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Abstract: Ephedra sinica Stapf is an important traditional medicinal plant. However, in recent years,
due to climate change and human activities, its habitat area and distribution area have been decreasing
sharply. In order to provide better protection for E. sinica, it is necessary to study the historical and
future potential zoning of E. sinica. The maximum entropy model (MaxEnt) was used to simulate the
potential geographical distribution patterns of E. sinica under historical and future climatic conditions
simulated using two Shared Socio-economic Pathways. The main results were also analyzed using
the jackknife method and ArcGIS. The results showed that: (1) the potential suitable distribution
area of E. sinica in China is about 29.18 × 105 km2—high-suitable areas, medium-suitable areas, and
low-suitable areas cover 6.38 × 105 km2, 8.62 × 105 km2, 14.18 × 105 km2, respectively—and E. sinica
is mainly distributed in Inner Mongolia; (2) precipitation and temperature contribute more to the
distribution of E. sinica; (3) under two kinds of SSPs, the total suitable area of E. sinica increased
significantly, but the differences between 2021–2040, 2041–2060, 2061–2080, and 2081–2100 are not
obvious; (4) the barycentre of E. sinica moves from the historical position to its southwest. The results
show that E. sinica can easily adapt to future climates well, and its ecological value will become more
important. This study provides scientific guidance for the protection, management, renewal and
maintenance of E. sinica.

Keywords: dryland plant; shared socio-economic pathways; MaxEnt; spatial distribution pattern;
barycentre migration

1. Introduction

Ephedra sinica Stapf is a herbaceous shrub species of the Ephedra genus in the Ephedraceae
family. It grows on hillsides, plains, dry wastelands, riverbeds, and grasslands. It has
no strict requirements on soil and is strongly resistant to drought and cold. E. sinica is
mainly distributed in Liaoning, Jilin, Inner Mongolia, Hebei, Shanxi, Gansu, Henan, and
Shaanxi provinces of China. It often forms large simple communities in the distribution
areas, with important ecological value in desert community maintenance and stability [1].
Ephedra is a traditional herb [2] that is rich in ephedrine [3]. According to the Pharmacopoeia
of the People’s Republic of China [4], the original medical plants of the Ephedra genus include
E. sinica, Ephedra intermediate Schrenk et C.A.Mey., Ephedra equisetina Bge. Ephedra is a
traditional drug proven to treat wind-cold syndrome and is anti-inflammatory and anti-
arthritic [5]. Experiments have shown that Ephedra can effectively reduce body temperature
and improve metabolism and the immune level, and E. sinica has the best effect among the
three kinds of Ephedra medicinal plants [6–8]. However, due to climate change and human
activities, the total suitable habitat of wild Ephedra is decreasing sharply [9]. Therefore, it is
vital to study the impact of climate change on the distribution prediction of wild medicinal
plant resources and the impact of future climate change on species distribution for the
protection of wild medicinal plant resources.
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Many studies have shown that global climate change has an increasing impact on
plant growth and distribution and also affects the pattern and function of ecosystems and
biota by changing water and heat distribution [10,11]. Some scholars, e.g., Yan et al., found
that the Hydrangea macrophylla distribution range is mainly affected by precipitation and
temperature [10]. Under a future scenario of increased greenhouse gas emissions, the area
of suitable habitats would increase, and the barycentre would have the longest migration
distance [10]. For two genetic lineages of Mikania micrantha Kunth, the range will expand
for one and decrease for another because of future climate change [12]. The extinction
risk of species is related to their limited plasticity and ability to adapt to rapid changes in
environmental factors (e.g., temperature or precipitation [13]. However, when involving
more species, scholars have found varied changes in distribution in response to climate
change or human activities [14–17]. Therefore, under global climate change, it is a topic
worth discussing whether the distribution range and area of species will become larger
or smaller.

According to Kim et al.’s [18] research, E. sinica was used to treat symptoms caused by
external stressors, and its extract significantly reduces body temperature rise and improves
weight loss. Park et al. [19] and Lv et al. [20] studied E. sinica extract, proving that the extract
had a preventive effect on ulcerative colitis and had a role in the treatment of adipocyte
browning and obesity, respectively. At present, the main focus is on pharmacology, although
the potential distribution and distribution pattern changes under historical and future
climate scenarios are rare.

For some species, detailed presence/absence occurrence data are available, allowing
the use of a variety of standard statistical techniques. However, absence data are not
available for most species [21]. The maximum entropy (MaxEnt) model has been widely
used to predict the potential geographical distribution based on limited species distribution
and bioclimate data under the climate change scenario; the bioclimate data are from
the World Climate Database (WorldClim), which contains different time periods and
SSPs; as the website is updated, the new database can be better used for climate change
analysis [22–34]. He et al. [9] analyzed the important environmental variables affecting
the distribution of three Ephedra species using the MaxEnt model, establishing a linear
relationship between environmental variables and chemical components and determining
which habitats can be used as priority conservation areas, providing a theoretical basis
for the restoration, protection and cultivation of Ephedra. However, these papers did not
analyze how Ephedra would respond to future climate change. Therefore, under different
SSPs, the maximum and minimum potential distribution areas and regional changes of
Ephedra need to be clarified.

In recent years, due to climate change and human activities, its habitat area and
distribution area have been decreasing sharply. Therefore, it is of great significance to study
the suitable habitat of E. sinica under historical and future climate change for its protection,
development, and utilization. The MaxEnt model and bioclimatic data in WorldClim were
used to analyze the potential suitable distribution and spatio-temporal evolution of E. sinica
under two extreme climate scenarios (SSP126, sustainable path and SSP585, unsustainable
path) in four different time periods (2021–2040, 2041–2060, 2061–2080, and 2081–2100),
indicate the limit range of the distribution of E. sinica under the different climate scenarios,
and analyze its main influencing factors. This study provides a scientific basis for the
protection, development and utilization of wild medicinal plant resources.

2. Materials and Methods
2.1. Acquisition of Species Distribution Data

This paper selected China as the study area to study the distribution of E. sinica
in China. The geographic distribution data (longitude and latitude) of E. sinica were
gathered from the Chinese Virtual Herbarium (CVH, https://www.cvh.ac.cn/, (accessed
on 10 September 2022)) and the Global Biodiversity Information Facility (GBIF, https:
//doi.org/10.15468/dl.rc84eb, (accessed on 16 September 2022)). Then, removing duplicate

https://www.cvh.ac.cn/
https://doi.org/10.15468/dl.rc84eb
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sample points and sample points without accurate longitude and latitude information. Data
autocorrelation was disabled in ArcGIS 10.3 (Esri, Redlands, CA, USA), and the resolution
was set at 10 km; finally, 56 reliable distribution points were obtained to execute the MaxEnt
model program (Figure 1).
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Figure 1. Distribution of E. sinica data points. This map was made based on the standard map
No. GS (2019) 1822 downloaded from the National Administration of Surveying, Mapping and
Geoinformation (NASG) of China. The base map is unchanged, and the geographical coordinate is
WGS84. The same is below.

2.2. Acquisition of Environment Variable Data

The climate data in this study were all from the global climate database (https://www.
worldclim.org/, (accessed on 6 September 2022)), with a spatial resolution of 30′′, about
1 km × 1 km. The historical environmental data were 19 bioclimatic factors from 1970 to
2000. The MIROC6 (Model for Interdisciplinary Research On Climate version 6) model
was developed by East Asian scholars and can be used to simulate the climate scenarios in
East Asia.

This study downloaded the data of SSP126 (maximum) and SSP585 (minimum) climate
scenarios, corresponding to the MIROC6 model in CMIP6 (Coupled Model Intercompari-
son Project Phase 6) in 4 different time periods of 2021–2040, 2041–2060, 2061–2080, and
2081–2100.

2.3. Build MaxEnt Model

MaxEnt mainly constructs models based on the longitude and latitude data of species’
existence points and the data of species’ living environment factors and expresses the
degree of habitat suitability of species in the form of probability [30]. Under the condition
that the sample size of species points is small and the correlation between various climatic
and environmental factors is not clear, the prediction results of the MaxEnt model are better
than those of other models, and the MaxEnt model could produce robust and accurate
distribution maps [35,36]. During the operation of the MaxEnt model, the importance of
variables can be measured by jackknife to avoid the influence of correlation among factors,
which truly reflects the importance of each factor [37].

https://www.worldclim.org/
https://www.worldclim.org/
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MaxEnt (version 3.4.1, Steven Phillips et al., New York, NY, USA) was used for this
study (https://biodiversityinformatics.amnh.org/open_source/maxent/, (accessed on
5 July 2022)). When building the model, the geographic location information data of
the sample were divided into 2 parts, of which 75% was randomly selected for model
simulation, and the remaining 25% was used for model testing. The 10 simulation results of
the MaxEnt model were averaged to determine the contribution of various environmental
factors [38,39].

The receiver operating characteristic (ROC) curve analysis method was used to test
the accuracy of the model. The area under the curve (AUC) can easily explain the accuracy
of the model simulation [40]. The AUC value range is [0, 1]. If the AUC value is between
0.5 and 0.7, the prediction accuracy is poor. If the AUC value is between 0.7 and 0.9, the
prediction accuracy is medium. If the AUC value is >0.9, the prediction accuracy of the
model is very high [41,42].

ArcGIS 10.3 (Esri, Redlands, CA, USA) was used to visualize the simulation results
and divide the habitat suitability into 4 levels (Jenks’ natural breaks) [27] and reclassify the
simulation results into 4 categories: unsuitable areas, low-suitable areas, medium-suitable
areas, and high-suitable areas.

3. Results

Firstly, the distribution of E. sinica in China was analyzed. Then, the MaxEnt model
was used to analyze the importance of 19 bioclimatic factors on E. sinica. Then, ArcGIS was
used to analyze the past potential geographical distribution, adaptability degree, future
distribution area, and migration of the distribution center of E. sinica.

3.1. Geographical Distribution

E. sinica is mainly distributed in the Inner Mongolia Autonomous Region, Hebei
Province, Shanxi Province, Shaanxi Province, Beijing City, Gansu Province, and other
provinces, with a total of 56 record points; and its distribution scope is concentrated in
the semi-humid and semi-arid areas near the Hu Huanyong Line (Figure 1). E. sinica was
usually distributed on hillsides, plains, arid wastelands, river beds and grasslands. It has
no strict requirements on soil and has strong drought resistance and cold resistance. The
provinces where the species distribution points are located meet the main conditions.

3.2. MaxEnt Model Accuracy Test

In this study, the ROC curve analysis method was used to test the accuracy of the
MaxEnt model. The average AUC value of the model training set was 0.926 ± 0.022, and
the AUC value of 10 simulation training sets was high (Figure 2, Table 1), indicating that
the predictive accuracy of the model was good.
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Table 1. AUC value of ten simulations.

AUC Value of Ten Simulations
No. Training Test

1 0.94 0.94
2 0.95 0.88
3 0.89 0.91
4 0.95 0.91
5 0.89 0.91
6 0.90 0.94
7 0.94 0.91
8 0.93 0.88
9 0.94 0.82
10 0.94 0.94

3.3. Contribution Percentage of Environment Variables

During the operation of the MaxEnt model, the importance of variables can be mea-
sured by jackknife to avoid the influence of correlation among various factors, which truly
reflects their importance. The average value according to 10 simulation results of the
MaxEnt model was taken to determine the contribution degree and ranking importance of
each environmental factor (Table 2).

Table 2. Relative contributions of environmental variables to the Maxent model for E. sinica.

Bioclimate Variable Contribution (%) Permutation
Importance

BIO15 Precipitation Seasonality
(Coefficient of Variation) 23.30 14.50

BIO4 Temperature Seasonality (standard
deviation × 100) 21.00 0.70

BIO13 Precipitation of Wettest Month 19.30 26.70
BIO6 Min Temperature of Coldest Month 8.60 1.30
BIO5 Max Temperature of Warmest Month 5.30 0.40
BIO19 Precipitation of Coldest Quarter 4.80 0.50
BIO12 Annual Precipitation 3.00 4.40
BIO16 Precipitation of Wettest Quarter 2.70 17.60
BIO3 Isothermality (BIO2/BIO7) (×100) 2.50 1.00

BIO2 Mean Diurnal Range (Mean of monthly
(max temp—min temp)) 2.00 2.60

BIO18 Precipitation of Warmest Quarter 1.80 12.70
BIO8 Mean Temperature of Wettest Quarter 1.70 9.10
BIO14 Precipitation of Driest Month 1.30 0.60
BIO17 Precipitation of Driest Quarter 1.10 4.00
BIO10 Mean Temperature of Warmest Quarter 0.70 0.70
BIO7 Temperature Annual Range (BIO5–BIO6) 0.40 1.10
BIO9 Mean Temperature of Driest Quarter 0.40 1.70
BIO1 Annual Mean Temperature 0.00 0.10
BIO11 Mean Temperature of Coldest Quarter 0.00 0.20

It can be seen from Table 2 that, among the contribution rates of various climate factors
obtained by running the MaxEnt model, the top factors are precipitation seasonality (BIO15,
23.3%), temperature seasonality (BIO4, 21.0), the precipitation of the wettest quarter (BIO13,
19.3%), the minimum temperature of the coldest quarter (BIO6, 8.6%), the maximum
temperature of the hottest quarter (BIO5, 5.3%), and the precipitation of the coldest quarter
(BIO19, 4.8%), with a cumulative contribution rate of 82.3%; thus, the prediction of E. sinica
can yield rich information.

In terms of the importance of the arrangement, the precipitation of the wettest month
(BIO13, 26.7%), the precipitation of the wettest quarter (BIO16, 17.6%), the precipitation
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of the hottest quarter (BIO18, 12.7%), the precipitation seasonality (BIO15, 14.5%), and
the average temperature of the wettest quarter (BIO8, 9.1%) add up to 80.6%, which also
reflects the importance of precipitation and temperature on the distribution of E. sinica.

Furthermore, based on the training gains of different climate factors analyzed by the
jackknife method (Figure 3), the average value of the 10 simulation results shows that the
environment variable with the highest gain when simulated alone is BIO12; thus, it itself
has the most useful information. BIO15 will reduce the benefit to the greatest extent when
omitted; therefore, it has the most information that does not exist in other variables.
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3.4. Threshold Analysis of Important Environmental Variables

It can be seen from the response curve analysis that the climate characteristics of
E. sinica in China’s distribution area are precipitation seasonality (BIO15; 25.4–150.6),
temperature seasonality (BIO4; 308.1%–1773.9%), the precipitation of the wettest month
(BIO13; 3.0–768.0 mm), the minimum temperature of the coldest month (BIO6; 37.2–16.6 ◦C),
the maximum temperature of the hottest month (BIO5; 1.8–42.1 ◦C), and the precipitation
of the coldest month (BIO19; 0–461.0 mm). Six bioclimatic factors mainly determine the
living range of E. sinica and also show the species’ basic niches formed in the process of
adapting to the environment. This shows that the growth of E. sinica is mainly affected by
“extreme” precipitation and “extreme” temperature. It has a wide range of temperature
tolerance, can withstand a certain degree of low temperature, and is suitable for growing in
arid and semi-arid deserts, grassland, sandy land, river beaches, etc. (Figure 4).

3.5. Evaluation of Potential Geographical Distribution and Suitable Areas

The total distribution area of E. sinica in China is about 29.18 × 105 km2, accounting
for 30.33% of the land area. High-suitable areas are mainly located in the middle of the
Inner Mongolia Autonomous Region, northern Shaanxi Province, northern and central
Shanxi Province, central and southern Hebei Province, western Liaoning Province, western
Jilin Province, southwestern Heilongjiang Province, northwestern Beijing, Gansu Province,
and the Ningxia Hui Autonomous Region of Qinghai Province (Figure 5). The optimal area
based on model simulation is about 6.38 × 105 km2.
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3.6. Future Trends in the Barycentre of Suitable Habitat

Through simulation, it was found that, under future climate scenarios, the distribution
area of E. sinica will become larger, and the distribution range will continue to increase
(Table 3). The results infer that the ecological value of E. sinica will become more and
more important. Using ArcGIS to analyze the center of gravity transfer trajectories of
E. sinica at different suitability levels, it was found that the center of gravity coordinates
of high-suitable, medium-suitable, and low-suitable areas were 115.7090◦ E, 42.0735◦ N;
115.0260◦ E, 41.2850◦ N; and 110.7560◦ E, and 38.8274◦ N, respectively, under historical
climate conditions. Under SSP126, the distribution barycentre of the three types of suitable
areas will shift from northeast to southwest, compared with historical climate conditions.
Under SSP585, the gravity center of different suitable areas will also move to the southwest.
It shows that climate change will cause the barycentre of the E. sinica distribution area to
migrate (Figure 6).
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Table 3. Potential distribution area changes in different periods.

Shared Socio-Economic Pathways Time Periods Area (×104 km2)

Historical 1970–2000 291.76

SSP126

2021–2040 611.40
2041–2060 617.67
2061–2080 624.19
2081–2100 644.53

SSP585

2021–2040 630.14
2041–2060 648.23
2061–2080 621.06
2081–2100 644.25
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4. Discussion

In this study, the MaxEnt model was selected to simulate the historical potential
distribution and future potential distribution of E. sinica; it was found that the simulation
accuracy was very good. Some scholars also found that the prediction accuracy indicators
of the MaxEnt model are all greater than 0.90 [41,43], which is consistent with these results.
Therefore, this model can be used as a powerful tool to study the potential distribution of
species and plant distribution under future climate change scenarios [44–46]. Of course,
some scholars (e.g., Cotto et al.) believed that the high fitting degree of MaxEnt fitting results
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does not mean that the simulation results can accurately reflect the actual distribution
and potential distribution of species [47]. In this regard, we should be more careful in
interpreting the results.

The main bioclimatic factors affecting the distribution of E. sinica are precipitation
seasonality, temperature seasonality, the precipitation of the wettest month, the minimum
temperature of the coldest month, the maximum temperature of the hottest month, and
the precipitation of the coldest quarter. The order of importance was as follows, the
precipitation of the wettest month, the precipitation of the wettest quarter, the precipitation
of the hottest quarter, precipitation seasonality, and the average temperature of the wettest
quarter are more important. It can be seen from this that the distribution of E. sinica in
China is limited by water and temperature, indicating that E. sinica has a wide range of
temperature ecology, can withstand a certain degree of drought, and can grow in arid and
semi-arid deserts, grasslands, sandy lands, river beaches, etc.

The distribution center of E. sinica is Inner Mongolia Autonomous Region-Ningxia
Hui Autonomous Region–Qinghai Province. Flora of China [1] records that the flowering
period of E. sinica is concentrated from May to June, and the seed maturity is concentrated
from August to September; there, it can be inferred that E. sinica completes its life cycle in a
relatively short time (2–3 months), which is consistent with the hydrothermal conditions in
the growing season of E. sinica. The environment in these areas is mainly semi-humid and
semi-arid desert and sandy land, with four distinct seasons and harsh conditions. In the
assessment area, the very serious and very serious interference areas are mainly distributed
in the south and east of Inner Mongolia, and the middle interference areas are concentrated
in Gansu and Inner Mongolia [10]. Due to the dry climate, cold waves and frequent wind
and sand dust disasters, plants in some areas are difficult to survive, which can be proved
by these results and the results of the MaxEnt model.

Withstanding extinction while facing rapid climate change depends on a species’
ability to track its ecological niche or to evolve a new one [47]. The adaptation of plants
to arid environments can be reflected by their functional traits [48]. However, when it is
difficult to obtain functional traits, the distribution area and distribution area of plants can
reflect the adaptation of plants to the environment. This paper has chosen two extreme
pathways of social and economic sharing. Under SSP126 and SSP585, the distribution
range and area of E. sinica increased significantly, but the two different SSP pathways
had no significant impact on the distribution of E. sinica. In the future, due to the impact
of human socio-economic activities, the potential distribution of E. sinica will change
significantly, E. sinica can adapt well both in the sustainable development pathways and
the unsustainable development way, and its distribution area could rapidly expand and
be maintained, indicating that the survival prospects of E. sinica are improving under
climate change. This may be related to future climate warming and the redistribution of
hydrothermal conditions in the temperate zone where E. sinica grows. This is consistent
with Wang et al.’s research on the increase in the suitable habitat of Tricholoma matsutake in
the western Sichuan Plateau under the future climate scenario [49].

The barycenters of different suitability levels of E. sinica in the future climate were
extracted using ArcGIS, and their transfer tracks were analyzed. It was found that the
range of E. sinica will move to the southwest in the future. When Xu et al. [26] studied the
future distribution of the traditional medicinal plant Rheum nanum Siev. ex Pall., they also
found that its distribution center will shift to the south. Similarly, the southwest movement
of E. sinica may be due to the redistribution of temperature and precipitation caused by
global warming; thus, it moves to the southwest to expand new distribution areas.

The rapid economic growth, overexploitation of natural resources, habitat degradation,
pollution and pressure related to global climate change are all serious challenges to plant
protection in the new millennium. At the same time, management problems (such as lack
of protection awareness of government officials and local people, imperfect legal system)
and insufficient basic research on endangered species are also obstacles to success [50]. The
protection and sustainable use of biodiversity is an important task of nature conservation.
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Mankind’s predatory development and utilization of E. sinica may reduce its numbers
to a certain extent [9]; for the protection, development, and utilization of E. sinica, there-
fore, we should not only pay attention to climate change but also consider the impact of
human beings.

This paper analyzes the potential distribution of E. sinica, the bioclimatic factors
affecting its distribution, and the future distribution changes, obtains some good results,
and puts forward some useful suggestions. Whether the simulation results of the MaxEnt
model and other niche models are consistent? If not, what is the reason and how to
improve? How about the impact of human beings on the distribution of E. sinica, and how
to measure the impact of human beings? Are more species consistent with climate change?
How can biodiversity be maintained? How does the higher classification unit “genus”
adapt to climate change? These all need to be further studied.

5. Conclusions

The MaxEnt model can be used to simulate the potential distribution of species, but
attention should be paid to the interpretation of the model results, and excessive inference
is not allowed. According to the data collection points and simulated niches of E. sinica, the
conditions of temperature and water, namely the combination of water and heat, limit the
changes in the actual distribution and future distribution of E. sinica. Therefore, regional
moisture and heat conditions should be considered when protecting E. sinica. The existing
distribution area of E. sinica is greatly disturbed by human activities, so it is necessary
to protect E. sinica pertinently, such as setting up natural reserves, carrying out publicity
and education, raising people’s awareness of E. sinica and enhancing the awareness of
ecological environment protection.

This study provides a research model for the evolution of the distribution pattern of
E. sinica, an important traditional medicinal plant in ethnic minority areas, and also provides
a theoretical basis for the protection and management of E. sinica, a single community in
desert areas, which is conducive to maintaining regional ecological balance and sustainable
development. Of course, in view of the small sample size of research species, it is not
enough to study only one kind of plant as an indicator of environmental change and a
guide for government decision-making.

In the future, authors will continue to pay attention to plants in arid areas and deduce
the response of plants to climate change through experiments and simulation calculations
so as to provide better guidance for regional ecological balance and government decision-
making. For example, these topics should continue to be studied in depth; the response of
more plant species’ geographical distribution patterns to climate change, the analysis of
biodiversity maintenance mechanisms, and the adaptive changes in plant evolution should
be analyzed from the higher taxon “genus”, etc.

E. sinica, as an important wild medicinal plant resource, should take on-site protection
measures for large populations as soon as possible, such as delimiting natural population
protection areas and ecological protection areas of E. sinica in Inner Mongolia, which
can not only protect the local ecological environment, but also protect the wild resources
of E. sinica, and reserve natural germplasm resources for domestication, cultivation and
resource development. In addition, E. sinica cultivation should be actively promoted in
other potentially suitable areas as the main repair service for ecological restoration of sandy
land, and the local people should be guided to cultivate so as to ensure species protection,
desert control and economic development into a coordinated and sustainable state.
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