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Abstract: Every year forest fires destroy millions of hectares of land worldwide. Detecting forest fire
ignition in the early stages is fundamental to avoid forest fires catastrophes. In this approach, Wireless
Sensor Network is explored to develop a monitoring system to send alert to authorities when a fire
ignition is detected. The study of sensors allocation is essential in this type of monitoring system
since its performance is directly related to the position of the sensors, which also defines the coverage
region. In this paper, a mathematical model is proposed to solve the sensor allocation problem. This
model considers the sensor coverage limitation, the distance, and the forest density interference in
the sensor reach. A Genetic Algorithm is implemented to solve the optimisation model and minimise
the forest fire hazard. The results obtained are promising since the algorithm could allocate the sensor
avoiding overlaps and minimising the total fire hazard value for both regions considered.

Keywords: forest fires; wireless sensor network; optimisation; genetic algorithm; decision support

1. Introduction

Forest fires are a global problem, especially in the Mediterranean region. Portugal is by
far the Mediterranean country that has suffered the most due to forest fires, registering
on average of 141,007 ha burned per year between 2009 and 2018 [1,2]. Although the
Mediterranean region was considered highly fire-adapted due to historical occupation context,
the contemporary societies have not fully adapted to balancing fire hazard risk and resource
needs on the region [3,4]. Thus, today, this type of environmental catastrophe has severe
damage not only for flora and fauna but also for economics and loss of human lives.

The origin of forest fires may have different sources, natural or not. Although, as
a general rule, globally only around 4% of all forest fires have natural causes, such as
meteorological factors. In all other cases, humans are responsible for the fires, deliberately
or due to heedlessness [1]. In Portugal, the majority cause of the fire events is human origin,
whether caused by accident, negligence or arson [5]. The greatest number of the wildfires
and burnt area is concentrated in agricultural areas (47% and 55%) and artificial surfaces
(36% and 27%) while only a small fraction of these statistics respect to wildfires started in
forests (13% and 18%) [5]. Thus, areas with greater fire risk, such as farmland reclamation
and roads, should be monitored for key prevention and control.

The forest environment is composed of trees, leaves, dry, and wood, which facilitate
the quick spread of fire and difficult the control in a short time [6], which also depends on
the weather condition during fire ignition and the fire spread. Furthermore, the forest is an
environment with several risks and uncertainty, since it involves large dimensions, irregular
and remote lands, and many obstacles, such as trees, rivers, and animals. The development
of decision support tools, like a forest monitoring system, is a way to provide support in
management, planning, resources allocation, and pre-fire planning to the authorities [7,8].
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The project Forest Alert Monitoring System (SAFe) proposes a monitoring system for
the "Serra da Nogueira” region, located in the North of Portugal. This project proposes a
set of innovative operations to reduce the alert time of forest fire ignitions and contribute
to the local surveillance systems, supporting firefighters and civil protection with more
details and real-time information. Thus, modules of wireless sensors will be spread in the
forest to collect data about humidity, temperature, UV index, and flame presence. These
data are evaluated by an intelligent and autonomous system and alerts messages are sent
when a fire ignition is identified. In the absence of fires, this system will allow monitoring
the forest parameters, such as temperature, humidity, UV index, and soil moisture, through
the data collected by the sensors.

However, installing sensors in large areas is chaotic and laborious if an optimised
strategy is not established to define the optimum position to allocate each sensor. Thus,
this paper concentrates efforts to determine the optimal position for sensor allocation
considering the sensor coverage limitation, the distance and the forest density interference
in the sensor reach.

2. Related Work

Wireless sensor network (WSN) is a current technology used in several fields [9]. Their
capabilities for monitoring large areas, accessing remote places, reacting in real-time allows
its use in forest fire system detection [10]. The sensor measures physical parameters, such as
changes in barometric pressure, humidity, and temperature, solar radiation, and chemical
parameters, such as carbon dioxide, carbon monoxide, and nitrogen dioxide [11,12]. In the
forest environment, the use of WSN has become more prominent in recent years since they
can detect a small flame that characterises the initial stage of a forest fire. Nevertheless, if the
forest components were not enough, the WSN on forest involves other challenges, such as
data transmissions, sensors’ power, and optimal location to install them.

The amount of data and uncertain of the forest environment tend to be chaotic for
some approaches, thus, algorithms are required for data processing and provide solutions
optimised. Genetic Algorithm (GA), Support Vector Machine (SVM), Random Forest, and
many others are some examples of techniques widespread in the forest protection context.
A system based on genetic algorithm and geometric semantic genetic algorithm is proposed
in Reference [13], which uses drought factor, temperature, relative humidity, and wind
to predict the fire spread during a forest fire. A novel algorithm for multiple wireless
sensors allocation and for solving the coverage problem on a large-scale is presented in
References [14,15] to design a system for early detection of forest fires by WSN. The system
uses Fine Fuel Moisture Code (FFMC) and the Fire Weather Index to model the forest fire
detection as a k-coverage problem. Another relevant approach is found in Reference [16],
which GA is uses as a feature selection technique to obtain a set of variables that have a high
relation with forest fires. Thereafter, two data mining methods, Random Forest and SVM,
were used to produce forest fire susceptibility maps, considering the selected variables.

Some models and algorithms are addressed to modelling fire propagation in order to
minimise the forest fires damage. The systems presented in References [17–19] incorporate
topography, vegetation and meteorological conditions to predict the forest fire spreading.
The work presented in Reference [20] applies GA to define the optimum fireline and
location of firefighters on the landscape which minimises the forest fire damage. This
model evaluates strategies and guides the search direction to obtain the best fireline
construction strategy that minimises the total burnt area. Monte Carlo simulations were
also used to incorporate the uncertain conditions of weather and imperfect knowledge
about vegetation topographical conditions.

In most cases, the data used in the monitoring systems are collected by sensors. The
position of these sensors can determine the quality of the data and the accuracy of the
system. Thus, defining the optimal position of each sensor by optimisation tools can
provide substantial improvements to the system since the monitoring system’s robustness
depends on how the data and constraints are handled. In the present work, a wireless
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sensor is considered to collect data to be processed by a system for alerts generation when
a fire is detected. The forest sensor allocation issue is treated as an optimisation problem,
and a GA is used to solve the problem and establish the sensors’ optimal position. The
optimisation problem considers technical and environmental constraints as sensor reach
limitation, the number of available sensors, fire hazard, and the forest density.

3. The Area of Study

The methodology developed in the SAFe project will be implemented in the North
region of Portugal, more specifically in the “Serra da Nogueira”, belonging to the mu-
nicipality of Bragança. The monitoring system’s total coverage area is expected to be a
radial 10 km. The QGIS software [21] is used as a visualisation base, and with this software,
it is possible to use the data with information on Fire Hazard and Forest Density in the
study area. These data are provided by ICNF [2] and Copernicus [22], respectively, and the
next subsections it will be described how these data are generated by these entities. The
coordinate system has the ETRS89/PT-TM06 (EPSG:3763) UTM Zone 29N standard with
Mercator Transverse Universal projection, the unit of measurement used is in meters.

Two experimental regions of "Serra da Nogueira” were chosen to test the mathematical
model and the algorithm behaviour in different situations. Each region was strategically
defined due to its heterogeneity, such as different fire hazards, density levels, and road
presence or not. The results obtained will guide the SAFe project into the improvement and
the expansion of the monitored area. In addition, it will provide for the literature, replicable
manner to allocate sensor into the forest. Region 1 is approximately 253,000 m2, and it is
illustrated in Figure 1a, whereas Region 2 is 246,875 m2, and it is illustrated in Figure 1b.

(a) Region 1. (b) Region 2.
Figure 1. Forest experimental regions.

According to local firefighters, a significant part of the fires in the "Serra da Nogueira”
are intentionally provoked by human actions, and they start near the roads, in areas with a
high concentration of trees. Thus, Region 1 considers 2.3 km of road, in which the 50 m next
to each side of the road, are considered regions of high probability to start a fire ignition. In
contrast, Region 2 characterises the forest’s interior, further of road, so, a situation opposite
to Region 1.

To define the optimal sensor modules’ position, besides the sensor technical character-
istics, two critical parameters are considered to develop the optimisation model: fire hazard
and forest density. For both regions, the information of fire hazard and forest density
parameters were provided by QGIS [21].

3.1. Fire Hazard

The fire hazard refers to the probability of potentially destructive phenomena, consid-
ering a time interval and a specific area [23,24]. Thus, the fire hazard can be described as
the probability of occurrence associated with the conditions of the territory. Therefore, the
two components (time and space) encompass the probability of the event occurring, whose
calculation can be based on the existing history; they also encompass the susceptibility,
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which addresses aspects related to the territory for which the phenomenon is being studied.
In the case of forest fires, a given area will be more susceptible the better it allows the
deflagration and/or the progression of the fire [24,25]. Nevertheless, in the fire risk analysis,
the hazard refers to the introduction of the fire source, and the fuel load location refers to
the vulnerability of the fire.

The fire hazard map is public information that is useful to support a decision in
preventive actions since it is possible to identify the location with the highest fuel load.
That is, it allows to identify the hazard of a forest ignition of each region. According to
Reference [24], it is possible to elaborate a probability with the three crucial parameters
(mentioned before) and estimate a scale from 0 to 5. In this way, level 0 indicates a low fire
hazard, and level 5 indicates a high hazard fire. The fire hazard of the regions is indicated
in Figure 2a for Region 1 and Figure 2b for Region 2.

(a) Region 1. (b) Region 2.
Figure 2. Fire hazard maps of the forest regions.

3.2. Forest Density

The forest density is a parameter related to the quantity of vegetation in a specific
area. In this work, the forest density varies from 0 to 100, where 0 indicates no presence
of vegetation and 100 indicates a high concentration of vegetation in 40 m2. These values
are obtained using the map from the European satellite named Sentinel-2 created by the
Copernicus program [22]. Figure 3a indicates the forest density of Region 1, and Figure 3b
indicates the forest density of Region 2.

(a) Region 1. (b) Region 2.
Figure 3. Forest density maps of the forest regions.

4. The Optimisation Problem

The problem of sensor allocation can be treated as a nonlinear optimisation problem
where a limited forest region should be monitored by a set of sensors (ns sensors). This
kind of problem involves technical and environmental constraints. The technical constraints
refer to the sensors, such as the sensors’ number available and their ability to identify and
cover a given place on the forest at a certain distance. On the other hand, the environmental
constraints refer to the forest characteristics, as forest density f d and the fire hazard f h of each
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point. It is essential to highlight that many sensors are available on the market with different
characteristics, so a robust optimisation model should work with different sensor constraints.

A sensor has a limited capability of coverage, which depends on the sensor’s technical
specifications. Nevertheless, as closer a given forest point pi is to the sensor sj, as higher will
be the protection. Besides, in the forest environment, the sensor’s coverage also depends
on the forest density where the sensor sj and the point pi are located. Trees are barriers that
block the sensor range. A point pi has a higher level of coverage if it has a small distance
(dji) from the sensor sj, and both points have low forest density.

The fire hazard values vary as the point localisation, and it has values between [0, 5].
The fire hazard of a point pi was obtained by fire hazard maps. For example, according
to the local firefighters and civil protections, some regions should be prioritised in a
monitoring system due to environmental aspects, lives, or economic issues. Thus, these
priority regions should have higher fire hazard than the others less critical.

In this work, it is considered that each sensor is capable of covering points in any
direction, i.e., in 360 degrees. When a sensor is assigned to a point, not only the fire hazard
associated with that point is reduced but also the fire hazard of the points inside the sensor
coverage reach. This reduction is linear, and it depends on the weight that the distance
and forest density constraints exert on the sensor reach. To illustrate the problem, consider
Figure 4, in which two fire hazard levels are considered, represented by blues and reds
points. In this case, three sensors were assigned. As illustrated, the points closest to the
sensor has a better coverage level than the points further, but still inside the sensor’s
coverage reach. At the same time, the most distant points are not covered by any sensor.
Furthermore, there are situations that even near the sensor, the point is not protected since
the sensor reach is blocked due to high forest density interference, as occur in some points
near the sensors s2 and s3.

However, two sensors can also cover the same point, as illustrated by the sensors s1
and s2, which have a common point of coverage. In this situation, two conditions can occur:
the overlap value is smaller than the fire hazard value (i.e., even covered by two sensors
the fire hazard is still positive at that point); or the overlap value is higher than the fire
hazard value, it is the point that has an excess of coverage (i.e., the fire hazard is negative
in that point). From the point of view of the optimisation problem, it should be avoided
the overlap coverage situation to promote the null forest hazard values in the maximum
possible points. Besides, it is vital to highlight the sensor s3 covers two equidistant points,
so the distance interference in the sensor reach is the same for both points. However, the
red point is located in a higher density area, so it has a lower coverage level than the blue
point, which is not influenced by forest density.

Figure 4. Forest simulation.

Thereby, there are four situations that can describe a point, after all sensors are assigned:

• Case 1: the point pi is not covered by any sensor ( f h
i ≥ 0).
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• Case 2: the point pi is covered and its fire hazard is completely eliminated either
because a given sensor or due to a set of sensors ( f h

i = 0).
• Case 3: the point is covered by a sensor but the fire hazard is not completely eliminated

( f h
i > 0).

• Case 4: the point is covered more than it needed, by a set of sensors - overlap coverage
( f h

i < 0).

Therefore, this optimisation problem aims to minimise the fire hazard sum of each
region considered in this work. In this way, the sensor allocation problem will be described
as a single-objective optimisation problem. Each forest region is mapped according to the
forest density and the fire hazard of each point. Moreover, each region is filled by a grid of
points pi, with a linear spacing of 5 m between each point. Thus, with these points will be
possible to determine the optimum location to place a given sensor sj.

The forest region is given by a map of points pi = (xi, yi) associated to the Cartesian’s
coordinates, the forest density in each point f d

i ∈ [ f d
min, f d

max] and the forest hazard in each
point f h

i ∈ [ f h
min, f h

max]. The Table 1 represents the study region map.

Table 1. Forest density and fire hazard map.

f d
i f h

i xi yi

0 5 105, 148 232, 532
69 5 105, 158 232, 514
23 4 105, 249 232, 528
...

...
...

...

The priority areas to be monitored are associated with a higher fire hazard. In this
sense, a given sensor sj can be placed on a point pj, for j = 1, ..., np, with a given coverage
that depends on the forest density and fire hazard parameters. When a sensor sj, for
j = 1, ..., ns, is assigned to a point pj, it is necessary to identify which points pi are covered
by this sensor, and consequently, how much the sensor coverage reduces the fire hazard
associated to the point pi. To define if a sensor covers a point, firstly, the Euclidean Distance,
dji, between the sensor sj, placed on the point pj, and a given point pi is evaluated by
Equation (1).

dji = ||pj − pi||2, for j = 1, ..., ns and i = 1, ..., np. (1)

The coverage sensor distance function depends on the forest density of the sensor
position f d

j , the forest density of the point f d
i , and the sensor maximum covered distance

dmax. Thereby, the coverage sensor distance is given by Equation (2).

CD(pj, pi) = CDji = dmax

(
1−

f d
j + f d

i

2 f d
max

)
. (2)

If the distance (dji) between the sensor located on pj to the point pi is smaller than the
coverage sensor distance CDji, that is Equation (3),

dji ≤ CDji, (3)

the point pi is covered by the sensor sj placed on pj position. In this case, it is necessary to
define the level of coverage, establishing the fire hazard reduction on the point pi. The fire
hazard reduction function Hji, expressed by Equation (4), depends on the locations of sj,
placed on pj, and also the point pi location.

H(pj, pi) = Hji =
wmax f h

max − wmin f h
min − wji( f h

max − f h
min)

wmax − wmin
, (4)
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where f h
max is the maximum fire hazard, f h

min is the minimum fire hazard, and wmax and
wmin are the maximum and minimum coverage distance, respectively. The value wji refers
to the interference produce by the distance dji and the forest density f d

j and f d
i , and both

quantities dji and dmax − CDji have the same range of values. The wji value is calculated as
the average of both values as expressed on Equation (5).

wji =
dji + (dmax − CDji)

2
. (5)

The fire hazard value on the point pi is updated with the fire hazard reduction,
associated to the sensor sj coverage, according to the following function, in Equation (6).

f h
i = f h

i − Hji. (6)

When f h
i is positive, it means no sensor covers the point pi or the coverage level

received by a sensor or a set of sensors sj is not enough to completely eliminate the fire
hazard of the point pi. If the f h

i is zero, the point is fully covered by a sensor or a set of
sensors. Finally, when f h

i is negative, it means that more than one sensor is covering that
point, resulting in excess coverage (overlap). The overlap of the sensor range must be
avoided.

Thereby, the optimisation problem aims to identify the best sensor locations x =
(s1, ..., sns) with sj ∈ {p1, ..., pnp} for j = 1, ..., ns in order to cover as much area as possible,
using a fix quantity of sensors, and avoid unnecessary overlap of sensor range. Thus,
optimisation problem is defined by Equation (7).

min
x

z(x) =
np

∑
i=1

max
(

f h
i , 0
)
+ σ max

(
− f h

i , 0
)

, (7)

where σ > 0 is a fix the penalty parameter.

5. Genetic Algorithm

In this study, the GA is applied to solve the optimisation problem of sensor allocation.
GA is an optimisation technique based on population evolution, which is inspired by
the principles of genetics and natural selection [26]. GA’s basic idea is to create feasible
individuals solutions to form the initial population with dimension N. After that, genetic
operators, such as selection, crossover, and mutation, are applied to every population to
obtain new individuals, better than the previous ones. The individual’s evaluation is done
by the objective function (fitness function) that describes the optimisation problem. The
value provided by the objective function defines how well an individual is adapted to solve
the optimisation problem. This process is repeated iteratively until a solution satisfies a
predefined termination criterion [27].

The individual of the GA population is the vector x = (s1, ..., sns), sj ∈ {p1, ..., pns} for
j = 1, ..., ns, with the locations to allocate the ns sensors. Each place pj = (xj, yj) has the
Cartesian’s coordinates of the candidate to allocate the sensor. When a point is selected to
receive a sensor, the fire hazard associated to this point is completely eliminated and the
hazard of the points near to the sensor have the fire hazard decreased linearly.

Suppose the distance between the sensor and the point is smaller than the sensor view
(Equation (3)); this means the sensor covers the point, so the hazard of this point should be
reduced. This reduction is evaluated by Equation (4), which ponders linearly the distance
between the sensor and the point and also the forest density interference. The total fire
hazard is calculated using Equation (7). The GA developed is presented in Algorithm 1.

As stop criteria, it was considered the maximum number of iterations (Nmax), function
evaluations, and the similarity between the successive solutions (NSSmax).
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Algorithm 1 : GA to solve sensors allocation problem

Consider the candidates points pi, the forest density f d
i and fire hazard risk f h

i
Fix the number of sensor available
Fix the sensor parameters dmin, dmax, f h

min, f h
max, f d

min, f d
max, wmin, wmax and σ.

k = 0
Generates the population of individuals Npop.
while stopping criterion is not met do

k = k + 1;
Apply selection procedure in N using z function.
Apply crossover procedure to the N/2 best elements.
Apply mutation procedure to the N/2 best elements.
Select the N best individuals of all individuals using z function.

end while

6. Numerical Results

The SAFe project intends to implement a set of sensors on tree trunks, so at least
one tree is required on the point indicated by the algorithm to allocate a sensor. Besides,
intentional fire forest starts typically in regions with high forest density, according to the
forest local surveillance personal. In this sense, only points with forest density over or
equal to 80 were considered candidates to receive a sensor. This value ensures there are
trees in the region appropriated to fix the sensors. It also was limited the fire hazard, so, for
Region 1, it was considered the points with fire hazard equal to 4 or 5. While in Region 2, it
was considered a fire hazard value between 2 and 5.

Two types of Sensors Module, named A and B, are considered. The Sensors Module
A are less robust, and they can cover a distance between 0 m and 50 m, depending on the
forest density interference. On the other hand, the Sensors Module B can cover between
0 m and 100 m, also varying according to forest density interference. Both modules perform
communication (sending and receiving information) using LoRaWAN [28]. technology. In
this way, it is possible to obtain long-range communication with reduced operating costs
since LoRaWAN does not have monthly operating costs for business plans. The design of
these modules also considers energy autonomy, as they will be installed in regions that are
difficult to access and, therefore, carrying out periodic maintenance could be impracticable.
Based on this, the modules have batteries that last for approximately six months. There
is still the possibility that Sensors Module B can be installed with a solar panel, further
extending the recharging period of its battery [11]. There are available 50 units of Sensors
Module A and 10 units of Sensors Module B.

The results obtained by the optimisation model and the algorithm proposed were
obtained using an Inter(R) Xenon(R) W− 2195 CPU @2.30 GHz with 32 GB of RAM and the
Software MATLAB R2020a [29]. The parameters used for the optimisation problem were
σ=50, f d

min = 0, f d
max = 100, f h

min = 0, f h
max is the initial hazard of the point pi, dmin = 0 and

dmax varies according to the sensor type, being dA
max = 50 for the sensor A and dB

max = 100
for the sensor B. The parameters used for the GA termination criterion are Nmax = 1200
and NSSmax = 50. Since GA is a stochastic method, the algorithm was executed five times
for both regions.

The iteration with a smaller objective function value is considered the optimum
solution for the problem. The results also analysed the iterations number, overlap value,
and the final fire hazard sum after the sensor’s allocation.

6.1. Results Obtained in Region 1

Region 1 describes a road area with a high incidence of fires. It is composed of 3507
points, which means 3507 possibilities to allocate 50 Sensors Modules A and 10 Sensors
Modules B, and it has a total fire hazard equal to 15,098. Table 2 presents the algorithm
results for this region. The average of the executed runs’ objective function was 13,099,
needing 1082 average iterations. It is possible to observe that the obtaining overlap is
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between 0 and 0.1304. Comparing the runs, the third one had the smallest objective
function value and the smallest sum of fire hazards after the sensor’s allocation. In this
run, the sensors’ location produces an overlap equal to zero, which means that no waste
of sensor coverage occurs, so the maximum area covered by the set of the sensor was
established, considering the problem constraints.

Table 2. Algorithm results for region 1.

Runs Obj. Func. Iterations Overlap Final Fire Hazard

1 13,084 1201 0,0000 13,084
2 13,201 715 0,0243 13,199
3 13,042 1198 0,0000 13,042
4 13,083 1093 0,1304 13,077
5 13,087 1201 0,0000 13,087

Observing Figure 5 is possible to analyse that the initial sum of fire hazard was 15,098.
As the GA population evolves, the fire hazard is minimised. At the last iteration, the final
fire hazard value is 13.042, resulting in no overlap. The sensor spreading proposed by the
GA is illustrated in Figure 6 on the fire hazard map. By this arrangement, it is possible to
reduce 2056 units of the fire hazard on Region 1, which corresponds to a decrease of 13.62%
of the total fire hazard.
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Figure 5. Objective function behaviour of the optimum solution for Region 1.

The gap (white points) in Figure 6 are points that do not satisfy the fire hazard, or the
forest density imposed restrictions. As can be seen, the algorithm can spread the sensor
inside the region defined to be monitored, avoiding overlap.

6.2. Result Obtained in Region 2

Region 2 has the aim to evaluate the algorithm performance in the interior of the forest.
In this case, there are 4690 possible points to locate 50 Sensors Modules A and 10 Sensors
Modules B. In this region, the total fire hazard equal to 19, 660. The results of five runs are
shown in Table 3. The average of the executed runs’ objective function was 17, 624, needing
948 average iterations. It is possible to observe that the obtaining overlap is between 0.0343
and 0.5537. So, even though overlap values different from zero, it is possible to say the
sensor’s capacity is very well-used due to the low overlap values found.
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Figure 6. Optimum solution to spread sensor on Region 1.

Table 3. Algorithm results for Region 2.

Runs Obj. Func. Interactions Overlap Final Fire Hazard

1 17,595 1144 0,2177 17,584
2 17,627 849 0,1969 17,618
3 17,602 1031 0,1141 17,596
4 17,614 1143 0,5537 17,586
5 17,684 572 0,0343 17,682

The best run was verified on the first execution, which presented the smallest objective
function value and the smallest sum of fire hazards after the sensor’s allocation. At the
optimum solution, the overlap is equal to 0.2177. The objective function behaviour of the
best execution is presented in Figure 7. The initial sum of forest hazard is equal to 19,660,
and at the last iteration, the value of 17,584 is attached.

The sensor spreading proposed as optimum solution is illustrated in Figure 8 on fire hazard
map. Similar occurs in the first region, the gaps are points that do not satisfy the fire hazard or
the forest density restrictions. By this arrangement, it is possible to reduce 2076 units of the fire
hazard on Region 2, and this value corresponds to 10.56% of the total fire hazard.

0 200 400 600 800 1000 1200

Iterations

1.74

1.76

1.78

1.8

1.82

1.84

1.86

1.88

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n
 V

a
lu

e

104 Objective Function

Figure 7. Objective function behaviour of the optimum solution for Region 2.
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Figure 8. Optimum solution to spread sensor on Region 2.

It is possible to see, in Figure 8, sensors significantly closer to each other, which
can lead to the erroneous conclusion that the proposed sensor allocation could generate
unnecessary overlaps. However, in situations like this, it is verified high forest density
interference on the sensor reach, making the same for the objective function to allocate
sensors near or far from each other. Besides, it is possible to validate this by the overlap
value, which is near zero in all executions.

7. Conclusions and Future Work

Protecting forests is an emerging issue worldwide, given the enormous importance
of these ecosystems to the planet. An efficient forest fire monitoring system is essential to
reducing wildfire damage and supporting firefighters in decision-making when ignitions
are detected. Therefore, the SAFe project proposes developing a forest monitoring system
to send alerts when a fire ignition is detected. This study was addressed to define the
optimum sensor allocation into two experimental regions. For this, an optimisation model
is proposed, and a GA is implemented to provide the optimum solution to solve the sensor
allocation problem.

The information about forest fire hazard and forest density is used as forest constraints.
The sensors’ characteristics (type, quantity available, and maximum distance reach) were
also considered in the model. Some data filters on the fire hazard and the forest density
values were necessary to characterise the "Serra da Nogueira” problem and make the
algorithm process a little challenging. The main purpose is to get a fire hazard equal to
zero, but it is impossible due to cost, forest, and equipment constraints. Furthermore,
considering the overlap value is always equal to or very close to zero, it is possible to
conclude that the algorithm could use the maximum sensor resources and spread them to
monitor the forest regions.

Due to the choice of two regions, composed of different characteristics, it was possible
to evaluate the methodology under different conditions. For both regions, the algorithm
indicates the optimum points in order to spread the sensors within the monitored region,
avoiding overlaps. Some sensors were allocated very near each other, in regions with
high forest density, since in these regions the sensor’s range is reduced to the minimum,
promoting numerous optimal solutions in the optimisation problem. It was mainly noticed
in Region 2 that the algorithm prioritises the points with a high fire hazard.
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Most models and algorithms are developed for specific forest regions, which are
difficult to reproduce. Thus, it is essential to highlight that model and the algorithm
developed in this paper can be easily replicable in different regions and sensors with distinct
conditions. It is intended to expand the monitored area into "Serra da Nogueira" using
parallel computation to reduce the computational cost since 10 km of a radial area provide
an enormous quantity of possibilities to allocate sensors, which is hard to process. Besides,
a new mathematical model will explore a multi-objective optimisation solution. This
model will embed the sensor costs and the impacts of different quantity of sensors into the
monitored region. In addition, it will provide a new strategy of decision support to manage
the optimum quantity of sensors and their allocation into the forest monitoring problem.
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