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Abstract: The Taxodium hybrid Zhongshanshan fast-growing species is susceptible to environment
and gravity to form reaction wood. In this study, individual growth rings of reaction wood are
used as subjects, and an individual growth ring is divided into three zones: compression zone (CZ),
lateral zone (LZ), and opposite zone (OZ). The microanatomical structure and chemical properties
of the tracheids in CZ, LZ, and OZ forms by the inclined or bent growth of T. Zhongshanshan are
comparatively analyzed by using optical microscopy, scanning electron microscope, laser confocal
microscopy, and Raman imaging techniques. In CZ, the length and diameter of compression wood
(CW) tracheids decreased, and the shape of cross-sections became rounded as compared to the OZ
and LZ tracheids. More notably, threaded fissures appeared on the cell wall of tracheids, and the
thickness of the cell wall increased in CW. The analysis of tracheids’ cell wall structure showed that
CW tracheids had a complete outer secondary wall middle (S2L) layer, but had no secondary wall
inner (S3) layer. In the transition zone (TA) between CW and normal early wood, tracheids were
divided into compressed and normal tracheids. Despite the compressed tracheids having a similar
cell morphology to normal tracheids, they had a thin secondary wall S2L layer. Tracheids in LZ had
a thin S2L layer only at the angle of the cell. No S2L layer was seen in the cell wall of OZ and CZ
late wood tracheids. It can be concluded that the response of lignin deposition location to external
stress was faster than the change in cell morphology. The above results help provide the theoretical
basis for the response mechanism of T. Zhongshanshan reaction wood anatomical structures to the
external environment and has important theoretical value for understanding its characteristics and
its rational and efficient usage.

Keywords: Taxodium hybrid Zhongshanshan; compression wood; cell wall structure; chemical
properties; microanatomical structure

1. Introduction

Compression wood (CW) is an abnormal wood tissue in trees. It is a kind of wood
tissue with a special anatomical structure and chemical composition formed in the original
growth position when the trunk or branch bends under the action of external force during
the growth of trees [1,2]. These trees with special tissues are called reaction wood. Fast-
growing trees easily form reaction wood, and thus, the amount of reaction wood is extensive.
Reaction wood has different mechanical and physical properties due to changes in its
physical and chemical properties, including differences in fiber properties, workability,
deformation, and strength [3]. The wood defects of compression wood such as high
lignification seriously restrict the processing and utilization of high-quality plantation
wood [4]. The Taxodium hybrid Zhongshanshan is an improved tree species obtained
via artificial hybridization at the Institute of Botany, Jiangsu Province, and the Chinese
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Academy of Sciences. The T. Zhongshanshan has good strength and rigidity properties
and can be used as outdoor timber or building timber after processing [5]. However, CW
accounts for a large proportion of the fast-growing lumber of T. Zhongshanshan, and it is an
unwanted raw material for wood-based panels, pulp, and paper [6]. The high lignification
of CW makes it difficult to pulp or bleach, but it also increases the resistance of the cell wall
to compression damage [7,8]. Therefore, the study of the structural characteristics of CW
will contribute to the cultivation and processing of the tree species.

As compared to normal wood, CW has very significant differences in cell structure,
and opposite wood (OW) has similar properties to normal wood [9]. The tracheids are the
most significantly altered structure in the anatomical configuration of reaction wood, and
the structure of parenchyma cells is not altered [10]. CW has mainly consisted of rounded
tracheids with thicker cell walls. These rounded tracheids form intercellular spaces, and
their inner walls have helical cavities [11]. Accurate classification and characterization of
CW in reaction wood cross-sections are necessary as a prerequisite for any CW testing
method [12]. In the literature, CW has been classified into three classes: mild compres-
sion wood, moderate compression wood, and severe compression wood [13]. With the
development of research, CW was more carefully classified according to the severity of
spiral check, cell wall thickness and the outer secondary wall inner middle (S2L) layer
ultraviolet absorption (Spontaneous Fluorescence of Lignin), and other anatomical charac-
teristics [14]. The most significant characterization of compression wood is the occurrence
of an excessively lignified S2L. In fact, CW is a series of changes that form a continuum
between normal wood and severely compressed wood, and there is no distinct border
between normal wood and CW [15,16]. CW tracheids have the highly lignified S2L layer
and lack the secondary wall inner (S3) layer of the secondary wall [17,18]. As the degree
further lowers, there is a discontinuous S2L layer in the tracheid cell walls [19]. Then, the
cell wall composition is a useful quantitative chemical indicator to assess the degree of
CW [20], and changes in the anatomical and chemical characteristics of secondary xylem in
reaction wood are related to lignin in the cell walls [21]. Compared with OW, tracheids in
CW have a highly lignified outer S2L layer, and the lignin concentration in the thinner S1
layer and compound middle lamella (CML) decreased [22]. Confocal Raman microscopy
can successfully reflect the distribution of lignin in the wood cell walls [23]. Chemical
imaging by confocal Raman microscopy can emphasize the highly lignified S2 outer layer
in CW [19,24]. Fluorescence lifetime imaging of lignin autofluorescence has been shown to
characterize changes in lignin distribution in reaction wood [25].

In previous studies, reaction wood was usually used to investigate the anatomical
characteristics of its CW and OW [26]. In contrast, the lateral wood (LW) between OW and
CW was considered normal wood, and has mostly similar characteristics to OW [27,28].
Few studies have focused on OW or LW itself or compared OW or LW with CW [29]. In fact,
even within a limited area of reaction wood, there are substantial differences in the degree
of development of the compressed tracheids in terms of characteristics [30]. Exploring the
development of compressed tracheids in different regions of the reaction wood can improve
the utilization of the reaction wood by avoiding severely compressed wood during the
use process.

In this study, a more detailed partitioning of the reaction wood on cross-sections was
carried out. As shown in Figure 1, the individual growth ring was divided into three types
of zones: compression zone (CZ), lateral zone (LZ), and opposite zone (OZ), and the cell
wall structure of tracheids in each zone was analyzed to study the lignin distribution. The
study of microstructural characteristics of wood and its variability helps in understanding
the growth pattern of trees and the relationship between growth and wood properties.
It is also essential for species selection and the rational and efficient utilization of wood
(e.g., pulp and paper, biofuel applications, etc.).
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Figure 1. Reaction wood sample illustration. Compression zone (CZ), lateral zone (LZ), and oppo-
site zone (OZ) in an individual growth ring of Taxodium hybrid Zhongshanshan. Compression wood 
(CW) and transition area (TA) are in the CZ. The wood in OZ is called opposite wood (OW), and 
the wood in LZ is called lateral wood (LW). 

2. Materials and Methods 
2.1. Materials 

Five leaning-grown T. Zhongshanshan trees of 14-year-olds were obtained from the 
National Zhongshan Fir Breeding Base in Jingjiang City, Jiangsu Province 
(31°51′~32°10′N, 120°00′~120°33′E). As shown in Figure 1, experimental woods were taken 
from the reaction wood bend (2–2.5m above the ground), 12nd–13th growth ring. In the 
cross-section of the reaction wood, CW is distributed in strips along the growth ring, with 
a dark brown color; the early wood in CZ, OZ, and LZ is light yellow. The wood in the 
opposite zone is called opposite wood (OW), and the wood in the lateral zone is called 
lateral wood (LW). CZ includes CW and transition area (TA), and TA is the area between 
the normal early wood tracheids and CW tracheids. 

2.2. Microstructure Observation 
Small wood blocks with the dimensions of 5 mm × 5 mm × 5 mm (longitudinal × 

radial × tangential) were cut from CZ, LZ, and OZ for microstructure observation. The 
slices with the thickness of 12 μm on the cross, tangential, and radial sections were pre-
pared using a microtome after the wood blocks were softened in boiling water for 12h. 
The slices were then stained with a 1% pink stain, and those slices were then observed by 
an optical microscope (BX51, OLYMPUS, Tokyo, Japan). 

The residual wood blocks after slicing were subsequently dried in a frozen dryer (−55 
°C, 0.05 mbar) for 48 h. The microstructure of these samples at different locations was 
examined using a scanning electron microscope (SEM) (Quanta 200, FEI, Hillsboro, Ore-
gon, USA), operating at an accelerating voltage of 25kV. 

2.3. Roundness Value of Tracheid Measurement 
As shown in Figure 2, the captured cross-sectional micrographs were converted to 

binary images using Image J software. The cell walls were automatically selected using 
the lowest grey threshold method to determine a clear boundary between the cell wall 
and the cell cavity. Then, data on the roundness values and the ratio of the long and short 
axes of the inner contour of the tracheid cell wall calculate and obtain. The roundness 
value of the tracheid is calculated as follows [31]: 

Figure 1. Reaction wood sample illustration. Compression zone (CZ), lateral zone (LZ), and opposite
zone (OZ) in an individual growth ring of Taxodium hybrid Zhongshanshan. Compression wood
(CW) and transition area (TA) are in the CZ. The wood in OZ is called opposite wood (OW), and the
wood in LZ is called lateral wood (LW).

2. Materials and Methods
2.1. Materials

Five leaning-grown T. Zhongshanshan trees of 14-year-olds were obtained from the
National Zhongshan Fir Breeding Base in Jingjiang City, Jiangsu Province (31◦51′~32◦10′ N,
120◦00′~120◦33′ E). As shown in Figure 1, experimental woods were taken from the reaction
wood bend (2–2.5m above the ground), 12nd–13th growth ring. In the cross-section of the
reaction wood, CW is distributed in strips along the growth ring, with a dark brown color;
the early wood in CZ, OZ, and LZ is light yellow. The wood in the opposite zone is called
opposite wood (OW), and the wood in the lateral zone is called lateral wood (LW). CZ
includes CW and transition area (TA), and TA is the area between the normal early wood
tracheids and CW tracheids.

2.2. Microstructure Observation

Small wood blocks with the dimensions of 5 mm × 5 mm × 5 mm (longitudinal ×
radial × tangential) were cut from CZ, LZ, and OZ for microstructure observation. The
slices with the thickness of 12 µm on the cross, tangential, and radial sections were prepared
using a microtome after the wood blocks were softened in boiling water for 12h. The slices
were then stained with a 1% pink stain, and those slices were then observed by an optical
microscope (BX51, OLYMPUS, Tokyo, Japan).

The residual wood blocks after slicing were subsequently dried in a frozen dryer (−55 ◦C,
0.05 mbar) for 48 h. The microstructure of these samples at different locations was exam-
ined using a scanning electron microscope (SEM) (Quanta 200, FEI, Hillsboro, Oregon, USA),
operating at an accelerating voltage of 25 kV.

2.3. Roundness Value of Tracheid Measurement

As shown in Figure 2, the captured cross-sectional micrographs were converted to
binary images using Image J software. The cell walls were automatically selected using the
lowest grey threshold method to determine a clear boundary between the cell wall and the
cell cavity. Then, data on the roundness values and the ratio of the long and short axes of
the inner contour of the tracheid cell wall calculate and obtain. The roundness value of the
tracheid is calculated as follows [31]:

Cric = 4π× S/C2 (1)
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where Cric refers to the circularity value, S refers to the area of the tracheid cavity, and C
refers to the circumference of the tracheid cavity. The closer the circularity value is to 1, the
closer the measured figure is to a circle.
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Figure 2. Schematic diagram for calculating the roundness value of tracheid cross-sections.

2.4. Tracheid Dimensions Analysis

For the tracheid dimensions observation, the CW, LW, and OW samples were deligni-
fied using Franklin’s method. Portions of samples were separately soaked in a mixture of
equal volumes of glacial acetic acid and hydrogen peroxide and heated at 60 ◦C for 1 day.
The anatomical observation was performed with an optical microscope (BX51, OLYMPUS,
Tokyo, Japan) connected to the Motic Image Plus 2.0 image analysis system (Hong Kong,
China). The average dimensions of tracheids were calculated from 50 tracheids in each
sample. Tracheid dimensions were analyzed by one-way analysis of variance (ANOVA)
with a 5% significance level and using SPSS (Version 28.0, Armonk, NY, USA).

2.5. Multilayer Structure of Cell Walls

The unstained 12 µm wood sections were examined using a laser scanning confocal
microscope (LSCM) (LSM 710, Carl Zeiss, Oberkochen, Baden-Württemberg, Germany),
using 488 nm laser excitation. Other unstained sections were examined using a 532 nm
Micro-Raman spectrometer (LabRam HR evolution, Horiba, Palaiseau, France). Scanning
the spectra in the wave number range of 600 cm−1–2000 cm−1 (containing the major
lignin characteristic peaks) at a step size of 1 µm, the laser exposure time was set at 3 s
for each spectrum. Integral imaging of Raman intensity was in the wavenumber range
1519 cm−1–1712 cm−1.

3. Results
3.1. Microscopic Distribution of CW Tracheids

As shown in Figure 3, the cavities of compression wood and late wood tracheids were
small and thick, which can be stained easily with saffron dyed dark red. Most early wood
tracheids in CW and OW were pentagonal or hexagonal; a few were quadrilateral, stained
light red because of the large lumen and thin wall. Most early woods in the same growth
ring form only one round of CW. However, there were also growth rings with two CW
bands and normal early wood tracheids between the two CW bands, and the early wood at
the beginning did not have the characteristics of the compressed tracheids.

The CW tracheids were formed in the middle or posterior of the growth rings. In TA,
the tracheid cell walls showed a gradual thickening trend. The tracheid cell walls of early
wood and late wood are not significantly thickened.

3.2. Anatomical Characteristics of Reaction Wood

The optical micrographs in CW, LW, and OW of T. Zhongshanshan are presented in
Figure 4. In OW, early wood tracheids are square or polygonal, while late wood cells are
quadrilateral and have significantly thicker cell walls than the early wood tracheids. Lignin
in wood is the main object of staining for saffron [32]. The darkest color is of the cell corner
(CC) and CML in OW, while the color of the secondary cell wall saffron is lighter. Compared
with OW tracheids, CW tracheids have thicker cell walls, nearly round cross-sections, and
many intercellular spaces. Their highly lignified S2L layer is stained dark red by saffron,
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and the S2 inner layer is light red. LW tracheids are mainly polygonal in shape, with a more
pronounced angle of cells, intercellular spaces, and slightly thickened cell walls. Their S2L
layer is more clearly distinguished from the inner S2 layer in the stained sections, with the
dark red S2L layer being thinner and mainly located at the angle of the cell.
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CZ-L: late wood of CZ).

As shown in Figure 5, the inner wall of the tracheids of the OW is smooth, without
thread cracks, and with normal pit morphology. The pits of CW tracheids are narrow
and elongated as a result of the helical cavities, which are grooved and usually do not
extend into the S1 layer. The inner side of tracheids in LW is usually smooth or has shallow
helical cavities. The shallow spiral check may be a preliminary form of the grooved spiral
check [33].

3.3. Tracheid Morphological Parameters of Reaction Wood

The tracheid lengths of OW were significantly longer than those of LW and CW,
with an average length of 3280.1 ± 44.5 µm. The average tracheid length of CW was
2434.7 ± 32.54 µm, and that of LW was 2721.1 ± 29.6 µm (Figure 6a). The differences
between CW, LW, and OW tracheid lengths were highly significant. It can be speculated that
the shortening of the length of CW and LW tracheids may be related to their compressive
stress; CW tracheids were subjected to higher compressive stress, so CW tracheids were the
shortest in length.
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Figure 4. Anatomical structure of CW, LW, and OW of T. Zhongshanshan. From top to bottom: CW,
LW, and OW.

The average diameter of OW tracheids was the largest at 37.0± 0.7 µm, while the aver-
age diameters of CW and LW tracheids were 30.8 ± 0.5 µm and 34.9 ± 0.8 µm, respectively
(Figure 6b). The diameters of CW tracheids differ from those of LW and OW tracheids in a
highly significant way (p < 0.01), and the diameters of LW tracheids differ from those of
OW tracheids in a significant way (0.01 < p < 0.05). The decrease in the diameter of the
CW tracheids may be related to its influence by compressive stress: the CW tracheids were
subjected to higher compressive stress, so the diameter of tracheids was narrowed; LW
tracheids were subjected to slightly lower compressive stress, and the tracheid diameter
was also narrowed to some extent.
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Figure 5. The ultrastructure of CW, LW, and OW tracheids of T. Zhongshanshan.

The tracheid double wall thickness of the CW was significantly thicker than that of
OW. The average double wall thickness of the CW tracheid was 10.9 ± 0.2 µm, while
that of the OW was only 5.6 ± 0.1 µm and that of LW was 6.2 ± 0.1 µm (Figure 6c). The
differences between CW, LW, and OW tracheids’ double wall thicknesses were highly
significant (p < 0.01).

The average wall–cavity ratio of the CW tracheid was 0.57, which was significantly
greater than those of the LW and OW tracheids, while the average values for the tracheids
of LW and OW were 0.22 and 0.18, respectively (Figure 6d). The differences between the
wall–cavity ratios of CW, LW, and OW were highly significant (p < 0.01). The average
cavity–diameter ratio of CW tracheids was 0.64, significantly different from those of LW
and OW tracheids (p < 0.01). The average cavity–diameter ratio of LW tracheids was 0.83,
and that of OW tracheids was 0.84 (Figure 6e), which were significantly different from each
other (0.01 < p < 0.05).

The axial ratio and circle value of the tracheids can be used to measure the morphology
of the cross-section of the tracheids. The closer the axial ratio is to 1, the more like a square
or regular circle the tracheid cross-section seems to be. Therefore, comparing the axial
ratios of round and square tracheids was not very meaningful, but the axial ratio can
better distinguish round and oval tracheids. In comparison to OW and LW tracheids, CW
tracheids had an average axial ratio of 1.15 and an average circle value of 0.768 (Figure 6f),
both of which were closer to 1 and showed that the tracheids tended to be more round. The
axial ratio and circle values of CW tracheids were respectively highly significant (p < 0.01)
to those of OW and LW tracheids. The average axial ratios of LW and OW were 1.33 and
1.30, respectively, which were not significantly different. The average circle values of the LW
and OW tracheids were 0.608 and 0.587 (Figure 6g), respectively, which were significantly
different (0.01 < p < 0.05).
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eter; (c) tracheid’s double wall thickness; (d) wall–cavity ratio; (e) cavity–diameter ratio; (f) axial
ratio; (g) circle.

3.4. Cell Wall Structure of Reaction Wood

Lignin has the characteristic of producing autofluorescence under the excitation of
fluorescence, which can be used to qualitatively characterize the relative level of lignin
concentration in wood cell walls with the help of fluorescence microscopy [34–36]. The
results of LSCM in Figure 7 showed that the strongest fluorescence effect in CW was
in the S2L layer of the cell wall, which showed a uniformly thicker circular shape. The
fluorescence intensity of the inner S2 layer was weaker than that of the S2L layer. At the
same time, there was almost no or only a very weak fluorescence effect at the CC because
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of the many intercellular spaces. Therefore, the lignin concentration in the S2L layer of the
cell wall in CW was significantly higher than that in the S2 inner layer and the CML, and
in the CC, it was extremely low. In LW tracheids, the cell wall S2L layer had the strongest
fluorescence effect. No signs of the complete S2L layer were observed in the end walls of
the LW tracheids, while it was only present at the angle of the cells, and the thickness was
thin. The lignin concentration in LW tracheids was ranked from highest to lowest in the cell
wall S2L layer, CC, CML, and the S2 inner layer. In OW, the strongest fluorescence effect
was at the angle of the cell, followed by the CML, and the weakest fluorescence intensity
was in the S2 layer of the cell wall; no sign of the presence of the S2L layer was observed.
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Figure 7. Lignin distribution in the cell walls of CW, LW, and OW tracheids. (CC: cell corner;
S2L: the outer S2 layer).

The lignin visualization was performed on the transition region of reaction wood
(Figure 8). TA consists of normal tracheids (white arrow) without the secondary cell wall
S2L layer and angular square or polygonal compressed tracheids (blue arrow) with the
distinct S2L layer. The strongest fluorescence intensity of the normal tracheid was found
in CC, indicating that the lignin concentration was higher here than in the secondary cell
wall. In contrast, the fluorescence intensity of the compressed tracheid at CC was lower
than that of the S2L layer, meaning that the S2L layer had the highest lignin concentration.

In TA, the compressed tracheids had a similar cell morphology to normal tracheids.
They had little difference in cell diameter and cell wall thickness, so it was difficult to
distinguish the two from each other only by cell morphology. However, with the help of
the presence or absence of the secondary cell wall S2L layer, a relatively clear demarcation
line between normal and compressed tracheids in the transition region can be determined
(the red line in Figure 8c–d). It can be inferred that the variation in the location of lignin
deposition was more significant than the variation in cell morphology in the compressed
tracheids of T. Zhongshanshan.
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Figure 8. Lignin distribution in the cell walls of TA tracheids. The blue arrow points to the compressed
tracheids, the white arrow points to the normal tracheids and the red line represents the demarcation
line between normal and compressed tracheids. (a,b) confocal fluorescence images; (c,d) fluorescence
microscope image.

In CZ, the latewood cells (white arrow) were square and did not have a secondary
cell wall S2L layer, and the fluorescence intensity was stronger at CC. The CW tracheids
near latewood (red arrow) were polygonal in the cross-section and had the S2L layer
with stronger fluorescence intensity at the angle of the cell and darker fluorescence at CC
(Figure 9 left). In OW, latewood tracheids (white arrow) were quadrilateral in shape and
had thicker cell walls and smaller diameters than early wood tracheids (blue arrow). The
lignin concentration at CC of the latewood tracheids was higher than that at the secondary
cell wall of the latewood tracheids, and the lignin concentration at the secondary cell wall
of latewood was higher than that at the secondary wall of earlywood.

3.5. Microscopic Distribution of Lignin in Reactive Wood Tracheids

The transverse Raman absorption spectra of CW and OW are shown in Figure 10. The
strongest peak of lignin was located at 1595 cm−1, and the secondary peak was located at
1655 cm−1. The strongest peak of cellulose was located at 1094 cm−1.
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Figure 10. Transverse Raman absorption spectra in cross-section of CW (a) and OW (b). Bands
at 1094 cm–1 were due to cellulose. Bands at 1595 cm–1 and 1655 cm–1 were due to lignin. (CML:
compound middle lamella).

In CW tracheids, the 1595 cm−1 characteristic peak intensity of the S2L layer was the
highest, and the 1655 cm−1 characteristic side peak was formed by the conjugation effect of
a carbonyl and benzene ring. The 1595 cm−1 characteristic peak intensity of CC and CML
was relatively weak. In general, the characteristic peaks of 1094 cm−1 cellulose in each wall
layer were relatively weak. In OW tracheids, the absorption intensity of the 1595 cm−1

characteristic peak in CC was significantly higher than that of the 1094 cm−1 characteristic
peak, and the 1595 cm−1 characteristic peak in CML and S2 layer was only slightly higher
than the 1094 cm−1.

The wave number range of 1519−1–1712 cm−1 was used for integral imaging to char-
acterize the micro-distribution of lignin in tracheids (Figure 11). The result showed a
significant difference in the location of lignin deposition between the CW and the OW.
In normal wood (or OW), the lignification process becomes active after forming the S3
layer [35]. In contrast, the formation of lignin in the OW had the following main characteris-
tics: the formation of the S2 layer of the secondary cell wall proceeded simultaneously with
a high degree of lignification; the lignification process gradually progressed from the S2L
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layer to the inner S2 layer; lignification was prolonged, with the most active lignification
occurring in the S2L layer [17].
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Figure 11. Raman images of lignin in the cell wall of CW and OW. For comparison, Figure (b) is
adjusted to the same color scale as Figure (a) to obtain Figure (c). The lignin concentration in CC of
OW (red, 2000 intensity units) is higher than that in CC of CW cell (yellow, 1750 intensity units), but
lower than that in the S2L layer of the CW cell wall (dark red, 2250–2500 intensity units).

4. Discussion

During reaction wood formation, changes take place in the cell morphology. While
the appearance of the S2L layer in the cell wall of compressed tracheids indicated that
the distribution of cell wall lignin also changed significantly. The S2L layer of tracheids
could not be easily identified by optical microscopy of safranin-stained sections. However,
observation of the autofluorescence of lignin by means of a fluorescence microscope is an
effective way to identify the S2L layer due to the high lignification of the cell wall S2L layer.
Ji, Z. et al. had studied the distribution of lignin in CW tracheids of Pinus yunnanensis by
fluorescence microscopy and confocal Raman microscopy [37]. In the present study, the
lignin distribution of LW and OW tracheids were added. The occurrence of well-developed
compression wood is most often seen in the first ten growth rings from the pith [38], and
thus, the young wood of fast-growing T. Zhongshanshan was used in this study.

The results of lignin fluorescence effect and Raman imaging showed that the strongest
fluorescence effect in CW and LW was the secondary cell wall S2L layer, and the strongest
fluorescence effect in OW was the CC. Although the anatomical characteristics of the LW
and TA tracheids did not change significantly, they still had continuous or discontinuous
S2L layers. It can be seen that the lignin of the tracheid wall responds more rapidly to
external stress than cell morphology. The deposition of lignin occurs after cellulose and
hemicellulose, and some studies had shown a correlation between lignin and sugar content
in CW [39,40]. Therefore, exploring the concentration and distribution of lignin needs to
take into account the influence of other chemical components, which may be a subject for
further study. In any case, it is more reasonable to identify the compression wood by the
change in chemical composition such as lignin rather than the change in cell morphology.

5. Conclusions

In this work, anatomical characteristics and wall layer structures of fast-growing
T. Zhongshanshan reaction wood tracheids were characterized and studied. According
to fluorescence microscopy, the tracheids in CZ, LZ, and OZ have different wall layer
structures. In CZ, the CW tracheids formed in the middle and posterior part of the growth
ring had a continuous S2L layer. While the TA tracheid adjacent to the CW was also found
to have the S2L layer, its cell morphology was the same as that of the normal tracheids. In
LZ, the S2L layer of the tracheids existed only at the angle of the cell, and the cross-section
of tracheids was slightly rounded and polygonal. In OZ, no signs of the presence of the
S2L layer were observed in the tracheids. The results of Micro-Raman spectroscopy also
showed that the lignin concentration in the S2L layer of reaction wood tracheids was much
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higher than that in the other cell wall layers. It would appear that the response of the lignin
deposition location to external stress was faster than the change in cell morphology. It
seems more reliable to identify compressed tracheids based on highly lignified S2L layers
than on morphological changes.
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