 0.49 15.14 1.581 4.860
9 RBF 10-29-1 RBFT SOS Gaussian 0.92 0.53 16.45 4.418 1.3594
10 RBF 10-23-1 RBFT SOS Gaussian 0.89 0.60 18.75 6.410 0.00019

MLP = multilayer perceptron (e.g., 10-9-1 implies 10 = number of input layers; 9 = number of hidden layers; and 1 = number of output
layer). RBF = radial basis function. BFGS = Broyden–Fletcher–Goldfarb–Shanno. RBFT = Radial Basis Function Training. SOS = Symbiotic
Organisms Search. The best model is shown in bold.

Table 4. Characteristics of RBF and MLP-based ANNs and associated metrics for SR model evaluation.

Index Network
Name Algorithm Error

Function
Hidden

Activation R2 RMSE % RMSE BIAS % BIAS

1 MLP 10-9-1 BFGS 171 SOS Tanh 0.94 0.057 1.89 0.0013 0.045
2 MLP 10-10-1 BFGS 68 SOS Logistic 0.94 0.06 2.25 0.0017 0.058
3 MLP 10-8-1 BFGS 105 SOS Tanh 0.94 0.07 2.36 0.0073 0.2410
4 MLP 10-6-1 BFGS 67 SOS Logistic 0.94 0.02 0.75 0.0002 0.0030
5 MLP 10-7-1 BFGS 59 SOS Logistic 0.94 0.05 1.73 0.008 0.2798
6 RBF 10-30-1 RBFT SOS Gaussian 0.87 0.58 19.14 0.069 2.279
7 RBF 10-26-1 RBFT SOS Gaussian 0.87 0.62 20.65 0.100 3.3240
8 RBF 10-27-1 RBFT SOS Gaussian 0.87 0.58 19.45 0.099 3.272
9 RBF 10-29-1 RBFT SOS Gaussian 0.90 0.53 17.53 0.078 2.591
10 RBF 10-23-1 RBFT SOS Gaussian 0.88 0.57 19.09 0.028 0.94

MLP = multilayer perceptron (10-6-1 implies 10 = number of input layers; 6 = number of hidden layers; and 1 = number of output layer).
RBF = radial basis function. BFGS = Broyden–Fletcher–Goldfarb–Shanno. RBFT = Radial Basis Function Training. SOS = Symbiotic
Organisms Search. The best model is shown in bold.

The relationship between the actual and predicted species richness when the ANN
model was used was strong (Figure 8). However, the relationship between actual and
predicted species richness from the two models (regression and ANN) suggests that the
ANN model was more capable in predicting species richness. The influential factors in this
method are the following variables: EV, BA2, BA, TWI, AIRTEM, WIND, and ASOL.

With respect to the field plots, species diversity varied considerably across the land-
scape. The size of the points representing the locations of the field plots were scaled
according to the Shannon Wiener index values of each plot (Figure 9). Larger points repre-
sent higher index values, and smaller points represent lower index values. The range of
the index was about 0.1 to 1.5.

The following relationship is the regression model developed to estimate productivity
from the independent variables in the study area (12):

P = 0.943 − 0.02181 BA + 0.02787 BA2 + 0.03732 WIND + 0.002 SR (12)

where P is productivity, the 9-year net annual volume growth (m3/ha); BA is the basal
area (m2/ha) in 2003; and WIND is the general speed of wind in the area of the plot. BA
(t = −3.90, p = 0.00013), BA2 (t = 4.73, p = 0.00000413), and WIND (t = 2.32, p = 0.021)
were statistically significant components of the model. The net annual volume growth
model using the regression method had an R2 of 0.20, a RMSE of 0.41 m3 ha−1, a BIAS of
0.0035 m3 ha−1, a relative RMSE of 48.63%, and a relative BIAS of 0.55%. In summary, this
method for estimating productivity based on biological and environmental variables was
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not very good. Figure 10 shows the relationship between actual net annual volume growth
(m3 ha−1 year−1) and predicted net annual volume growth (m3 ha−1 year−1). This suggests
that predicting net annual growth from the actual growth of these forests is difficult using
a regression model.
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Figure 10. Relationship between predicted and actual net annual volume growth (productivity) by
(Poisson regression (red line) and nonparametric methods (ANN (black line)).

When using the ANN, a minimum of 4 layers and a maximum of 27 hidden layers
were used. The results show that when 12 hidden layers were used, the highest accuracy
can be estimated (Tables 5 and 6). While the RMSE and bias were low, MLP-based ANNs
and RBF-based models had moderately good coefficient of determination values (R2 = 0.34
for the selected model), indicating that a fair linear relation existed between the actual
measured net annual volume growth and the predicted net annual volume growth.

Table 5. Characteristics of RBF and MLP-based ANNs and associated metrics for productivity model training.

Index Network
Name Algorithm Error

Function
Hidden

Activation R2 RMSE % RMSE BIAS % BIAS

1 MLP 10-11-1 BFGS 15 SOS Logistic 0.36 0.35 47.86 0.0002 0.3
2 MLP 10-12-1 BFGS 16 SOS Logistic 0.37 0.34 46.67 0.0001 0.01
3 MLP 10-6-1 BFGS 15 SOS Logistic 0.36 0.35 47.75 0.0002 0.13
4 MLP 10-4-1 BFGS 16 SOS Exponential 0.36 0.37 47.99 0.0002 2.38
5 MLP 10-10-1 BFGS 15 SOS Tanh 0.36 0.37 47.76 0.0010 0.13
6 RBF 10-27-1 RBFT SOS Gaussian 0.26 0.38 49.00 0.0125 0.33
7 RBF 10-24-1 RBFT SOS Gaussian 0.25 0.38 49.29 0.0012 0.03
8 RBF 10-22-1 RBFT SOS Gaussian 0.22 0.39 49.30 0.031 0.21
9 RBF 10-20-1 RBFT SOS Gaussian 0.03 39.18 59.24 5.99 7.47
10 RBF 10-21-1 RBFT SOS Gaussian 0.33 0.35 47.65 5.72 0.09

MLP = multilayer perceptron (10-12-1 implies 10 = number of input layers; 12 = number of hidden layers; and 1 = number of output
layer). RBF = radial basis function. BFGS = Broyden–Fletcher–Goldfarb–Shanno. RBFT = Radial Basis Function Training. SOS = Symbiotic
Organisms Search. The best model is shown in bold.

According to the sensitivity analysis, a species enrichment factor of 31% had the
greatest effect on productivity and biotic and abiotic factors including square of plot basal
area, plot basal area, wind velocity, air temperature, ASOl, and TWI, which had 15.9%,
13.3%, 10.3%, 9.8%, 9.8%, and 10% effects, respectively. Therefore, it can be said that, in
total, species richness (31%), total biotic factors (about 29%), and total abiotic factors (about
40%) described the variation of productivity. Table 7 shows the results of the sensitivity
analysis for the best model to illustrate the effect of biotic, abiotic factors, and species
richness on productivity.
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Table 6. Characteristics of RBF and MLP-based ANNs and associated metrics for productivity model evaluation.

Index Network
Name Algorithm Error

Function
Hidden

Activation R2 RMSE % RMSE BIAS % BIAS

1 MLP 10-11-1 BFGS 15 SOS Logistic 0.33 0.35 46.20 0.010 1.34
2 MLP 10-12-1 BFGS 16 SOS Logistic 0.34 0.30 42.67 0.001 0.50
3 MLP 10-6-1 BFGS 15 SOS Logistic 0.25 0.41 51.74 0.008 1.16
4 MLP 10-4-1 BFGS 16 SOS Exponential 0.24 0.46 57.81 0.010 1.34
5 MLP 10-10-1 BFGS 15 SOS Tanh 0.24 0.43 53.46 0.014 0.86
6 RBF 10-27-1 RBFT SOS Gaussian 0.23 0.48 50.68 0.014 1.52
7 RBF 10-24-1 RBFT SOS Gaussian 0.13 0.54 52.29 0.018 1.16
8 RBF 10-22-1 RBFT SOS Gaussian 0.25 0.47 49.60 0.013 1.78
9 RBF 10-20-1 RBFT SOS Gaussian 0.17 0.63 51.30 0.14 1.35
10 RBF 10-21-1 RBFT SOS Gaussian 0.12 0.48 50.81 0.021 2.57

MLP = multilayer perceptron (10-12-1 implies 10 = number of input layers; 12 = number of hidden layers; and 1 = number of output
layer). RBF = radial basis function. BFGS = Broyden–Fletcher–Goldfarb–Shanno. RBFT = Radial Basis Function Training. SOS = Symbiotic
Organisms Search. The best model is shown in bold.

Table 7. Percent impact of individual and grouped variables (species richness and abiotic and biotic factors) on MLP-based
calculations of productivity according to the sensitive analysis.

Impact (%) Solar
Radiation

Air
Temperature TWI Wind

Velocity
Square of Plot

Basal Area
Plot Basal

Area
Species

Richness

Average 9.8 9.8 10 10.3 15.9 13.3 30.9

Total average 39.9 29.2 30.9

5. Discussion

In this study, the results suggest that there is a positive and significant relationship
between species richness and forest productivity in the study area. Productivity estimates
based on the ANN and regression models illustrated the role of species richness as an
influential factor in estimating productivity. However, this relationship was stronger and
more meaningful in the results from the ANN model. Based on the modeling results, forest
productivity in the study area was largely dependent on nonbiological factors such as
wind velocity and TWI. The results of this study are consistent with other studies that have
concluded there is a significant relationship between productivity and forest biodiversity,
ranging from regional to global scales [2,58].

The predominant forest management system employed in this study area has been
close-to-nature management of forests, and this has caused these forests to become uneven-
aged over time. The use of this forest management system has resulted in mixed and
heterogeneous stands of tree species. In such forests, there may be a higher resistance to
change caused by biotic and abiotic factors and events such as insects, disease, droughts, or
storms [59–62]. In mixed stands, different tree species occupy different niches. These types
of forests can be more resistant to change because they possess different tolerances against
environmental disturbances. Among the important factors affecting species richness in
the study area were wind velocity and topographic wetness index. Wind velocity, alone,
explained much of the richness of species. This result is consistent with the findings of
Bourque and Bayat [22] in the Kheyroud forest, which examined changes in the landscape
on biodiversity. In that study, wind velocity, surface reflection of blue light, height of land
above the nearest drainage point, and TWI had the greatest effects on the species richness.
Wind speed has also been shown to provide favorable conditions for the growth of beech
species [23]. For example, wind speed can exert either a positive or a negative physiological
and biomechanical effect on plants. In a low wind velocity environment, the transfer of
carbon dioxide to plants can be hindered due to the large boundary layer resistances that
exist, and this can result in decreased growth rates for the plants that are affected [35]. In
addition, in a high wind velocity environment, permanent deformation of plants can occur,
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as wind can distort growing patterns through application of constant bending pressures.
Further, it may be observed that an increase in the transfer of water vapor from plants
to the atmosphere has occurred in this type of environment, causing the closure of leaf
stomata to help prevent desiccation. In this latter case, uptake of CO2 may be reduced,
negatively affecting plant growth. As a result, the optimal growing conditions based on
wind velocity occur somewhere in between these extremes [22,23].

In terms of productivity prediction models, species richness was one of the important
factors and had a stronger presence in the ANN model. However, according to sensitivity
analysis, the most important and influential factor in this regard was the BA, while abiotic
factors such as TWI, wind speed, and solar radiation were also important in later stages.
This result is in line with the findings of Bayat et al. [32], who studied factors affecting
the growth of beech diameter in the forests of northern Iran. However, the regression
analysis produced a nonlinear model that was better able to predict growth based solely
on basal area. The relationship between species richness and productivity in the study area
can be explained by, among other things, the dominant species in an area being the most
fertile species. This is the effect of natural selection. More importantly, the richness of the
species leads to the division of niches between the six species, which creates a wide range
of functional strategies between species. As a result, this can be the main and important
process in the relationship between species richness and productivity in a forest [63,64].
Another important factor that can justify this relationship is that higher species diversity
has led to higher structural complexity that indirectly affects biomass, and, as it has
been proven, forests with higher carbon storage potential also have higher biodiversity
potential [65]. It is also important to note that the relationship between productivity and
biodiversity can change with spatial scale and climate. As various studies have shown, this
relationship has been stronger in boreal forests and less or even meaningless in temperate
forests [8,20].

Huang et al. [19]; Paquette and Messier [8]; and Rita and Borghetti [20], in their studies
in Chinese, Canadian, and Italian forests, concluded that the richness of the species has a
strong effect on forest productivity, and in these diverse environments, coexisting species
can have different niches and competitiveness. Biodiversity and its various effects have
also been reported to be much stronger in boreal biomes than in temperate regions [63].
In boreal environments where environmental conditions are more extreme, disturbances
are more intense, and tensions are higher, the interactions between species may be more
important and decisive Paquette and Messier [8]. Therefore, these reasons can justify the
relative low effect of biodiversity on productivity in the study area.

In this study, it was observed that ANN models, based on criteria for evaluating
models such as RMSE and coefficient of determination, were more accurate than regres-
sion models and showed better relationships between productivity and biodiversity in
the studied forest. As the results showed, they are in line with the findings of other re-
search [32,66,67]. The ANN of the multilayer perceptron (MLP) type had good ability in
prediction and estimation of productivity in our forests. With respect to species richness,
Model 4, which had 10 inputs, 6 hidden layers, and 1 output, had the highest R2 (0.94) and
the lowest RMSE (0.75) and was selected as the best SR predictor model. With respect to
forest productivity, MLP Model 2 with 10 inputs, 12 hidden layers, and 1 output, had R2

and RMSE of 0.34 and 0.42, respectively, representing the best model. Both of these used a
logistic function.

Therefore, it can be said that the nonlinear and complex nature of the relationship
between biodiversity and forest productivity may be better described using neural network
models. However, each modeling method has its own set of strengths and weaknesses. In
regression models, the relationship between variables is simple, yet assumptions such as
normality of data, independence of variables, and many other conditions are limitations on
the use of these models [32]. Bayat, Bettinger, Heidari, Henareh Khalyani, Jourgholami, and
Hamidi [67] used comparative regression and artificial intelligence methods to conclude
that artificial intelligence methods such as neural networks have a higher ability and
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accuracy in determining height in these forests. Artificial intelligence-based models such
as neural networks do not have the same limitations as regression models and have the
ability to work with qualitative variables. The results of various studies show that they can
have a relatively high accuracy in predicting different conditions of a forest [68].

6. Conclusions

In areas with adequate precipitation and increasing air temperatures, competition
between plant species will intensify when external pressures are eliminated, and for society,
a discussion of biodiversity and its effects on forest productivity will be of particular
importance. In this study, the relationship between tree species richness and various biotic
and abiotic variables in the forests of northern Iran was examined. The results showed a
strong relationship between species richness and wind speed and topographic wetness
index factors. Furthermore, the relationship between forest productivity and biotic and
abiotic factors was examined. In this case, species richness, basal area, and wind speed
played important roles in understanding changes in productivity, and the role of species
richness in describing the variability in productivity was significant. In this regard, the
results of this study are consistent with the findings of other studies that have shown that
the relationship between productivity and species richness in temperate forests can be
strong. Through regression analysis, we also showed that a nonlinear model was able to
predict growth based solely on basal area. In summary, forest productivity seems to be
more affected by environmental variables and local site conditions. However, according to
a sensitivity analysis, species diversity had significant and positive effects on productivity
in species-rich broadleaved forests, but the effects of biotic and abiotic factors were also
important. The ANN models that were developed were more capable than regression
models of describing the relationships between species richness and productivity when
using abiotic environmental factors.
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