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Abstract: Wood identification is an important tool in many areas, from biology to cultural heritage.
In the fight against illegal logging, it has a more necessary and impactful application. Identifying a
wood sample to genus or species level is difficult, expensive and time-consuming, even when using
the most recent methods, resulting in a growing need for a readily accessible and field-applicable
method for scientific wood identification. Providing fast results and ease of use, computer vision-
based technology is an economically accessible option currently applied to meet the demand for
automated wood identification. However, despite the promising characteristics and accurate results
of this method, it remains a niche research area in wood sciences and is little known in other fields of
application such as cultural heritage. To share the results and applicability of computer vision-based
wood identification, this paper reviews the most frequently cited and relevant published research
based on computer vision and machine learning techniques, aiming to facilitate and promote the use
of this technology in research and encourage its application among end-users who need quick and
reliable results.

Keywords: computer vision; machine learning; deep learning; convolutional neural networks; image
recognition; wood anatomy; wood identification; illegal logging

1. Introduction

Illegal logging is one of the most pressing environmental issues, particularly in tropical
countries with large forest areas and botanical groups that are highly valued in international
markets. Illegal logging is currently the most profitable ecological crime worldwide,
accounting for 10 to 30% of the global timber trade [1,2].

Although Amazonian forests are traditionally seen as the hotspot of illegal logging,
areas such as Southeast Asia, Central Africa and Russia, home to roughly 60% of the world’s
forests, are unfortunately experiencing a surge in this crime [1,3]. The financial impact of
illegal logging is estimated at 52 to 157 billion dollars a year [1], but, more importantly,
the environmental damage, in many cases irreversible, can also have a global ecological
impact [4].

Several institutional and international legal measures have been put in place to prevent
overexploitation and irreversible loss of species and habitats [5-7]. Innovative programmes
are emerging [8,9], solid research is under way [10-14], and research with significant impact
and news items are being shared worldwide [15].

The impact of wood identification extends beyond illegal trading and ecological issues.
Wood identification is paramount for the timber industry, civil and structural engineering,
criminology, archaeology, art history, ethnography, and conservation and restoration, and
many other disciplines.

Despite the multiple wood identification methods now available, the varied results,
costs, accessibility, deployment time and limiting factors hinder their applicability to real-
world identification. This paper presents an overview of the changes that have occurred in
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wood identification methods and a review of computer vision-based wood identification,
which is currently one of the fastest developing research areas in artificial intelligence
(AI) with very promising results and high identification accuracy. In this technique, vi-
sual data are processed from any given image to extract the relevant features in order to
make a decision.

Analogic and Digital Systems

Historically, wood identification methods mainly comprised the study of chemical
and physical and anatomical features aspects of wood. Methods such as macroscopy,
which uses the physical characteristics of wood observable to the naked eye or with a
10x hand lens, and microscopy, which resorts to light compound microscopes to the
observation of multiple cell typologies that constitute the wood, were the first to be used.
The main limitation of these methods is that wood cannot always be identified at the
species level. As a result, there has been an emergence of multiple techniques such as
near-infrared spectroscopy [16-18], DNA barcoding [19-21], mass spectrometry [22-24],
and X-ray tomography [25-27], with optical microscopy still used as a confirmation method
for the results of these techniques.

However, an important contribution was made with the advent of computer-based
technologies, which rapidly became a preferred option for constructing species databases
and hosting identification tools. Several wood identification databases and software based
on digital technology have been made available, including GUESS [28,29], CSIROID [30]
and the DELTA system [31], three of the most significant early programmes in achieving
the goal of wood identification. As a proof of concept, the importance of these systems
was fundamental for the development of what is today defined as computer-assisted wood
identification. The results they obtained made considerable progress compared to earlier
methods, especially with regard to the time required and identification accuracy. The
DELTA-Intkey for commercial timbers is the only one of these three systems still in use.

2. Online Reference Databases for Wood Identification

This section briefly describes all the digital reference databases available online, to the
best of our knowledge. The common objective of online identification keys is to enable and
facilitate analysis of wood anatomical features and, ultimately, identification of the wood.
Table 1 summarises the computer-assisted wood identification systems mentioned above.

2.1. Commercial Timbers: Descriptions, lllustrations, Identification and Information Retrieval

Among the several DELTA-INTKEY online identification keys that have been devel-
oped, including CITESwoodID and Softwoods, this interactive identification key developed
in 2000 and updated in 2018-2019 is an integrated database of microscopic descriptions
and illustrations of 409 internationally traded hardwood taxa [32]. It covers major forest
regions of the world and is freely available online.

2.2. Anatomy of European and North American Woods

Created in 2000, this system includes 426 wood taxa [33] and provides an interactive
identification key for the common non-commercial wood species of Europe and North
America. It includes 325 hardwood species and 101 softwood species (native and intro-
duced) with 145 features and 15 sets. It has two extra sets that isolate the features applicable
to identification of modified and carbonised wood from palaeobotanical contexts. A useful
feature, which is missing from the commercial timbers key, is a set that isolates the features
extracted from the IAWA standards.
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Table 1. Summary of computer-assisted wood identification systems.
e Number of
Year Name Taxa Area Identification Access Comments Reference
Images
Commercial timbers: descriptions, Major forest Microscopic descriptions
2000 illustrations, identification, and 404 hardwoods regions of the P TP n.a. Freely available - [32]
. - - and illustrations
information retrieval world
Anatomy of European and North 325 hardwoods Europe Microscopic descriptions . . In.cl.u dgs features ad.apted to
2000 . and . . n.a. Freely available identification of carbonised woods [33]
American Woods 101 softwoods . and illustrations :
North America from archaeological contexts
Wood database of the Forestry and Microscopic descriptions .
2003 Forest Products Research Institute 781 Japan and illustrations na Freely available ) [34]
7653 modern 58,146 modern
hardwoods; hardwoods;
. 235 modern Microscopic descriptions 3807 fossil . . -
2004 InsideWood softwoods; Global and illustrations hardwoods; Freely available Includes 61,578 searchable images [35]
2173 fossil 1482 modern
hardwoods softwoods
Wood anatomy of central European 133 hardwoods Microscopic descriptions . Inc'ludes macroscopic and
2004 : Europe . . na. Freely available microscopic images and [36]
species and softwoods and illustrations descripti
escriptions
44 CITES woods; Specific forest . L.
2005 CITESwoodID 31 look-a-like regions of the Macroscc?plc desgrlpnons n.a. Freely available Includ.es abunc!ant extra [37]
. and illustrations information
species world
Key to a Selection of Arid . . - g .
2005 Australian Hardwoods and 58 hardwoods and Australia MlCI‘OSCOPlC desc'rlptlons na. Freely available Detailed 1nf0rma't10n about each [38]
softwoods and illustrations species
Softwoods
2010 Brazilian Commercial Timbers 275 species Brazil Ma?croscoplc fea'tures; n.a. Freely available - [39]
chemical and physical tests
2011 Pl@ntwood 110 hardwoods Amazonia Mlcroscqplc desc.rlp tions n.a - - [40]
and illustrations
2013 Forest Spec1es . 112 hardwoods Tropical forests Mlcroscqplc desc.rlptlons 2240 Freely available Inclu.des 2249 sgarchable [41,42]
Database—Microscopic and softwoods and illustrations microscopic images
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Table 1. Cont.

Number of

Year Name Taxa Area Identification Access Comments Reference
Images
2014 Forest Species ‘ 41 hardwoods and Brazil Macroscqplc desFrlp’nons 2942 Freely available Includes 2942. sgarchable [43,44]
Database—Macroscopic softwoods and illustrations macroscopic images
2016 MacroHOLZdata 150 hardwoods Clobal Macroscc?plc desc.:rlptlons na Free of charge on Available in Enghéh, German and [45]
and softwoods and illustrations request Spanish
112 hardwoods .
. Freely available
] . and softwoods ] Macroscopic and 5182 - [46]
2018 Forest Species Classifier 41 hardwoods and Brazil microscopic illustrations ]
Freely available
softwoods
. . . Available for
2018 Charcoal 44 hardwoods Brazil Microscopic features 528 - [47]
research only
2019 Charkey 507 hardwoods French Guiana n.a Freely available Highly detailed SEM images [48]
and softwoods Microscopic descriptions
; and illustrations
n.a Softwood Retrleval System for 180 softwoods China >1000 n.a Under development [49]
Coniferous Wood
2021 UTForest—UTEFPR Classificador 4 h:cr)(fit‘;vv(;(())iz and Brazil Macroscopic descriptions 1318 Freely available - [50]
Under . .
develop- Mader app n.a na Microscopic features 26,000 n.a Database Wl;}};elc?gg 1mages per [51]
ment

n.a.—not available.
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2.3. Wood Database of the Forestry and Forest Products Research Institute

This online database created in 2003 focuses on the identification of 781 Japanese tree
species, substantiating the descriptions on the IAWA list of hardwood features [52]. It
includes a multiple-entry key and an image database and is freely available online [34].

2.4. InsideWood

Developed in 2004, InsideWood is by far the largest and best-known online identifi-
cation key [35]. It is a multiple access key based on the IAWA hardwood list [52] and is
freely available online. It includes keys for hardwoods, softwoods and fossil hardwoods,
and more than 10,030 microscopic anatomic descriptions covering all regions of the world,
with more than 63,435 searchable images. It is a centralised database that integrates all the
anatomical data available for modern wood.

2.5. Wood Anatomy of Central European Species

This is a completely revised and updated version of Schweingruber’s work [53],
created in 2004 [36] and last updated in 2007. It is a web-based identification key with
133 species, accompanied by macroscopic and microscopic descriptions. It also provides
information such as sample preparation, staining and other procedures, and is freely
available online.

2.6. CITESwoodID

CITES (Convention on International Trade in Endangered Species of Wild Fauna and
Flora) [54] is an agreement that was drawn up in 1963 after a meeting of members of [IUCN
(The World Conservation Union). One of many initiatives intended to contribute to the
goals of the agreement, CITESwoodID was developed in 2005 [37] and last updated in
2017. As the name indicates, the platform focuses on CITES species and is an interactive
identification key of macroscopic descriptions with an integrated database. It includes
illustrations of 44 CITES protected woods and 31 look-a-like trade species. It provides
comprehensive, detailed information about each species, with advice on how to avoid
misinterpretations, and numerous explanatory notes of the relevant features and procedures
for description and identification. It is freely available online.

2.7. Key to a Selection of Arid Australian Hardwoods and Softwoods

Stemming from doctoral research [38], this interactive key focuses on Australian
woods. It is hosted on the Lucid website and includes 58 wood-producing species of arid
Australia, particularly non-commercial species. It is mostly based on specimens from
northeast South Australia, southwest Queensland and far western New South Wales and is
freely available online.

2.8. Brazilian Commercial Timbers—Interactive Wood Identification Key

As the name suggests, this is an interactive identification system focusing on Brazilian
species. Made available in 2010 [39], it was developed in collaboration with the Forest
Products Laboratory (LPF) and the Brazilian Forest Service (SFB). It is hosted on the Lucid
website and includes 275 species, among them Brazilian CITES-listed timber species. All
the nomenclature was revised in 2020 according to the Brazilian Flora Species List. The key
works by analysing macroscopic features and chemical and physical tests on the woods. It
is freely available online.

2.9. Pl@ntwood

Pl@ntwood [40] was developed in 2011 and is described by the authors as an interactive
graphical identification tool based on the IDAO system, specifically designed to be user
friendly. It comprises 110 Amazonian tree species belonging to 34 angiosperm families and
includes microscopic morphological features.
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2.10. The Forest Species Database—Microscopy (FSDM)

Created in 2013, this online database [41,42] comprises 2240 microscopic images of
112 species, 85 genera and 30 families of both hardwoods and softwoods. It is freely
available online.

2.11. The Forest Species Database—Macroscopy (FSDM)

This online database for forest species identification [43,44] was made available in
2014. It includes 2942 macroscopic images of 41 Brazilian forest species and is freely
available online.

2.12. MacroHOLZdata

MacroHOLZdata [45], created in 2002 and made available for the first time in 2016, is
another interactive identification key with an integrated database for macroscopic wood
descriptions. Completely redesigned in 2022, it is available in German, English and Spanish,
and includes 150 common hardwood and softwood commercial timbers. The database is
free of charge.

2.13. Forest Species Classifier

Made available in 2018, Forest Species Classifier is the result of a master’s degree [46].
It is a user-friendly online database focusing on Brazilian forest species. It uses macro-
scopic [43] and microscopic [41] databases and includes microscopic images of 112 species
and macroscopic images of 41 species, with a total of 5182 images. It is freely available online.

2.14. UTForest—UTFPR Classificador

This new version of the Forest Species Classifier platform [50] has been available
since 2021. It allows macroscopic identification of 44 native species of Brazil and includes
1318 images.

2.15. Charcoal

Developed in 2018, this database comprises charcoal samples of 44 Brazilian hardwood
forest species, using 528 images [47,55]. It is available for research purposes only.

2.16. CharKey

This 2019 electronic identification key is described by the authors [48] as the first
computer-aided identification key designed for charcoals from French Guiana. It uses SEM
photographs to illustrate the anatomical features of 507 species belonging to 274 genera
and 71 families. Most of the descriptions were taken from Détienne et al. [56], and follow
the IAWA list of microscopic features for hardwood identification [52]. The key contains
289 “items”, and its main aim is to identify specimens to the genus level. It is freely
available online.

2.17. Softwood Retrieval System (SRS) for Coniferous Wood

The Softwood Retrieval System (SRS) for Coniferous Wood [49] is an online identi-
fication key with descriptions and micrographs of 180 Chinese coniferous wood species
(155 species with descriptions and microphotographs and 25 species with only micropho-
tographs) from nine families and more than 1000 images showing anatomical details. The
system is searchable by an interactive multiple-entry key. The microphotographs were
collected from slices of 115 coniferous species provided by the Wood Collection of the
Chinese Academy of Forestry (Beijing, CAFw) and 40 coniferous species from the Herbar-
ium of Southwest Forestry University (Kunming, SWFUw). The descriptions use features
from the IAWA List of Microscopic Features for Softwood Identification [57]. The system
supports three retrieval methods for coniferous wood retrieval: species name, anatomical
characteristics, and microscopic anatomical images (in test).
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2.18. Mader App

This mobile app is under development. Its goal is to contribute to the global wood
identification effort and the fight against illegal logging using Al [51]. The project com-
prises 26 species, with a vast image database of 1000 images per species, aiming to obtain
maximum intraspecific variability for each species. The images were taken using a portable
microscope and the app aims to obtain real-time recognition of samples. Preliminary
data from the authors indicate that accuracy is 95%. The authors intend to make the app
available soon on the Play Store, and the database used will be freely available for neural
network training [51].

3. Computer Vision-Based Wood Identification

The digital systems described above are the foundation of the systems which, despite
their limitations, are currently used to identify wood, mostly based on computer vision
technology. They are applicable to several fields of research and industry, including
neurobiology, autonomous vehicles, and facial recognition. Computer vision systems
process visual data from any given image or video to extract the required and relevant
features to make a decision [58].

This image recognition ability, also known as image classification, is one of the most
important research areas in Al and is most frequently based on supervised learning. In
this case, the network is required to create a model that learns from labelled images to
determine classification rules, then it classifies the input data based on these same rules
(generally used for image classification). In the case of unsupervised learning, it is the
model that obtains unknown information through unlabelled data (generally used for
image clustering) [59].

Machine learning can also decide what to do without human assistance from the
data recognised by computer vision (input data), using predesigned algorithms [60,61].
This removes the need to teach the model the necessary features or procedures for wood
identification [62].

Computer vision technology is very appealing to many researchers because of its
verifiable potential for field application [63] and proven ability to recognise and quantify
wood structure variations that are not easily discernible using strictly “human” analysis.
It is also an affordable resource [64] and, therefore, scalable. However, for the software to
correctly interpret the specific architecture structure of the samples analysed to such a high
level of precision, reference material must be constantly entered into the image database so
that it can recognise natural variations in wood structure [12].

Computer vision-based wood identification is the real-world application of combining
two types of software with different approaches within AI [65,66].

Figure 1 shows a pipeline of this method.

Image Dataset Preprocessing Features extraction Classification Output
aquisition & input

Figure 1. General scheme of machine learning method for image classification (based on [62,67]).

3.1. Machine Learning

Machine learning operates primarily as software that recognises patterns from input
images that are processed to define a descriptive structure to which the unknown image
will be referenced [68]. This involves various stages, as follows.
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3.2. Image Acquisition

The most frequently used types of image are macroscopic images (obtained without
magnification using a normal digital camera) [69-72], stereograms (stereoscopic images
obtained with hand lens magnification, ca. 10x) [65,66,73-75], micrographs (optical micro-
scopic images) [76-78], SEM images (up to 10,000x) [79], and X-ray computed tomography
(CT) images [26,80].

Light control and uniformity are significant issues in image processing [66,81,82]. They
include techniques that are used to filter and normalise image brightness [83-85].

3.3. Image Datasets

Image dataset construction or availability is one of the most significant factors among
the multiple issues that can affect the performance of computer vision-based wood identifi-
cation systems.

The more extensive the dataset is, the more naturally occurring biological variations
within a species will be accessed and learned by the model. However, because constructing
a dataset of wood samples is such a difficult and time-consuming task, most studies use
wood collections for references [41,69,74,81,86-89].

This limitation is countered to some extent by initiatives such as ImageNet [90].
Aiming to advance computer vision and deep learning research, the ImageNet dataset was
made freely available to researchers worldwide. It contains 14.2 million images across more
than 20,000 classes. A similar process is under way with herbaria digitalisation [91-93].
However, despite the efforts made [42,78,87,94,95], the lack of free access to worldwide
wood image datasets continues to be the main constraint for computer vision-based wood
identification [62].

Table 2 shows the main currently available datasets that have useful data for computer
vision-based wood identification research.

Table 2. Wood image datasets available for computer vision-based wood identification research,
adapted from [62].

Number of Number of

Dataset Description Image Type Species Images Accessibility Reference
CAIRO 37 3700 96
Commercial hardwood species of Malaysia el
FRIM 52 5200 . [97]
Stereo Inaccessible
LignoIndo Commercial hardwood species of Indonesia 809 4854 [98]
ZAFU WS 24 Wood species at Zhejiang A&F University 24 480 [75]
RMCA Commercial wood species of Central Africa 77 1221 [78]
XDD Major Fagaceae species of Japan Micro 18 2449 [87]
Lauraceae species of East Asia 39 1658 [94]
Open - -
WOOD-AUTH Wood species of Greece 12 4272 [95]
Macro _—
UFPR 41 2942 [44]
Wood species of Brazil _
UFPR Micro 112 2240 [42]

3.4. Image Processing

Machine learning comprises two independent procedures: feature processing, also
known as extraction (extraction of relevant features from input images), and classifica-
tion (learning extracted features and querying image classification). There is, however, a
previous step to image processing.

Pre-processing aims to convert the image into data that a specific algorithm can use
to extract the required features, thus reducing computational complexity and facilitating
subsequent processing [99]. The techniques used for this include greyscale conversion
and image cropping [71,74,78,88,100,101], filtering [83,85], image sharpening [74,102] and
denoising [79,103,104].
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Another important pre-processing procedure is data splitting, where the dataset is
split into subsets, most commonly training, validation, and test sets. Data splitting is
ultimately used to create a training set, a validation set and a test set in order to later
evaluate the model performance. To understand the reasons for these sets, one should
think that machine learning systems mimic the human learning process based on examples.
From this training set, the system will learn to generalise in order to correctly classify the
images. The validation set is used to avoid the system learning the images “from memory”
during this generalization process. Finally, the test set is used to check the reliability of the
learning process. The use of these distinct data samples is one of the earliest pre-processing
steps needed to evaluate any model’s performance.

More specifically, the system will interpret the images extracted from the designated
training set as nothing more than a combination of pixels. Each pixel will have a specific
intensity represented by a number, and in this way a matrix of numbers is formed. Image
processing is based on extracting elements such as points, blobs, angles, corners and edges,
and the patterns they form. Variability in the anatomy of each wood species is represented
as patterns of distinct pixel intensities, arrangement, distribution, and aggregation. The
variations detected by computer vision will be learned by machine learning. This process is
the fundamental operating system of computer vision for all applications, including wood
identification [62].

After the extracted features have been learned, a classification model is established by
a classifier and a test set is formed to evaluate the system’s learning. The images are then
input, allowing the classification model to complete the identification through feedback of
the predicted classes of each image [62].

Computer vision detects and “sees” the input image using multiple feature extraction
algorithms, while machine learning selects the types of features to be extracted, in most
cases texture and local features.

Texture features work with the combination and arrangement of image elements (pixel
intensities and resulting patterns) [65,74,96,102,105]. The most frequently used techniques
are grey level co-occurrence matrix (GLCM), grey level aura matrix (GLAM), local binary
pattern (LBP), higher local order autocorrelation (HLAC), and Gabor filter-based features
(GFBF). Despite the individual capabilities of each technique, texture fusion of different
types of texture features has shown superior classification accuracy [101,106,107].

Local features differ from texture features by not describing an image as a unit, but by
describing significant and important specific features (keypoints) such as edges, corners
or points. The most frequently used algorithms are scale-invariant feature transform
(SIFT), speeded up robust features (SURF), oriented features-from-accelerated-segment-test
(FAST) and rotated binary-robust-independent-elementary-feature (BRIEF) (ORB), and
Accelerated-KAZE (AKAZE).

Beyond features typology, factors such as dimensionality reduction and feature se-
lection are also important, as a large number of features extracted from an image can
substantially reduce the computational efficiency of classification models. To achieve this
balance, methods such as R AutoEncoder [108], principal component analysis (PCA), linear
discriminant analysis (LDA), and genetic algorithms (GA) are used for dimension reduction
of data sets [109].

Another important element is the classification models created to learn the extracted
features and establish classification rules. The most frequently used classifiers are k-
nearest neighbours (k-NN), support vector machines (SVM), and artificial neural networks
(ANN) [110,111]. These classification procedures can be executed either in on-site hard-
ware [112] or on a cloud-based interface [89].

Machines can be easily misled by factors such as the source of images, which can be
acquired in the field using mobile phones [89] or in a laboratory-controlled environment [70,113],
and variables including different thicknesses, orientation, staining, digital artefacts and other
variations, which is why many thin sections from historical wood collections are useful
only to the trained human eye [10].
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Image
aquisition

Dataset

4. Deep Learning

Deep learning is among the most notable and promising of the many branches of
machine learning research.

As a neural network that attempts to simulate the function, structure and behaviour
of the human brain (Figure 2), it has the capacity to process and “learn” large amounts of
data [114,115].

Preprocessing Convolution layers Fully connected Output
& input Pooling layers layers

Figure 2. General pipeline of deep learning models for image classification (based on [62,67]).

Its multiple different architectures include ANN [116], deep neural networks (DNN) [117],
recurrent neural networks (RNN) [118], deep reinforcement learning (DRL) [119], and convo-
lutional neural networks (CNN) [120]. The fields to which these have been applied are so vast
that they are very difficult to summarise, but they include computer vision [121], forensic
research [122], climate science [123], machine translation [124], classic literature [125] and
bioinformatics [126], to name just a few.

Among these multiple architectures, it is mostly ANNs and CNNss that are applied to
wood characterisation and identification.

Table 3 summarises this research and the applications of deep learning technologies.

4.1. Artificial Neural Networks (ANN)

Artificial neural networks are not only one of the main investigation methods, but also
constitute the foundation of deep learning [62]. These mathematical structures inspired by
biological neural networks are a form of supervised or unsupervised learning that show high
ability to learn from examples given to them and extrapolate the information when applied
to future non-identified samples. This ability to reproduce, model and “learn” nonlinear
processes has given ANNs widespread applications in multiple disciplines [78,116].
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Table 3. Research and applications of deep learning technologies.

Species . Anatomically Image Pre- g
Reference Database Geographic Image Section Numb?r Similar Number of Analysis Processing Featlfres Classifiers CNN Model Classification
L Type Type of Species . Images Descriptor Accuracy
Origin Species Program Images
Samples from Canary Islands Biometric Transverse Feedforward
[127] P v Tangential 2 Yes n.a. WinCell PCA n.a. multilayer perceptron n.a. 92.0%
natural forests (Spain) data .
Radial network
Hardwoods vs.
softwoods
o (LOOCYV) 89%,
[79] No specific source Global SEM  Transverse 7 No 101 na. LDA GLCM M““‘f’rlﬁectfzgfcat“’“ (EVT) 93%.
7 species
(LOOCV) 81%, (EVT)
80%.
Samples from Transverse SVM
[128] pes Turkey Micro  Tangential 3 Yes n.a n.a n.a n.a with linear kernel n.a 95.2%
natural forests . .
Radial function
. . GLCM SVM SVM—98.6%
[77] LWA-UFP Brazil Micro n.a. 112 No 2240 na. na. LBP LBP n.a. LBP—86%
LBP
GF
Macro 41 No 2050 CLBP SVM 95.77%
Colour-based
[129] LWA-UFP Brazil Transverse na na features 3-ConvNeta
LBP
Micro 112 No 2240 GIIHPCQM SVM 97.32%
LPQ + GLCM
Texture Two-level
[71] LWA-UFP Brazil Macro Transverse 41 No 2942 n.a. n.a fusion .. n.a 97.77%
divide-and-conquer
strategy
Samples from Biometric Transverse baflf;i‘l(l)g:ga— Feedforward
[130] P Iberian Peninsula Tangential 2 Yes na. WinCell n.a. . multilayer perceptron n.a 81.2%
natural forests data - tion
Radial . network
algorithm
[131] Sa.mples. from the Korea Macro Transverse 5 Yes 33.730 n.a. na n.a. n.a LeNet3 99.3%
timber industry
Democratic (V(éiliZn I]:II;% LDA 88% species level
[78] TXWD-RMCA Republic of the Micro Transverse 77 No 1221 32 GSC n.a 89% genus level
Congo Olympus) LDA KNN 90% family level
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Table 3. Cont.

Species

Anatomically

Image

Pre-

Reference Database Geographic I,? age Section Numb.er Similar Number of Analysis Processing Featx}res Classifiers CNN Model Classification
L ype Type of Species . Images Descriptor Accuracy
Origin Species Program Images
IMAGE
DATA
[86] LWA-UFP Brazil Macro Transverse 41 No 47.024 n.a GEII}(I;EIE{ A n.a n.a Resnet50 98.3%
class of
KERAS
SIRw; Central and End-to-end trained
[112] MADw; South America, Stereo Transverse 10 Yes 2303 n.a n.a n.a N lassifi VGGI16 87.4%-97.5%
RBw Africa image classifiers
LBP RE na 93.9%
. . o
[47] LWA-UFP Brazil Micro  Transverse 44 No 528 n.a n.a SVM
Inception_v3 n.a. TL 95.7%
Macro 41 2942 Scale dataset 100%
Macroscopic dataset
[132] LWA-UFP Brazil Transverse No n.a n.a n.a n.a n.a 98.73%
Micro 112 2240
Microscopic dataset
99.11%
Multiple
[133] Staiggzsiiﬁ)iéhe Korea Macro g?lnse‘;eé:f 5 Yes 33,815 n.a. n.a. n.a. n.a. models 98%
y & ensemble
Tangential
NIR- Radial &
[134] FFPRI Japan HSI between 38 No n.a. n.a. n.a. n.a. n.a. PCA 90.5%
the two
planes
SJRw; Transverse
[135] MADw; Central an_d South Micro Tangential 3 Yes n.a n.a. n.a. n.a. SVM na. 91.4%
RBw America Radial
TXWD-RMCA;
HINM; Slivers for
MADw; Central America DART- Binning o
136] CM, Inc; and Central Africa  TOPMg ~ Metabolome 10 No na na threshold na RE na 82:2%
OSU, pI'O 1 ll’lg
PV
[73] Samples from Amazonia Macro  Transverse 21 No 2000 na Adapthisteq GLCM SVM na 97.7%

natural forests

Atlantic region
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Table 3. Cont.

Species . Anatomically Image Pre- P
Reference Database Geographic I}n age Section Numbf:r Similar Number of Analysis Processing Feah.lres Classifiers CNN Model Classification
Origi ype Type of Species Speci Images P I Descriptor Accuracy
rigin pecies rogram mages
TXWD-RMCA; Species level
[66] HNM; Central Ameri 81.9%
(I:VIADW} ananzltrarlnzrflrciia Stereo Transverse 10 No n.a. n.a. n.a. n.a. n.a. ResNet34
l\él,s{l;.c., Genus level
PV ! 96.1%
. Inception o
[81] DSB-FWRC North America Stereo Transverse 10 No 1869 n.a. n.a. n.a. n.a. V4_ResNetV2 92.6%
Transverse
[137] 2012 ImageNet Brazil Stereo Tangential 281 No n.a n.a n.a RiLPQ kNN DenseNet 98.8%
Radial
[69] CVLO-CELOS Suriname Macro Transverse 14 No 1.2 million n.a. Threshold n.a. n.a. Inception-v3 98%
[76] [76] Nig;zi‘scal Micro  Transverse 112 No 2240 na. na. LBP SVM ResNet101 95.6%
ResNet-50
Samples from . . SGD optimizer DenseNet-121 o
[138] Lumber yard North America Macro  Tangencial 11 No 3158 n.a n.a n.a Adam optimizer MobileNet- 98.2%
V2
Tangential
Radial &
[139] GACD Global XRF in 18 No na na na na na 1D CNN 99%
between model
the two
planes
Residual Wood patch
Collected convolutional classification—93%
[72] from trunks of Europe Macro Transverse 14 No n.a. n.a. n.a. Train set n.a. encoder
leafing trees network Wood core
classification—98.7%
Democratic Transverse
[140] TXWD-RMCA Republic of the Micro Tangential 77 No n.a na GSC LPQ MVRF n.a 95%
Congo Radial

n.a. not available. Institutions: CM, Inc.—Carlton McLendon, Inc.; CVLO-CELOS—Centrum voor Landbouwkundig Onderzoek/Centre for Agricultural Research in Suriname;
DSB-FWRC—Department of Sustainable Bioproducts/Forest and Wildlife Research Center; FFPRI—Forestry and Forest Products Research Institute (Japan); GACD—Garman Art
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Conservation Department, SUNY—Buffalo State; HNM—IB—Herbario Nacional de México; Instituto de Biologia; LWA-UFP—Laboratory of Wood Anatomy at the Federal
University of Parana; MADw—USDA Forest Products Laboratory Wood Collection of Madison, Wisconsin; OSU—Oregon State University; PV—Private vendor; RBw—Botanic
Garden of Rio de Janeiro, Brazil; SJRw—Samuel J. Record Collection; TXWD-RMCA—Tervuren Xylarium Wood Database—Royal Museum for Central Africa. Models &
Techniques: DART-TOFMS—Direct Analysis in Real Time, Time of Flight Mass Spectrometry; EVT—External validation test; GLCM—Grey level co-occurrence matrix; GSC—Grey
scale conversion; KNN—k-nearest neighbours; LDA—linear discriminant analysis; LOOCV—Leave-one-out-cross-validation; MVRF—Multi-view random forest; PCA—Principal
component analysis; RF—Random Forests; RiLPQ—Rotation Invariant Local Phase Quantisation; SGD optimizer—Stochastic gradient descent; SVM—Support vector machine;
TL—Transfer learning; XRF—X-ray fluorescence spectrometry.
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In the field of wood differentiation and identification, examples of research applying

ANNSs include:

Esteban et al. [127] used a feedforward multilayer perceptron (MLP) network, which
uses a similar structure to ANN to distinguish between Juniperus cedrus and J. phoenicea
var. canariensis, obtaining a 92% probability of correctly differentiating the species;
Mallik et al. [79] applied SEM to wood cross sections with 1500 x magnification to
obtain species-level identification through the shape, number, area and distribution of
earlywood tracheids, processed by image segmentation, object recognition and statis-
tical methods. Their results showed that when distinguishing between hardwoods
and softwoods, a 0.89 accuracy was obtained using leave-one-out cross-validation and
0.93 using an external validation test (EVT), and when differentiating seven wood
species, they obtained a 0.81 accuracy using one-leave-out cross-validation and 0.80
using an EVT;

The same microscopic features analysis was applied by Martins et al. [77], who used
microscopic transverse sections applying local phase quantisation (LPQ), local binary
patterns (LBP) and grey-level co-occurrence matrix (GLOM) to identify Brazilian
species. The process was applied to 112 species, 85 genera and 30 families, obtaining a
recognition rate of 98.6% for differentiation of hardwoods and softwoods and 86% for
discrimination of the 112 species;

Turhan [128] used the SVM as a machine learning algorithm to differentiate Salix alba,
S. caprea and S. eleagnos, obtaining a 95.2% success rate;

Filho et al. [71] used a two-level divide-and-conquer classification strategy to differen-
tiate 41 species of Brazilian flora, obtaining the highest accuracy level, of 97.77%;
Esteban et al. [130] used a multilayer perceptron (MP) to differentiate Pinus sylvestris
L. and P. nigra Arn subsp. salzmannii (Dunal) Franco, obtaining 81.2% accuracy in the
testing set;

Silva et al. [78] used microscopic images of cross sections of 77 commercial wood
species from the Democratic Republic of the Congo for surface texture analysis, re-
porting 88% successful identifications at species level, 89% at genus level and 90% at
family level.

He et al. [135] applied machine learning classifiers SVM, Naive Bayes (NB), Decision
Tree C5.0 and ANN) to discriminate between Swietenia macrophylla King, S. mahagoni
(L.) Jacq and S. humilis Zucc. The best results were obtained with SVM, with an overall
accuracy of 91.4%;

Deklerck et al. [136] used machine learning not for image-based data processing,
but for metabolome profile obtained through direct analysis in real-time (DART™)
ionisation combined with time-of-flight mass spectrometry (TOFMS) to study the
heartwood of 175 samples of 10 species of the Meliaceae family. Combining these
techniques resulted in accuracy levels of 82.2%;

de Andrade et al. [73] generated 2000 macroscopic images of 21 species using a
smartphone and samples manually polished with a knife to replicate field conditions.
A grey level co-occurrence matrix for the development of classifiers based on SVM
was used, resulting in accuracies of 97.7%;

Silva et al. [140] used 77 Congolese wood species as a reference base for applying a
multi-view random forest (MVRF) model for species-level identification. To ensure
information was not missed, the authors used images of the three anatomical planes.
The results showed that the concatenation of features from the transverse and tangen-
tial planes clearly outperforms transverse-only analysis, while adding the radial plane
minimally improves the results obtained. The use of the MVRF model outperformed
concatenation of LPQ features. The results showed that the supplementary informa-
tion added using three planes analysis and the model type considerably improve the
final results. Moreover, when evaluating the performance of the systems developed,
using the k-fold cross-validation scheme could have led to overestimation of the
results, so the authors applied a leave-k-tree-out approach during cross-validation.
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The results showed that implementing this approach dramatically decreased accuracy
compared with traditional cross-validation schemes.

4.2. Convolutional Neural Networks (CNN)

Convolutional neural networks are one of the most significant applications of ANNs.
In the AI context, a CNN is a class of feedforward ANN that has been successfully applied
to digital image processing analysis.

A CNN processes images more effectively by applying filtering techniques to ANNs [115].
This is a powerful and accurate way of solving classification problems, and CNNs are mainly
credited for their role in image analysis, recognition, and classification. The architecture of
a CNN typically has multiple layers between input and output: three convolutional layers,
a pooling layer and a fully connected layer. These layers process different tasks during
the image’s course. As the images progress through the distinct layers, features such as
edges, colours and shapes are extracted and interpreted. These features are then learned
and classified by the deep neural network, resulting ultimately in the network’s ability to
identify a specific object [62,115,141]. Other advantages are the capacity of automatically
recognise important features without human supervision.

CNNs have difficulty dealing with variance in the data presented, as tilted or rotated
images. This results in a limitation to encode an object’s orientation and position or process
spatially invariant data.

Research examples applied to wood identification include:

- Hafemann et al. [129] applied the CNN model 3-ConvNeta to identify macro images
of 41 species and micro images of 112 species. The results obtained 95.77% accuracy
for macroscopic images and 97.32% accuracy for microscopic images;

- Kwonetal. [131] applied six LeNet and MiniVGGNet CNN models to identify five
Korean softwood species (Cryptomeria japonica, Chamaecyparis obtuse, Pinus koraiensis,
P. densiflora, Larix kaempferi), using an iPhone 7 camera to obtain macroscopic images
of rough sawn surfaces from cross sections. Of all the CNN models tested, LeNet3
achieved the highest results and stability, with two extra layers added to the original
LeNet architecture. The identification accuracy obtained was 99.3%. The authors
reported that the software weight of the CNN created is small enough for installation
on a mobile device such as a smartphone;

- Maintaining the objective of ensuring field applicability, Kwon et al. [133] acknowl-
edged the real-world limitations of not including longitudinal wood surfaces. Using
mobile device cameras to obtain macroscopic images, they applied a combination of
models, obtaining the best results with LeNet2, LeNet3 and MiniVGGNet4. Their
results showed an overall accuracy of 98% and an improvement on their earlier study;,
particularly in the case of P. koraiensis and P. densiflora;

- Figueroa-Mata et al. [86] applied deep convolutional networks for identification of
41 Brazilian forest species from xylotheque samples at species level, achieving an
accuracy of 98.3%;

- Ravindran et al. [112] used CNNs to identify 10 neotropical species in the Meliaceae
family (Cabralea canjerana, Carapa guianensis, Guarea glabra, G. grandifolia, Khaya ivorensis,
K. senegalensis, and the CITES-listed Swietenia macrophylla, S. mahagoni, Cedrela fissilis,
and C. odorata), using only the transverse surface. The results showed an accuracy of
87.4 to 97.5%;

- To develop an automatic classification system for charcoal, Maruyama et al. [47] ap-
plied two LBP configurations of as texture descriptors. As state-of-the-art machine
learning classifiers, SVM and random forests (RF) have shown the best results. In-
ception_v3 CNN was applied for representation learning evaluation. The database
comprised 44 charcoal samples from Brazilian native species from natural forests. The
authors reported that both handcrafted features and RL achieved results of around
95% recognition rate;
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- Oliveira et al. [132] used databases developed by Filho et al. [71] and Martins et al. [77] to
access cross sections of 2942 wood macroscopic images of 41 species and 2240 microscopic
images of 112 species, applying CNNSs to create three models. Based on the results, the
authors reported 100% recognition accuracy for the scale model, 98.73% for the macro-
scopic model, and 99.11% for the microscopic model;

- Kanayama et al. [134] applied a deep CNN approach to near-infrared hyperspec-
tral imaging (NIR-HSI) using a principal component (PC) algorithm to identify
120 samples of 38 hardwood species. The results obtained showed 90.5% accuracy;

- A CNN was also used by Ravindran and Wiedenhoeft [66] to compare the macro-
scopic field identification programme XyloTron, using an ImageNet pre-trained
ResNet34 CNN, with mass spectrometry to differentiate 10 Meliaceae species used by
Deklerck et al. [136]. The results showed identification accuracy of 81.9% at the species
level and 96.1% at the genus level compared to 74.9% and 91.4%, respectively, in the
work by Deklerck et al. [136];

- Lopes et al. [81] applied the InceptionV4_ResNetV2 CNN to analyse macroscopic
images of the end-grain of 10 xylarium North American hardwood species, producing
1869 images using a smartphone fitted with a 14 x macro lens. Their results showed
an accuracy of 92.6%;

- de Geus et al. [137] applied the DenseNet CNN to recognise 281 species, using the
largest dataset of microscopic transverse, radial and tangential images available at
the time. Rotation invariant LPQ (RiLPQ) showed the best results of the feature
descriptors used. The authors reported an identification accuracy of 98.8%;

- Olschofsky and Kohl [69] applied Inception-v3, an image classification model using a
CNN for feature recognition and classification, pre-trained with 1.2 million images.
The CITES-protected species Cedrella odorata was chosen and compared with 13 other
tropical tree species for recognition. The results with the pre-trained CNNs had
98% accuracy, but when other tree species not used for training were added, the
classification accuracy fell to 87%;

- The ResNet101 CNN, associated with an SVM as classifier, was applied by Lens
et al. [76] to species-level identification of 112 mainly neotropical tree species, using
only transverse sections but focusing on microscopic rather than macroscopic analysis.
The results showed successful identification in 95.6% of cases;

- Wuetal. [138] applied deep convolutional neural networks (CNNs) for the identifica-
tion of 11 rough saw hardwood North American species based on tangential plane
images only. CNNs ResNet-50, DenseNet-121, as well as MobileNet-V2 were tested,
resulting in an overall accuracy of 98.2%.

- Shugar et al. [139] combined X-ray fluorescence spectrometry (XRF) and a CNN to
identify 48 wood specimens of both hardwoods and softwoods, mostly from heart-
wood and using either tangential or radial sections. They reported 99% identification
accuracy from the 66 datasets;

- In the study by Fabijariska et al. [72], a CNN with residual connections was tested to
identify 312 wood core scanned images of 14 European softwood and hardwood tree
species, developing a wood patch classification and a wood core classification. The
results showed that the proposed model correctly recognised patch images in 93% of
cases and wood core images in 98.7%. Comparison of the results also showed that this
model outperformed the state-of-the-art convolutional neural network-based model.

4.3. Generative Adversarial Networks (GANs)

Within deep learning, GANSs [142] are described as neural networks that can learn to
generate realistic samples from the data on which they were trained.

They use a neural network as a generator that takes a random distribution of data
as input and learns to map that information to output the desired distribution of data. A
second neural network, known as a discriminator (a binary classifier), will use the input
and output images to determine the probability of the image originating as a training image
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(real) or on the generator (fake), thus assessing the most likely class to which the output
image belongs [143].

Generative adversarial networks can produce highly realistic images using CNNs in
an unsupervised manner [144]. Their application extends to multiple fields of scientific
research, but they remain poorly explored in wood sciences [145-147].

- Addressing the possibility of eliminating economic and processing burdens in ac-
quiring images of worldwide wood species for machine-learning training purposes,
Lopes et al. [144] accessed 119 hardwood species references on the publicly available
Xylarium Digital Database [87]. Applying a style-based GAN, they successfully gener-
ated highly realistic and anatomically meaningful synthetic microscopic cross-sectional
images of hardwood species which they reported as virtually indistinguishable from
real cross-sectional images.

- To evaluate the resemblance, quality and pattern evaluation between the synthetic and
real cross sections, a structural similarity index measure (SSIM) and Fréchet inception
distance (FID) were applied and a visual Turing test (VIT) was performed by wood
anatomists to confirm the usefulness and realism of the GAN-generated images. The
results showed that the artificially generated images were indistinguishable from real
microscopic cross-sectional images.

- The authors [144] reported that it is even feasible to generate synthetic hybrids based
on microscopic cross-sectional images from two parental species. This would have
considerable implications on wood science and technology, especially for estimating
the wood permeability, strength, density, or hydraulic potential, for example, of a
species that has not even been planted.

5. Field Applicable Wood Identification Systems

One of the most interesting features of computer vision-based wood identification
systems is their field application capability. Despite the consensus that it will be a long
time before this technology becomes readily available not only to researchers and law
enforcement bodies, but also the general public, it is evident that this goal is reachable.
Programmes already developed or under development to respond to field application
needs include:

5.1. MyWood-1D

Described as an automated wood identification mobile app [89], MyWood-ID uses
a smartphone with a retrofitted macro lens and machine vision for macroscopic wood
identification. The system uses a database of 20 species of timber native to Malaysia and
provides a simple and effective way to acquire macroscopic wood digital images. The
images are then uploaded to a cloud server via an internet connection for immediate
identification results. It is intended to be cost-effective, easily accessible and intuitive, and
to provide fast results.

These characteristics are evident when compared with other field deployable sys-
tems [64,74]. As differentiating features of their wood identification system, the authors cite
its portability, lower initial cost, faster field deployment time, intuitive use, and continual
online database update. However, it requires a constant internet connection for results and
is operating-system-dependent (running only on iPhone 6 and 7). The main limitation of
this system is the lack of consistent light control for wood image acquisition, although the
authors indicate that this can be mitigated using the learning capability of a deep learning
algorithm. The results achieved by this system have an accuracy of 96% to 98%. It is a

paid app.

5.2. MyWood-Premium

This is an update of the previous app, developed by FRIM (Wood Anatomy Lab of
Forest Research Institute Malaysia) and UTAR (Universiti Tunku Abdul Rahman) [148].
The updated version comprises a database of 100 wood species native to Malaysia. It is
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available only on iPhone, iPod touch and Mac, and requires iOS 8.0 or later. It recommends
the Ollo-clip™ Macro Lens with 21x magnification for optimum performance. It is a
free app.

5.3. Xylorix

Another recent approach to rapid field wood identification is Xylorix [149,150], a
platform that combines a suite of apps, tools and services. Xylorix Inspector is a wood
identification mobile app that uses macroscopic features for automated identification. It is
based on trained Al models to automatically identify the wood genus or species. However,
a Xylorix WIDK-24X01 illuminated macro lens must be attached to the mobile phone
camera for correct performance. It is available on either Apple iOS or Android operating
systems and is supported by most mobile phones. Of the 24 species in the system database,
11 are free and the other 13 are paid.

5.4. XyloTron

XyloTron is a paid, open-source, image-based macroscopic field identification pro-
gramme designed for wood and charcoal identification [64,151]. It features adjustable and
controlled visible light, UV illumination capacity, and all the necessary software to control
the device, capture images, and deploy the trained classification models.

It works by capturing high-quality images of wood or charcoal samples with visible
or UV light. The identification accuracy for wood is described as 97.7%, increasing with the
use of UV light to 99.1% (e.g., identification confusion between Albizia sp., fluorescent, and
Inga sp., not fluorescent) and 98.7% for charcoal.

One limitation is that it is not a simple or easily deployable on-site system to use,
because it requires a permanent connection to a laptop computer.

Ravindran and Wiedenhoeft [66] compared the performance of XyloTron and MS
for species- and genus-level identification of 10 species of Meliaceae. The results showed
a similar species-level accuracy of the XyloTron and MS models, but higher genus-level
accuracy with XyloTron [66].

5.5. XyloPhone

To overcome visual aberrations (field distortion and spherical aberration), uncontrolled
light sources, high prices, and a lack of real field applicability, Wiedenhoeft [82] proposed
the XyloPhone. Described as an open-source, 3D-printed imaging attachment adaptable
to virtually any smartphone for macroscopic image capture, it is a small, closed plastic
box that provides a fixed focal distance, exclusion of ambient light, and a choice of visible
or UV illumination. It is powered by a rechargeable external battery and a commercially
available lens, making it affordable and, according to the author, providing comparable
image quality to XyloTron.

To document features such as evenness of illumination, distortion, maximum reso-
lution, and spherical aberration, the author compared the Xylophone + iPhone (XPi), the
XyloPhone + Samsung (XPs), the Ollo Clip 14 x + iPhone (OCi), and the Xylorix + iPhone,
with two distinct configurations. He reported that XyloPhone’s optical performance, espe-
cially when used with more recent smartphones, is clearly superior to the lenses/lighting
arrays of other systems [82].

5.6. WIDER

WIDER is a battery-charged portable system that uses spectroscopy measurement
and machine-learning-based identification software. It comprises a database of 15 species
and the authors [152] reported accuracy results of 95%. It is part of a larger project that
was completed in 2021 and brought into use by USAID PEER Cycle 8 (Development
of Wood Identification System and Timber Tracking Database to Support Legal Trade).
The same project developed the ECVT 4D Dynamic [152] technology for monitoring tree
physiological processes.
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5.7. IMAlapp

IMAIapp [153] is a wood identification mobile app that uses a lens attached to a
smartphone. Its purpose is to use convolutional neural networks (CNN) capable of carrying
out timber identification through machine learning of macroscopic elements observed in
photo enlargements. The difficulty of the problem lies in the number of classes that the
method is required to recognise automatically, from a total of 400 wood species and a high
number of macroscopic images. EfficientNet architecture is enhanced by a novel approach
for pre-processing that combines computer vision and data augmentation techniques
applied to the original dataset. The use of classification models based on deep learning is
the leading technique with the best performance at present, and the innovative approach to
increase the quality of the training data makes the model integrated in IMAlapp robust to
rotation, illumination and zoom invariants. This means the app can be used in the field.
Using TensorFlow Lite libraries for Apple and Google platforms, the application works
standalone, is 100% executable from the mobile device and does not require a connection
to the Internet. IMAlapp is therefore a design using an edge-computing method that is
intended to avoid computing constraints on the mobile device on which it is installed. The
project is under development and the app will be free for Android and iOS.

6. Discussion

In the last 100 years, what we now call the traditional wood identification method
based on anatomical descriptions has followed well defined, standardised features to suc-
cessfully distinguish and identify the multiple families, genera and species of angiosperm
and gymnosperm trees. However, despite the many positive aspects of this method, it is
now evident that it is reaching its limit.

The main limitations are the identification uncertainty at species level, the time-
consuming methodology, the lack of anatomists with the necessary training for the task,
and the associated costs of these professionals, mainly when on-site identifications are
required. These limitations have a notable impact on the type of monitoring that can be
carried out, e.g., in the fight against illegal logging. Faster, more accurate and economically
scalable methods are urgently needed.

As a valuable response to this need, the results obtained so far by computer vision-
based identification (CVBI) of wood and, in particular, deep learning approaches, clearly
demonstrate that this method has enormous potential for wood identification and quantita-
tive wood anatomy.

Despite the many obstacles remaining, this method is steadily adapting to over-
come limitations such as inter- and intra-anatomical variability, high anatomical resem-
blance, non-homogeneous illumination, staining or deformed samples, and limited image
databases, among many other issues.

Of all the resources discussed, deep learning appears to be the most significant and
promising solution in AI developments, and CNN models applied to wood sciences are one
of the leading and most rapidly evolving systems. CNNs have exhibited a notably more
efficient capacity and accuracy for quantitative wood anatomy and feature recognition,
alongside computer cost reduction.

Field-deployable identification systems appear to be the most important and impactful
option in computer vision-based wood identification. This resource, based on advances
in communication technologies, will enable more prolific, increasingly accurate and faster
screening by authorities without human prejudice, particularly with regard to illegal timber
and charcoal trading.

Computer vision-based identification technology could become one of the most effec-
tive and unavoidable weapons in the fight against the illegal timber and charcoal trade,
as it enables individuals who are untrained in traditional identification to obtain highly
accurate and legally binding identifications on the spot.

The multiple future contributions of the technologies underpinning CVBI for wood
sciences are difficult to fully envision at present. However, it is of utmost importance to
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overcome or at least mitigate the limitations that are severely hampering the development
and implementation of these systems.

Two of the most pressing issues are the limited number of digital databases, which
are specific to geographically restricted areas/species or inaccessible to the global research
community, and the lack of extensive field testing and verification hindering the accuracy
quantification of the systems.

The most urgent actions required are the construction of a freely accessible global
digital wood image database, the availability of this tool in a cloud-based system for
access everywhere, by everyone, and priority inclusion of CITES-listed species and their
look-a-likes.
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