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Abstract: Rainforest conversion to woody croplands impacts the carbon cycle via ecophysiological
processes such as photosynthesis and autotrophic respiration. Changes in the carbon cycle associated
with land-use change can be estimated through Land Surface Models (LSMs). The accuracy of carbon
flux estimation in carbon fluxes associated with land-use change has been attributed to uncertainties
in the model parameters affecting photosynthetic activity, which is a function of both carboxylation
capacity (Vcmax) and electron transport capacity (Jmax). In order to reduce such uncertainties for
common tropical woody crops and trees, in this study we measured Vcmax25 (Vcmax standardized
to 25 ◦C), Jmax25 (Jmax standardized to 25 ◦C) and light-saturated photosynthetic capacity (Amax)
of Elaeis guineensis Jacq. (oil palm), Hevea brasiliensis (rubber tree), and two native tree species,
Eusideroxylon zwageri and Alstonia scholaris, in a converted landscape in Jambi province (Sumatra,
Indonesia) at smallholder plantations. We considered three plantations; a monoculture rubber, a
monoculture oil palm, and an agroforestry system (jungle rubber plantation), where rubber trees
coexist with some native trees. We performed measurements on leaves at the lower part of the canopy,
and used a scaling method based on exponential function to scale up photosynthetic capacity related
traits to the top of the canopy. At the lower part of the canopy, we found (i) high Vcmax25 values for
H. brasiliensis from monoculture rubber plantation and jungle rubber plantation that was linked to
a high area-based leaf nitrogen content, and (ii) low value of Amax for E. guineensis from oil palm
plantation that was due to a low value of Vcmax25 and a high value of dark respiration. At the top
of the canopy, Amax varied much more than Vcmax25 among different land-use types. We found that
photosynthetic capacity declined fastest from the top to the lower part of the canopy in oil palm
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plantations. We demonstrate that photosynthetic capacity related traits measured at the lower part
of the canopy can be successfully scaled up to the top of the canopy. We thus provide helpful new
data that can be used to constrain LSMs that simulate land-use change related to rubber and oil
palm expansion.

Keywords: photosynthesis; plant traits; land-use types; land surface models

1. Introduction

Tropical forest conversions to different land use significantly impact water and carbon
cycle dynamics by modifying carbon sequestration and carbon emission rates [1,2]. In
Southeast Asia, Indonesia has one of the highest annual losses of rainforests worldwide [3],
where forests have been deforested and converted to woody croplands, namely oil palm
and rubber plantations [4]. One of the hotspots of land-use change in Indonesia has been
Jambi’s province in Sumatra Island, where the area of rubber plantations increased by
19%, and that of oil palm plantations by 85%, from 2000 to 2010 [5]. Land-use change
(LUC) from native forest vegetation to rubber and oil palm plantations has increased the
income of farmers of Jambi [4,6,7] while at the same time leading to significant ecological
costs: decreases in above-ground and below-ground carbon stocks [8–10], reduction in soil
nitrogen availability [11] and increases in soil N2O emissions following N fertilization [12].
Partly because of a lack of field data, it is still unclear to what extent these changes will
impact water and carbon transfer between land surface and atmosphere. In consequence,
and despite their importance for biogeochemical cycles, the impacts of LUC in the tropics
are not well represented in Land Surface Models (LSMs).

In LSMs, the exchange of gases between plants and the atmosphere is represented
at the leaf and canopy levels. One common method used to calculate fluxes of carbon
and water vapor is the coupling of a mechanistic C3 model of assimilation FvCB [13] to a
stomatal conductance model (gs; Ball, Woodrow & Berry 1987 [14]). In the FvCB model,
net leaf photosynthesis (An) of C3 plants is simulated with the assumption that An is equal
to the lowest rate of three limiting biochemical processes: (1) the ribulose 1.5-bisphosphate
(RuBP) saturation rate under low intercellular CO2 concentrations (Ci), where the rate of
An is predicted by the properties of the Rubisco enzyme (Vcmax); (2) the rate of regeneration
of RuBP at high Ci, driven by light harvesting and electron transport (Jmax); or (3) triose
phosphate use limitation (TPU) [15]. Recent studies have shown that TPU rarely limits
net photosynthesis [16,17]. To our knowledge, many LSMs do not consider TPU limitation
or represent it non-mechanistically [18,19], as the evidence for the occurrence of TPU
limitation in mature plants from natural ecosystems is scarce (Ellsworth et al. 2015 [20]).

Thus, photosynthetic capacity in LSMs is mainly represented by Vcmax and Jmax, whose
values are estimated from An/Ci curves. These parameters are often coupled, allowing Jmax
to be estimated from Vcmax [21,22]. Vcmax and Jmax values in LSMs are frequently treated
as fixed per plant functional type or linearly related to leaf nitrogen [23,24]. While Vcmax
and Jmax have been shown to have a substantial impact on global projections of the carbon
cycle [25,26], the natural variability of these parameters is still not known for many plants
or ecosystem types.

Since photosynthetic capacity is commonly expressed as the light-saturated photosyn-
thetic rate (Amax) [27–30], we measured light response curves in addition to CO2 response
curves. Although we are aware that recently there has been standardization in the format
of leaf gas exchange parameters [31], in this study we refer to Amax as the typical maximum
photosynthetic rate under optimal conditions in the field [30,32–34], so that we can compare
our estimates with the literature. We estimated Amax, Vcmax25 and Jmax25 (Jmax standardized
to 25 ◦C) of rubber trees (H. brasiliensis) and oil palms (E. guineensis) in smallholder farmers
monoculture plantations, as well as from a jungle rubber plantation [35], where rubber
trees coexist with native trees [35,36]. In our study region, the tree species A. scholaris and E.
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zwageri are commonly found to coexist with rubber trees [9,29,37]. A. scholaris is considered
to be a light-demanding species, and is principally grown for timber production [29], while
E. zwageri is a mid-canopy species [37] and grows relatively slowly [38,39].

In this study, our aim is to determine the photosynthetic capacity and foliar traits
of oil palm, rubber and two coexisting woody species growing in tropics. We limited
our field measurements at the lower part of the canopy due to logistic constraints. Since
estimates of Vcmax25 and Jmax25 at the lower part of the canopy are not directly useful to the
LSMs, we used a scaling method based on exponential function to scale up photosynthetic
capacity-related traits to the top of the canopy [25,40,41]. The scaling method assumes that
photosynthetic capacity at the canopy top is scaled with depth, such that photosynthetic
capacity at the canopy top decreases exponentially with cumulative leaf area index [25]. The
main objectives of our study were: (i) to estimate key physiological parameters (Vcmax25,
Jmax25, Amax) and leaf traits (LMA, leaf N), in two tropical tree crops (rubber and oil
palm) and two native tree species at the lower part of the canopy; and (ii) to scale up
photosynthetic capacity-related traits measured at the lower part of the canopy to the top
of the canopy using a ‘bottom-up’ approach.

2. Methods
2.1. Experimental Sites

We conducted our measurements in Jambi Province of the island of Sumatera, Indonesia.
The region’s climate is tropical maritime, and the rainy season goes from October through
April, with the rest of the year being relatively dry [42–44]. The average monthly rainfall in
the drier season (161 mm month−1) is 38% lower than in the rainy season (261 mm month−1).
The mean annual temperature and mean annual precipitation measured at Jambi airport are
26.7 ± 0.2 ◦C and 2235 ± 381 mm, respectively [42,45]. Measurements were conducted in
three land-use types on loam Acrisol soils: a monoculture oil palm plantation (S 01◦54′34.6′′ E
103◦15′58.3′′), a monoculture rubber plantation (S 01◦54′39.5′′ E 103◦16′00.1′′), and a jungle
rubber plantation, where rubber trees are planted within secondary forests (S 01◦55′40.0′′ E
103◦15′33.8′′) [9]. All study sites were owned by local smallholders. The oil palm plantation
was 16 years old at sampling, with an average height of 12 meters [9]. The oil palm plantation
received fertilization rates of 68-30-99 kg N, P, K ha−1 year−1 [46].

The rubber trees in the monoculture rubber plantation and jungle rubber were of
similar age (about 14 years old), with an average height of 13 meters, and the monoculture
rubber plantation, jungle rubber plantation and oil palm stem density were about 440 ha−1

and 525 ha−1 and 140 ha−1, respectively [9]. Rubber cultivars differ in clone types [47]. In
Sumatra, the most widely planted clone is PB 260 [48], which is characterized by a high
production potential and strength against wind disturbances [49]. It is also one of the latex-
producing clones recommended for their high yield characteristic [50]. In contrast, there is
no single oil palm cultivar used in Jambi. Based on local farmers’ communication, the oil
palm cultivars are DP Marihat, DP Bah Jambi, DP Sucfindo LaMe, DP Dolok Sinumbah
and DP LAVROS.

In the jungle rubber plantation, two native trees, E. zwageri (EZ) and A. scholaris (AS),
coexisted with the rubber trees. In this study, we use the term “native trees or forests”
to refer to these two native tree species together. The native trees were about 20 meters
tall, with a stem density of 525 ha−1. Based on their Latin names, we use ‘HBm’ and ‘HBj’
to refer to rubber from the monoculture rubber plantation and jungle rubber plantation,
respectively, while we use ‘EG’ to refer to oil palm. The trees E. zwageri and A. scholaris
are referred to as EZ and AS, respectively. We also use ‘OPP’ and ‘RP’ to refer to oil
palm plantation and rubber plantation, respectively, while we use ‘JRP’ to refer to jungle
rubber plantation.

2.2. Sampling Procedure and Gas Exchange Measurements

We performed measurements on two trees or two palms that occurred close to the
center of the 50 m × 50 m plot from 8th to 29th May 2017. The measurements were
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conducted between 8:00 am and 2:00 pm local time. In the case of rubber and native
trees, we selected a branch from the lower part of every tree and used a 5-meter ladder
to access the branch. We assumed that at the lower part of the canopy, canopy bottoms
are shade-prone, and thus all leaves are at least temporarily shaded. Two fully expanded
matured leaves were identified per branch. Matured leaves were identified based on visual
assessment of leaf color and size—this method has been used by Albert et al. [51].

CO2 and H2O gas exchanges were measured using a portable photosynthesis system
(LI-6800; LiCor Biosciences, Lincoln, NE, USA) with a 3 × 3 cm2 leaf chamber. The LI-
6800 is an open gas exchange system, whereby the measurements of photosynthesis and
transpiration are based on the differences in CO2 and H2O in an air stream that is entering
(reference) and exiting the leaf (sample). The air stream flows through both the reference
and sample gas analyzers and splits in the sensor head rather than the console, meaning
that the conditioned air does not flow through two different tubes until the head. The
head has a valve system that partitions the flow between the reference and sample gas
analyzers. The valves also vent chamber air when matching the gas analyzers. It took
about 20 minutes for the leaf to reach steady state conditions. Then, a light response curve
was generated to determine the light saturation point (1500–1600 µmol photon m−2 s−1).
After the completion of the light response curve, we again allowed about 20 minutes for
the same leaf to reach steady state conditions. Next, a CO2 response curve on the same
leaf was generated. Response curves of net photosynthesis (gross photosynthesis minus
respiration, Anet) versus Ci (Anet/Ci), where Ci is the CO2 concentration inside the leaf,
and net photosynthesis versus photosynthetically active radiation (Qin) (Anet/Qin), was
determined on four leaves from the same branch during each measurement period. For
the Anet/Ci curves, leaves were acclimated in the chamber for about 10 minutes until Anet
did not change over time. The Anet/Ci curves measurements were performed at a leaf
temperature of 25 ◦C, a relative humidity of 70% and a photosynthetically active radiation
of 1500 µmol photon m−2 s−1 in all cases. The CO2 response curve (Anet/Ci) was then
initiated with eight levels of CO2 (400, 200, 0, 400, 600, 800, 1000 and 1200 µmol CO2 mol−1

air). After completing the Anet/Ci curve, CO2 concentration was kept constant at 400 µmol
mol−1 air, and Qin was sequentially lowered from 1500 to 1300, 1100, 900, 700, 500, 300,
100 and 0 µmol photon m−2 s−1. We completed all of the CO2 response curves and then
performed the light response curves. Because photosynthesis has diurnal patterns e.g., [52],
we ensured that am and pm measurements were equally represented.

In the case of oil palm, we selected a matured frond from the lower part of every
palm and like in the case of trees, we used a 5-meter ladder to access the frond. Two fully
matured leaf-lets from the center of the frond were identified per frond. As for trees, it took
about 20 minutes for a leaf-let to reach steady state conditions. Next, a light response curve
was generated to determine the light saturation point (1500–1600 µmol photon m−2 s−1).
After the completion of the light response curve, we allowed 20 minutes for the same
leaf to reach steady state conditions. Finally, a CO2 response curve on the same leaf-let
was generated. We completed all of the CO2 response curves and then performed the
light response curves by following the similar protocol as for trees. Like for trees, we
ensured that am and pm measurements for oil palms were equally represented. We also
performed measurements on juvenile (young) trees/palms of all species. However, these
young trees/palms were ‘parasiting’ under the planted canopy, instead of being planted
on clearings left by missing adult trees, and therefore we did not consider comparing those
data-sets with those used in the present study.

2.3. Response Curve Analyses

The estimates of Vcmax25, Jmax25, and Rd were generated for the A/Ci curves by fitting
the FvCB model [13,53] using the Plantecophys R package [54]. The general form of FvCB
model used is expressed as

Anet = min
(

Ac, Aj
)
− Rd, (1)
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where Anet is the net rate of CO2 assimilation, Ac is the gross photosynthesis rate when
Rubisco activity is limiting, Aj when RuBP-regeneration is limiting and Rd the rate of dark
respiration. Ac and Aj are non-linear functions of the chloroplastic CO2 concentration (Cc),
both of the form k1 (CcΓ*)/(k2+Cc), where Γ* is the CO2 compensation point without Rd,
and k1 and k2 are different parameter combinations for Ac and Aj. For a detailed description
of these functions and the various parameters’ temperature dependence, readers are
referred to Medlyn et al. [55]. We used the default settings of the fitaci function from
the Plantecophys package but provided the values of CO2 concentration in the cuvette
(CO2S), Ci, leaf temperature, net photosynthesis, photosynthetically active radiation as
an input. The fitaci function fits the FvCB model using the hyperbolic minimum of Ac
and Aj, yielding estimates of Vcmax, Jmax, and Rd and their standard errors. The hyperbolic
minimum of Ac and Aj is described by:

Am =
Ac + Aj −

√(
Ac + Aj

)2 − 4θAc Aj

2θ
− Rd, (2)

where θ is a shape parameter, set to 0.99, and Am is the hyperbolic minimum of Ac and Aj.
The response of Anet to Qin was fitted to the non-rectangular hyperbolic function [56]

described as

θ(Anet + Rd)
2 − (εQin + Amax)(Anet + Rd) + εQin Amax = 0, (3)

from which Anet is calculated as

Anet =
εQin + Amax −

√
(εQin + Amax)

2 − 4θεQin Amax

2θ
+ Rd, (4)

where Amax is the maximum rate of photosynthesis at saturating irradiance, Rd is the rate
of respiration in the dark, θ defines the convexity of the response curve, and ε, the initial
slope of the curve, is the photosynthetic light-use efficiency.

2.4. Leaf Nutrient Status and Specific Leaf Area

Following the gas exchange measurements, the same leaves were taken as samples in
a dry paper envelope. The specific leaf area (SLA) was measured by cutting a disk with
a size of 11.34 cm2, then using a ratio of cut-area dry weight to total dry weight from the
laboratory—a method that we adopted from Norby et al. [57]. This study refers to the
inverse of SLA as the leaf mass per area ratio (LMA). The sampled leaves were dried for
72 h at 60 ◦C in an oven. The leaf carbon and nitrogen concentrations were analyzed using
a CN analyzer (Vario EL Cube; Elementar Analysis Systems GmbH, Hanau, Germany).
Leaf phosphorus, potassium and other element concentrations (e.g., Sulphur, Calcium, etc.)
were determined by pressure digestion with concentrated HNO3, and the digests were
analyzed using inductively coupled plasma atomic emission spectrometry (iCAP 6300 Duo
VIEW ICP Spectrometer, Thermo Fischer Scientific GmbH, Dreieich, Germany).

To keep it simple, in this study we followed Norby et al.’s [57] approach in determining
the leaf nutrient contents. Norby et al. [57] also performed measurements in a tropical
setting. We acknowledge that measurements on leaf chlorophyll or chlorophyll ratios might
have provided further insights. These measurements could be a valuable direction for
future research—where we compare and contrast strengths and weaknesses of the various
methods used to derive leaf contents.

2.5. Theory for Within-Canopy Gradients in Photosynthetic Capacity

Generally, plant canopies have vertical gradients in physiological processes that relates
to maximum carboxylation rates (Vcmax25), maximum light-saturated photosynthetic rates
(Amax), area-based leaf nitrogen content (Na) and LMA [58,59]. Canopy models often
decrease leaf photosynthetic capacity with depth in the canopy using an exponential profile
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of leaf nitrogen content [25,40,41]. In land surface models (e.g., CLM4) [25], Vcmax25 is
specified at the canopy top and is scaled with depth using the function

Vcmax(LAI) = Vcmax25_topexp(−KnLAI), (5)

where LAI is the cumulative leaf area index and Kn is the extinction coefficient for Vcmax. A
relatively high Kn value indicates a more rapid extinction of solar radiation than a relatively
low Kn value, and implies a steeper decline in photosynthetic capacity through the canopy
with respect to the leaf area index (LAI) [25]. This exponential saturation model does not
consider some of the processes that could improve the scaled up estimate. First, it does
not consider variations in leaf lifetimes [60], leaf angles and size [61,62] along the vertical
canopy profile. Second, the method does not consider individual tree heights [63,64] and
within- and between-species variations in nutrient concentrations [65]. Third, it does
not include effects of direct versus diffuse radiation [66]. Finally, although the decline in
photosynthetically critical elements such as nitrogen and phosphorus with increasing depth
in plant canopies can be considerable, this decline may be never to the same extent that
it matches the reduction in radiation with canopy depth [67,68]. However, the scaling up
algorithm has been successfully applied in a number of studies [65,69–71], so by combining
‘isolated dataset for only one stratum’ from this study with ‘Kn’ estimates from previous
studies, we are able to present a model that is more conceptual rather than quantitative,
and can be used for the parameterization of the gas exchange when developing models
for CO2 exchange in tropical settings. The maximum electron transport rate (Jmax_top), leaf
respiration rate (Rd_top), and other photosynthetic parameters (Amax_top, LMA_top, Na_top)
at the top of the canopy are similarly scaled with canopy depth. Using previous studies,
we estimate Kn values for our oil palm plantation, rubber plantation and jungle rubber
plantation canopies (see in Appendix A for details).

2.6. Measured Data-Sets

LAI measurements were performed in May until mid-June 2018 at five locations in
five subplots (a total of 25 measurements per land-use type (or per plantation plot)) in a
50 m × 50 m plot using the LAI-2200 plant canopy analyzer (LiCOR, Biosciences, Lincoln,
NE, USA). We placed the LAI-2200 plant canopy analyzer in different positions so as
to capture the spatial heterogeneity, and these 25 measurements were representative of
the plant community. The measurements were conducted in oil palm plantation, rubber
plantation, jungle rubber plantation and forests on sunny days (see in Appendix B for
further details). To compare our up-scaled estimate of leaf mass per area and leaf nitrogen
content at the top of the canopy with measurements, we obtained measured data from
Kotowska et al. [43], which was measured at the same site and on a similar plant age.

2.7. Scaling Up Photosynthetic Capacity and Data Availability

After ‘Kn’ values were estimated for every land-use type, we use ‘inversion technique’
to estimate the photosynthetic capacity at the top of the canopy. Basically, we inverted
Equation (5), wherein

Vcmax25_top = Vcmax(LAI)/exp(−KnLAI), (6)

The maximum electron transport rate (Jmax_top), leaf respiration rate (Rd_top) and
other photosynthetic parameters (Amax_top, LMA_top, Na_top) at the top of the canopy are
similarly scaled with canopy depth (see in Appendix C for further details). All of the
original data set related to photosynthetic capacity is publicly available through https:
//github.com/ashehad/Photosynthetic_capacity_tropics/ (access on 16 February 2021).

A summarized version of the data can be also found in the same repository. To
show what the scaling of photosynthetic capacity means to the land surface models (e.g.,
CLM5) [72,73], as an example, we obtained the baseline (default) values of maximum
carboxylation rate (Vcmax_top) and Na_top from CLM5 for tropical evergreen forests and

https://github.com/ashehad/Photosynthetic_capacity_tropics/
https://github.com/ashehad/Photosynthetic_capacity_tropics/
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compared it with the values of maximum carboxylation rate (Vcmax_top) and Na_top using
the scaling method applied in this study for a potential tropical evergreen forest.

3. Results
3.1. Variation of Photosynthetic Capacity at the Lower Part of the Canopy

Values of Vcmax25 ranged from 5.7 to 47 µmol CO2 m−2 s−1 among all species (Figure 1a)
at the lower part of the canopy. HBm and HBi species exhibited the highest values of
Vcmax25 (Figure 1a), while EZ species had the lowest values (Figure 1a)—a similar trend
was noted for Jmax25 (Figure 1b). Values of Jmax25 ranged from 16 to 10.7 µmol electron
m−2 s−1 among all species (Figure 1b) at the lower part of the canopy. No considerable
difference in leaf nitrogen content (Na) values was found among EG, HBm and HBj species
(Figure 1c). EZ species had the lowest Na values (Figure 1c). Na values ranged from 0.74 to
1.49 g N m−2 among all species (Figure 1c).
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Figure 1. Mean (with standard error bars, n = 4) maximum carboxylation capacity (Vcmax25, (a)),
maximum electron transport rate (Jmax25, (b)) and leaf nitrogen content (Na) (c) of leaves of monocul-
ture oil palm (EG), monoculture rubber tree (HBm), jungle rubber tree (HBj), and two native tree
species (EZ and AS) measured at the lower part of the canopy. The data included mature oil palm
and mature trees.

AS species had the highest values of Amax (Figure 2a). Overall, species’ means of Amax
varied more than four-fold (from 3.2 to 13.3 µmol CO2 m−2 s−1) (Figure 2a). Within species,
Rd varied much more than Amax (Figure 1a,b). The species’ Rd values ranged from 0.2 to
1.31 µmol CO2 m−2 s−1 (Figure 2b) at the lower part of the canopy. EZ species had the least
Rd and LMA values (Figure 2b,c). Among species, low- and high-LMA values were 29 and
61.5 g m−2, respectively (Figure 2c).
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Figure 2. Mean (with standard error bars, n = 4) light-saturated net photosynthesis (Amax, (a)), non-photorespiratory
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3.2. Extinction of Light in the Canopy Profile

Oil palm plantation (OPP) had the highest Kn value (0.32 m2 m−2; Figure 3a), while
rubber and jungle plantation had similar Kn values (~0.2 m2 m−2; Figure 3a). The jungle
rubber plantation had the highest LAI value (LAI = 5.3 m2 m−2; Figure 3b) while oil
palm plantation exhibited moderate LAI value (LAI = 2.8 m2 m−2; Figure 3b). The rubber
monoculture plantation had the least LAI value (LAI = 2.3 m2 m−2; Figure 3b).
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3.3. Variation of Photosynthetic Capacity at the Top of the Canopy

OPP, RP and JRP exhibited similar Vcmax25 values at the top of the canopy (~69.4 µmol
CO2 m−2 s−1; Figure 4a)), while values of Jmax25 at the top of canopy ranged from 142 to
183 µmol electron m−2 s−1 among these three plantations (Figure 4b). At the top of the
canopy, the Jmax25: Vcmax25 ratio ranged from 2.1 to 2.7 µmol electron µmol−1 CO2 among
all the three plantations (Figure 4a,b), wherein both OPP and RP had a lower Jmax25: Vcmax25
ratio than the JRP (Figure 4a,b).

At the top of the canopy, Amax varied considerably among different plantations (10.3 to
24.1µmol CO2 m−2 s−1; Figure 4c), JRP had the highest values of Amax (24.1µmol CO2 m−2 s−1;
Figure 4c) and the OPP had the lowest values (10.3 µmol CO2 m−2 s−1; Figure 4c)—a similar
trend was observed for Jmax25 at the top of the canopy (Figure 4b). Like in the case of Vcmax25,
there were similar Rd values at the top of the canopy (~2.3 µmol CO2 m−2 s−1; Figure 4d)).

3.4. Area-Based Leaf Nitrogen Content and Leaf Mass Per Area

At the top of the canopy, the scaling method used in this study estimated the largest Na
value for the OPP, while it estimated the least for the RP and JRP (3.6 versus ~2.6 g N m−2;
Figure 5a). For the OPP, the estimated Na value at the top of the canopy via the scaling
method was underestimated compared to the field measurements (3.6 versus 5.6 g N m−2;
Figure 5a). However, there were little differences in Na values at the top of the canopy
between the scaling method and measurements for RP and JRP (Figure 5a).

In line with the field measurements, the scaling method used in this study estimated
the highest value of LMA at the top of the canopy for the OPP (133.5 g m−2; Figure 5a).
There was a considerable difference in LMA values at the top of the canopy between the
scaling method and measurements for JRP (117 versus 94 g m−2; Figure 5b).

From the lower part of the canopy to the top, Na values increased from 1.5 to
3.7 g N m−2 in OPP, whereas Na values increased from 1.43 to 2.36 g N m−2 in RB (Figure 1c,
Figure 5a). In the case of LMA, from the lower part of the canopy to the top, its values
increased from 54.5 to 133.5 g m−2, whereas LMA values increased from 45.9 to 75.8 g m−2

in RB (Figure 2c, Figure 5b).
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3.5. Within-Canopy Gradients for Forest Ecosystems

Forests had the lowest Kn value (0.15 m2 m−2) compared to oil palm plantations,
rubber plantations and jungle rubber plantations (Figure 3a). On the contrary, forests had
the highest leaf area index value (6 m2 m−2) compared to oil palm plantations, rubber
plantations and jungle rubber plantations (Figure 3b). The Na: Vcmax25_top ratio using the
scaling method is higher than the default CLM5 model (0.064 versus 0.05 g N s/µmol CO2).



Forests 2021, 12, 359 11 of 18
Forests 2021, 12, x FOR PEER REVIEW 11 of 19 
 

 

 
Figure 5. Comparison of leaf nitrogen content (a, Na_top) and leaf mass per area (b, LMA_top) esti-
mated at the top of the canopy via the scaling method with the measured values in OPP, RB and 
JRP. 

In line with the field measurements, the scaling method used in this study estimated 
the highest value of LMA at the top of the canopy for the OPP (133.5 g m−2; Figure 5a). 
There was a considerable difference in LMA values at the top of the canopy between the 
scaling method and measurements for JRP (117 versus 94 g m−2; Figure 5b).  

From the lower part of the canopy to the top, Na values increased from 1.5 to 3.7 g N 
m−2 in OPP, whereas Na values increased from 1.43 to 2.36 g N m−2 in RB (Figure 1c, Figure 
5a). In the case of LMA, from the lower part of the canopy to the top, its values increased 
from 54.5 to 133.5 g m−2, whereas LMA values increased from 45.9 to 75.8 g m−2 in RB 
(Figure 2c, Figure 5b). 

3.5. Within-Canopy Gradients for Forest Ecosystems 
Forests had the lowest Kn value (0.15 m2 m−2) compared to oil palm plantations, rub-

ber plantations and jungle rubber plantations (Figure 3a). On the contrary, forests had the 
highest leaf area index value (6 m2 m−2) compared to oil palm plantations, rubber planta-
tions and jungle rubber plantations (Figure 3b). The Na: Vcmax25_top ratio using the scaling 
method is higher than the default CLM5 model (0.064 versus 0.05 g N s/μmol CO2).  

  

Figure 5. Comparison of leaf nitrogen content ((a), Na_top) and leaf mass per area ((b), LMA_top) estimated
at the top of the canopy via the scaling method with the measured values in OPP, RB and JRP.

4. Discussion
4.1. Interspecific Variability in Photosynthetic Traits at the Bottom of the Canopy

In our study, the high Vcmax25 values for H. brasiliensis from monoculture rubber
plantation or jungle rubber plantation can be due to a high area-based leaf nitrogen content
(Figure 1c). It is worth noting that for the H. brasiliensis from monoculture rubber plantation
or jungle rubber plantation, our measured value of Vcmax25 (~45 µmol CO2 m−2 s−1) is
higher than the value reported by Kumagai et al. [74], who observed Vcmax25 values of
30 µmol CO2 m−2 s−1 at the bottom of the canopy. The difference in Vcmax25 can be linked
to differences in LAI, where our studied rubber plantation had much lower LAI than that
of Kumagai et al. [74] (2.3 m2 m−2 versus 3.89 m2 m −2). A low LAI could mean a high
canopy openness, more light penetration, and thus a high Vcmax25 at the lower part of the
canopy. The relatively low value of Amax (4.2 µmol CO2 m−2 s−1) for E. guineensis from oil
palm plantation at the bottom of the canopy is due to a lower value of Vcmax25 and Jmax25
(Figure 1a,b) and a relatively high Rd value (Figure 2b).

4.2. Light Extinction in the Canopy Profile

The high Kn value in oil palm plantation suggests that a relatively large amount of
light is extinct in the oil palm plantation compared to monoculture rubber plantation
or jungle rubber plantation. Subsequently, from the top to the lower part of the canopy,
photosynthetic capacity declines faster in oil palm plantation than monoculture rubber
plantation or jungle rubber plantation. Our estimate of Kn for forests (0.15 m2 m−2) is in
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agreement with the values from Kattge et al. [24] that showed variations from 0.13 to 0.23.
The Kn value for forests in this study is also closer to Bonan et al. [25] (0.11 m2 m−2), who
derived it from observations.

In general, the light extinction approach is more valid for spatially uniform plant
canopy than non-uniform plant canopy, as non-uniform plant canopy is usually character-
ized by a mosaic solar radiation pattern [75,76]. Therefore, for non-uniform plant canopies,
we posit that there could be uncertainties associated with estimating the photosynthesis
parameters at the top of the canopy using the up-scaling procedure used in this study.

4.3. Photosynthetic Trait Variability at the Top of the Canopy

The value of Vcmax25 estimated by the scaling method for E. guineensis at the top of
the canopy (Vcmax25 = 69 µmol CO2 m−2 s−1) is similar to those reported by Rival [77]
(Vcmax25 = 74 µmol CO2 m−2 s−1). For the monoculture rubber plantation, our estimate of
Vcmax25 at the top of the canopy (Vcmax25 = 73 ± µmol CO2 m−2 s−1) is closer to the value
reported by Kumagai et al. [74], who observed Vcmax25 values of 70 µmol CO2 m−2 s−1.
Our estimate of Vcmax25 at the top of the canopy for a potential forest ecosystem that consist
of the two native tree species (Vcmax25 = 36 µmol CO2 m−2 s−1) is comparable with values
reported from other tropical forest sites [28,78,79]. Overall, the higher Vcmax25 and Jmax25
of rubber trees and oil palms compared to the forest ecosystem that consist of the two
native tree species were in line with the findings of Leuning et al. [80], who reported that
these photosynthetic capacity parameters are more commonly higher in agricultural than
non-agricultural species.

In our study, the estimate of Amax of H. brasiliensis in the monoculture rubber plantation
at the top of the canopy was 16.8 µmol CO2 m−2 s−1—this value is slightly higher than the
value (Amax = 13.1 µmol CO2 m−2 s−1) reported on two-year-old rubber seedlings grown in the
field [81]. In the case of E. guineensis, the estimate of Amax at the top of the canopy was 10.3 µmol
CO2 m−2 s−1, which is slightly lower than Corley [82] (Amax = 14 µmol CO2 m−2 s−1).

The scaling method estimated the highest value of Amax (24.1 µmol CO2 m−2 s−1)
in the jungle rubber plantation at the top of the canopy. The reason for this is due to
a relatively high leaf nitrogen content (Figure 5a); this reason is also supported by the
measurements from the top of the canopy (Figure 5a) [43].

4.4. Limitations and Implications of Scaling Method Used in This Study

In this study, we did not perform diurnal integrative assessments of the light environ-
ment. This is important especially for studying diurnal patterns of photosynthesis, looking
at diurnal shading patterns and investigating the inhibition of photosynthesis, e.g., [83].
Our up-scaled values of photosynthetic capacity related traits from the lower part of the
canopy to the top of the canopy suffer from a couple of shortcomings. First, we used the
leaf area index estimates from the similar month, but from a subsequent year. Second, we
have studied only two native tree species from the jungle rubber plantation.

Our up-scaled values of photosynthetic capacity-related traits from the lower part of
the canopy to the top of the canopy matched reasonably well with the previous measure-
ments from our studied sites, e.g., [43] as well as from the literature [74,77]. This indicates
that our data can be integrated with the land surface models (e.g., CLM5) [72,73]. As an
example, for a potential tropical evergreen forest ecosystem, our estimated Na: Vcmax25_top
ratio using the scaling method was higher than the default CLM5 [72,73] model because
mainly the area-based leaf nitrogen content at the top of the canopy was 30% higher, as a
result of the scaling method than the default CLM5. It is worth noting that measurements
at our study sites indicate a 2-fold area-based leaf nitrogen content at the top of the canopy
compared to the default CLM5. The high Na: Vcmax25_top ratio suggests that if CLM5 is
parameterized with our estimates from the scaling method, the transpiration estimate of
CLM5 will have greater sensitivity than the default CLM5. We do acknowledge, however,
that the transpiration estimate of CLM5 is also sensitive to other parameters, such as the
stomatal slope that relates stomatal conductance to photosynthesis [73].
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5. Conclusions

We can conclude that the photosynthetic capacity-related traits measured at the lower
part of the canopy can be successfully scaled up to the top of the canopy, especially for
closed and uniform plant canopies. Future measurement efforts for species studied in
this study should focus on upper canopy locations, so that our study’s data-sets can be
combined and the variability of leaf traits in the vertical canopy profile can be investigated.
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Appendix A. Estimating Kn Values of Plantations

In a large-scale commercial oil palm plantation (LSCOPP) in Jambi, where Meijide
et al. [84] measured Vcmax25 in the vertical canopy profile, where the Vcmax25 value at the bot-
tom was 13.1 µmol CO2 m−2 s−1, while at the top of the canopy it was 42 µmol CO2 m−2 s−1.
Since the leaf area index at LSCOPP has been 3.64 m2 m−2 [85,86], we have

Vcmax(LAI) = Vcmax25_topexp(−KnLAI), (A1)

Substituting the known values in Equation (A1) results in

13.1 = 42 ∗ exp(−Kn3.64), (A2)

from which Kn value can be determined for the LSCOPP. We assume that the estimate of
‘Kn’ at LSOPP will be similar at our studied oil palm plantation site.

For the rubber plantation site (RPC) in Cambodia, where Kumagai et al. [74] measured
Vcmax25 in the vertical canopy profile, where Vcmax25 value at the bottom of the canopy was
30 µmol CO2 m−2 s−1 while at the top of the canopy it was 70 µmol CO2 m−2 s−1. Since the
leaf area index at the RPC is 3.89 m2 m−2 [74], substituting the known values in Equation
(A1) results in

30 = 70 ∗ exp(−Kn3.89), (A3)

from which Kn value can be determined for the RPC. As for the oil palm plantation case, we
assume that the estimate of ‘Kn’ at RPC will be similar at our studied rubber plantation site.

To determine ‘Kn’ values for forest site in Jambi, we used the value of Vcmax25 (53 µmol
CO2 m−2 s−1) as measured at the top of the canopy at a tropical forest site in Bariri,
Indonesia [87] to calculate the value of ‘Kn’. Lloyd et al. [59] analyzed many tropical forest
canopies and found that the Kn value scales with Vmax25 using the following relation

Kn = exp
(
0.00963Vcmax25_top − 2.43

)
, (A4)

https://github.com/ashehad/Photosynthetic_capacity_tropics/
https://github.com/ashehad/Photosynthetic_capacity_tropics/
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where high values of Kn results in steeper declines in photosynthetic capacity through the
canopy profile with respect to the cumulative leaf area index.

Finally, to estimate ‘Kn’ values for jungle rubber plantation, we summed the Kn values
of forests and rubber plantation and then halved it.

Appendix B. Leaf Area Index Measurements

A 50 m × 50 m plot was established by the EFForTS project in oil palm plantation,
rubber plantation, jungle rubber plantation and forest [42]. Each plot contained five sub-
plots measuring 5 × 5 m, which was unevenly laid at specific locations. LAI measurements
were conducted in May until mid-June 2018 at five positions in all five subplots established
within each of the plantation plot using the LAI-2200 plant canopy analyzer. LAI data were
obtained from above and below canopy readings taken simultaneously in each subplot
with two LAI-2200 devices. All measurements were taken with view cap-free wands under
diffused sky conditions. Optical sensors were covered and packed into its protective case
at the slightest detection of precipitation to avoid any potential optical damage to the
sensors and other sensitive parts of the device. Wands were always orientated towards
the magnetic north with the use of a compass (LI-COR, Inc., Lincoln, NE, USA2017). The
above canopy readings were captured by mounting a 10-second autolog wand (reference
sensor) facing the sky on a 2 m sturdy tripod with an accurate leveling bubble. This was
positioned in nearby open areas to the core plots of at least 200 m × 200 m range with
surrounding vegetation height less than 3.5 m to ensure a sensor’s view of the sky across
a wide azimuth [88]. The below canopy readings in each plot were taken concurrently
with that of the reference sensor at five positions within each subplot, to obtain accurate
measurement of canopy transmission (LI-COR, Inc., 2017). The distance between desig-
nated reference sensor locations (open areas) and core plots for below canopy readings
was less than 1 km, to ensure uniform sky brightness between the two-sensor locations
for canopy measurements. LAI values for subplots were averaged out for the respective
plantation plots.

Appendix C. Calculation of the Photosynthetic Capacity Using the Scaling Method

To estimate the value of Vcmax25 at the top of the canopy (Vcmax25_top) at our studied oil
palm plantation, we substituted the measured value of Vcmax25 at the bottom of the canopy,
and the derived value of Kn and the measured value of leaf area index at our studied oil
palm plantation in the following equation:

Vcmax25_top = Vcmax25/(exp(−KnLAI)) (A5)

A similar form of the equation was used to estimate values of Jmax25_top, Na_top,
Amax_top, Rd_top and LMA_top.

For our studied rubber plantation site, we substituted the measured value of Vcmax25 at
the bottom of the canopy, and the derived value of Kn and the measured value of leaf area
index at our studied rubber plantation in equation A5. We used a similar form of equation
A5 as was used to estimate values of Jmax25_top, Na_top, Amax_top, Rd_top and LMA_top for the
rubber plantation.

Using a similar approach (as in above), we estimated values of Vcmax25_top, Jmax25_top,
Na_top, Amax_top, Rd_top and LMA_top for jungle rubber plantation by using its Kn value and
the measured value of leaf area index. We also used a similar approach (as in above) to
estimate values of Vcmax25_top and Na_top for a potential tropical evergreen forest ecosystem
by using its Kn value and the measured value of leaf area index. To determine the Vcmax25
values at the lower part of the canopy for the potential tropical evergreen forest ecosystem,
we summed the Vcmax25 values of the two native tree species and then halved it. We
followed the same method to obtain the Na values at the lower part of the canopy for the
potential tropical evergreen forest ecosystem.
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