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Abstract: Coexistence between species within plant communities is a key issue in the practice of
revegetation, forest management, and biodiversity conservation. Vegetation restoration is critical
to control soil erosion and improve the ecological environment on the Loess Plateau. Here, we
investigate the interspecific relationships of dominant plants during natural vegetation succession on
the Loess Plateau. The results suggest that, under the ecological process of environmental filtering,
species within communities can reduce interspecific competition and promote species coexistence via
spatial heterogeneity and temporal asynchronous differences. The ecological niche overlap index (Oik)
significantly and positively correlated with the strength of interspecific associations. Most species
pairs had weak competition and more stable interspecific relationships. The results of the χ2 test
showed that 317 species pairs were positively associated and 118 were negatively associated. The
community is in a positive succession process, and the interaction relationship between species tends
to be neutral. We should enhance the protection of positively associated species and pay attention to
negatively associated species during forest management. Results revealed that Carex lanceolata Boott
and Lespedeza bicolor Turcz coexisted easily with other species for mutual benefit, which could help
build artificial forestland of native species to improve the ecological function.

Keywords: ecological niche; overlap; plant communities; interspecific relationship; biodiversity
conservation; spatial heterogeneity

1. Introduction

Coexistence between species has long been a central question in community ecology
research [1,2]. Investigating coexistence relationships can objectively reflect species distri-
bution in a community and the degree of species adaptation to the environment, reveal
community structure, type, and plant substitution mechanisms, and predict population
extinction [3–5]. Modern coexistence theory suggests that the causes of species coexistence
in communities depend on the balance of niche overlap and competitive asymmetry [6].
Therefore, such interspecific relationships are often quantified by species’ ecological niches
and interspecific association characteristics [7]. Ecological niches are the sum of all re-
sources available to various organisms in a community and their functional relationships
with related populations, describing the role played by organisms in the community [8].
Under the pressure of ecological processes, species change their characteristics through trait
evolution, and this may lead to changes in species interactions and their “ecological niche”
in the community. This affects species coexistence and changes in community stability [9].
Interspecific associations represent the interconnectedness of the spatial distribution of
different species, reflecting the differences in adaptation to different habitats among species
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in the community [10]. Analysis of interspecific relationships can provide insight into
the competitive exclusionary effects between species. In general, positive interspecific
correlations indicate similarity in resource use by species; negative correlations indicate dis-
advantages for one or both parties, such as interspecific competition and disturbance [11].
This is essential to reveal the formation and evolution of communities [12]. Ultimately,
this may help us control interspecies relationships and maintain the stability of ecosystem
biodiversity [13,14].

The Loess Plateau of China is a global hotspot of land degradation with a fragile
ecological environment and extremely serious soil erosion [15,16]. To change this situation,
the Chinese government implemented the Grain for Green (GFG) Project in 1999, in which
artificial planting was the main practice [17]. Nowadays, the GFG project area has reached
3.33 × 105 km2, and the vegetation cover of the Loess Plateau has increased from about
49% in 1998 to 63% in 2018 [18,19]. The ecological environment has been greatly improved.
Soil erosion decreased to 595 t/km2/year during 2011–2015, and the amount of sediment
entering the sea from the Loess Plateau between 2005–2015 was only 8.9% of that in the
1950s [20,21]. Vegetation restoration is regarded as a fundamental measure to combat soil
erosion [22]. However, in the processes, irrational plantation and monoculture planting
presented negative impacts, such as vegetation degradation, soil dryness, groundwater
drought, and more than a 50% reduction in runoff, posing a serious challenge to the
sustainability of vegetation growth and the stability of ecological functions [23–27]. Thus, it
is important to figure out how native species can live together and work together, because
mixed forests of native species can make a region more resistant to drought, help plants
survive, and keep ecosystem functions stable [28,29].

Ziwuling is located in the Loess Plateau’s hinterland after a 150-year natural restora-
tion period, making it an ideal site for researching the Loess Plateau’s vegetation succession
law [30–32]. Vegetation succession refers to the process by which a plant community
evolves when one type of vegetation is replaced by another, and qualitative changes
occur [33,34]. It is demonstrated through the interdependence and competition of co-
existing species within the community, as well as through the interaction and influence
of habitats [12]. This provides an excellent natural template to reveal plant coexistence
relationships; however, reports related to the coexistence of species in the local area are rare.
The research objectives of this study were to (1) identify the dominant species of herbs and
woody plants in the process; (2) analyze the ecological niche and interspecific association
characteristics of dominant species; (3) determine reliable species coexistence relationships
and mechanisms through holistic analysis. Answers to these questions might help build
local plantation forests, protect biodiversity, manage forests, conservation of rare species,
the control of biological invasions, the forecasting of climate change impacts, and improve
the ecosystem [14].

2. Materials and Methods
2.1. Study Area

Ziwuling Nature Reserve is located in the temperate zone of the Loess Plateau, China
(34◦50′–36◦50′ N, 107◦30′–109◦40′ E) (Figure 1). The study area is approximately 200 km
long from north to south and 95 km wide from east to west, covering a total area of
approximately 3.79 × 104 km2. Its altitude range is 553–1856 m above sea level, with a
relative height difference of 400 m. It has an East Asian monsoon climate with an average
annual precipitation of 588 mm, which is unevenly distributed throughout the year, and
70% of precipitation occurs from July to September. The average annual temperature of
the area is 7.4–8.5 ◦C, with a minimum recorded temperature of −27.7 ◦C and a maximum
recorded temperature of 36.7 ◦C [35]. The soil layer in the mountains is shallow, bedrock is
exposed in some areas, and zonal soil is grayish brown with a pH value of 7.5–8.2. The soil
is primary or secondary loess, loose and easy to wet, and sinks because of its poor erosion
resistance [36]. The ground zone vegetation is a warm temperate deciduous broad-leaved
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forest with Quercus mongolica Fisch. Ex Ledeb as the dominant species and a temperate
coniferous forest with Pinus tabuliformis Carrière as the dominant species [37].
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2.2. Experimental Design and Investigation

Since 1899, ecologists have commonly used a “space-for-time” substitution method
for vegetative succession studies to predict vegetation chronosequence change [38,39]. This
study adopted a “space for time” approach to select 48 sites. Then, based on the results of
the relevant forestry department and a comprehensive analysis based on related reports by
Zou et al. [35], Fan et al. [36], Deng et al. [40], Zhao et al. [41], and Liu et al. [42], standard
sample plots of typical vegetation types in eight different restoration periods, with six sites
for each period, were set up from 2020 to 2021 with essentially identical environmental
conditions and similar soil texture. Standard sample plots of 20 × 20 m (trees), 10 × 10 m
(shrubs), and 1 × 1 m (grasses) were established, and the names and numbers of species
occurring in each sample plot were recorded. The Latin names of the species were cross-
checked using The Plant List (http://www.theplantlist.org, accessed on: 20 December 2021)
with reference to the Flora of China [43]. A total of 128 species of seed plants, 79 herbs, and
49 woody species were found during this process. The specific information is shown in
Table 1.

Table 1. Vegetation survey sample site information at the Ziwuling study area on the Chinese
Loess Plateau.

Restoration
Age (Year) Succession Stage Numbers

of Sites Representative Plants

0 Agricultural land 6 Viola collina Besser; Agropyron cristatum (L.) Gaertn.

10 Natural restoration of
10 years of grass 6 Bothriochloa ischaemum (L.) Keng; Artemisia chamaemelifolia Vill;

Lespedeza bicolor Turcz.

http://www.theplantlist.org
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Table 1. Cont.

Restoration
Age (Year) Succession Stage Numbers

of Sites Representative Plants

20 Natural restoration of
20 years of grass 6 Artemisia codonocephala Diels; Agrimonia pilosa Ledeb;

Lespedeza bicolor Turcz.

40 Shrub stage 6 Sophora davidii (Franch.) Pavol; Lespedeza bicolor Turcz;
Agropyron cristatum (L.) Gaertn; Anemone chinensis Bunge.

70 Pioneer arbor stage 6 Betula platyphylla Sukaczev; Spiraea salicifolia L.; Lespedeza bicolor
Turcz; Carex lanceolata Boott.

120 Sub-top stage 6 Pinus tabuliformis Carrière; Lespedeza bicolor Turcz;
Carex lanceolata Boott.

135 Sub-top to top
transition stage 6 Pinus tabuliformis Carrière; Quercus mongolica Fisch. Ex Ledeb;

Lespedeza bicolor Turcz; Carex lanceolata Boott.

150 Top Stage 6 Quercus mongolica Fisch. Ex Ledeb; Lespedeza bicolor Turcz;
Carex lanceolata Boott.

2.3. Statistical Analyses

Competition theory suggests that interspecific associations can change depending on
external conditions and that different environments may exhibit different associations [44].
To ensure the reliability of the results, this research combined data from eight major succes-
sional stages during 150 years of natural vegetation restoration for the overall analysis.

2.3.1. Species Selection

The plants identified in the vegetation survey were classified as herbaceous or woody
plants. The top 15 plants of each category were ranked according to importance value (IV)
and identified as the dominant plants [45].

IV =

(
ai

∑S
i=1 ai

+ fi

∑S
i=1 fi

)
2

(1)

where ai is the number of individuals in population i, fi is the number of quadrats in which
the population i appears, and S is the total number of species.

2.3.2. Ecological Niche Features

To calculate ecological niche breadth (Bi), the weighted modified Levins index method
described by Colwell and Futuyma [46] was used

Bi =
1

r ∑r
j=1 P2

ij
(2)

where Pij is the ratio of the number of individuals of species i at resource site j to the total
number of individuals of species i at all resource sites; r is the total number of sample
squares, and each sample square represents one resource site.

To determine the ecological niche overlap index (Oik), the Pianka index was used [47]

Oik =
∑N

j=1

(
Pij·Pkj

)
√

∑N
j=1 P2

ij·∑
N
j=1 P2

kj

(3)

where Oik is the ecological niche overlap value of species i and species k, where Pij and
Pkj are the importance value shares of species i and species k, respectively, in resource
niche j, and the value range is [0, 1]; the larger the value, the higher the ecological niche
overlap degree.
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2.3.3. Overall Association

The variance ratio method (VR) was used, and the statistic W was calculated to test
the significance level of the overall association [48]

VR =
s2

T
δ2

T
=

1
N ∑N

j=1
(
Tj − t

)2

∑S
l=1 Pi(1− Pi)

. (4)

W = VR× N (5)

where Pi is the frequency of species i, N is the total number of samples, S is the total number
of species, Ti is the total number of species occurring in sample j, and t is the average
number of species in the sample. When VR > 1, the overall species are positively associated,
and when VR < 1, the overall species are negatively associated. The interspecific association
is significant if χ2

(0.95, N) < W < χ2
(0.05, N); otherwise, the association is not significant.

2.3.4. Interspecific Association

Based on a 2 × 2 column table [49], the χ2 statistic was used for qualitative analysis.
The continuous correction factor of Yates was used to correct for the sampling discontinu-
ities, which can cause biased underestimation, with the formula [50]

χ2 =
N[|ad− bc| − 0.5N]2

(a + b)(a + c)(c + d)(b + d)
(6)

V =
[(a + d)− (b + c)]

a + b + c + d
(7)

where a indicates the number of samples in which both species occur, b indicates the num-
ber of samples in which species B occurs, but species A does not, c indicates the number of
samples in which species A occurs but species B does not, and d indicates the number of
samples in which neither species occurs. Generally, interspecific associations were consid-
ered highly significant when χ2 > 6.635, i.e., p < 0.01; significant when 3.841 ≤ χ2 < 6.635,
i.e., 0.01 < p < 0.05; and insignificant when χ2 < 3.841, i.e., p > 0.05. The indicator of V was
constructed to show the interspecific association. V < 0 indicated negative associations,
and V > 0 indicated positive associations [51].

2.3.5. Strength of Associations

The χ2 statistic can only qualitatively describe whether the association between species
is significant, but it cannot determine the strength of interspecific associations. Therefore,
the association coefficient (AC) and percentage co-occurrence (PC) are commonly used
to express the strength of association [52]. PC is more accurate than AC for reflecting the
positive association strength and avoiding the effects of high AC due to high d values
or low AC due to low a values. Therefore, PC and AC are usually analyzed together to
improve the accuracy of the results.

The AC calculation formula is as follows

AC =
ad− bc

(a + b)(b + d)
(ad ≥ bc) (8)

AC =
ad− bc

(a + b)(a + c)
(ad < bc, d ≥ a) (9)

AC =
ad− bc

(b + d)(d + c)
(ad < bc, d < a) (10)

The value of AC is in the range of [−1, 1]: the closer AC is to 1, the stronger the positive
association of interspecific association; the closer AC is to −1, the stronger the negative as-
sociation of interspecific association; when AC = 0, each species is completely independent.
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The PC calculation formula is as follows

PC =
a

a + b + c
(11)

The PC value is [0, 1]. The closer the PC value is to 1, the stronger the degree of
interspecies association, and a PC value of 0 indicates that interspecies association does
not exist.

This research used Excel 2019 for data preparation (Microsoft Corp., Redmond, WA,
USA) and R 4.0.4 (R Foundation for Statistical Computing, Vienna, Austria; program
packagesspaa and corrplot) for statistical analysis [53,54]. Mapping was done by ArcGIS
10.5 (Esri, Redlands, CA, USA) and Origin 2021b (OriginLab, Northampton, MA, USA).

3. Results and Analysis
3.1. Importance Values and Ecological Niche Breadth of Dominant Plants

A total of 128 species in 99 genera and 39 families of seed plants, 79 species of herba-
ceous plants, and 49 species of woody plants were identified during the vegetation suc-
cession in our survey. The sum of the importance values of the top 15 herbaceous species
accounted for 65.85% of all herbaceous plants, and the sum of the importance values of
the top 15 woody species accounted for 79.56% of all woody plants (Table 2). Therefore,
these 30 species were suitable as the main plants for researching species interrelationships
in this process. The ecological niche breadth ranged from [1.07, 12.8] for herbaceous plants
to [1.43, 9.42] for woody plants. Among herbaceous plants, C. lanceolata had the highest
importance value at 14.43%, while among the woody plants, L. bicolor had the highest
importance value at 20.98%. These two plants also had the largest ecological niche breadth
values (Table 1). The order of the dominant species importance values and the sizes of their
ecological niches were not always the same.

Table 2. Importance value and ecological niche breadth of selected 30 species at the Ziwuling
study area on the Chinese Loess Plateau. Abbreviations: IV—importance value; Bi—ecological
niche breadth.

No. Herb IV/% Bi No. Woody IV/% Bi

1 Carex lanceolata Boott 14.43 12.80 16 Lespedeza bicolor Turcz 20.98 9.42

2 Artemisia argyi H.Lév. & Vaniot 8.7 1.07 17 Quercus mongolica Fisch.
Ex Ledeb 11.41 5.25

3 Agrimonia pilosa Ledeb 7.53 1.07 18 Sophora davidii (Franch.) Pavol 5.67 4.36
4 Miscanthus sinensis Andersson 5.77 3.01 19 Spiraea salicifolia L. 5.55 2.11
5 Artemisia chamaemelifolia Vill. 5.17 3.49 20 Pinus tabuliformis Carrière 5.37 7.61

6 Viola philippica Cav 4.41 1.70 21 Acer tataricum subsp. ginnala
(Maxim.) Wesm 4.34 3.68

7 Potentilla chinensis Ser 3.1 3.48 22 Ostryopsis davidiana Decne 4.32 2.67
8 Bothriochloa ischaemum (L.) Keng 2.67 2.27 23 Betula platyphylla Sukaczev 4 5.96
9 Aster hispidus Thunb 2.54 2.69 24 Cotoneaster multiflorus Bunge 3.63 3.34
10 Artemisia lancea Vaniot 2.21 3.81 25 Lonicera japonica Thunb 3.23 6.21

11 Viola collina Besser 2.18 3.38 26 Campylotropis macrocarpa
(Bunge) Rehder 2.97 5.48

12 Cyperus compressus L. 1.84 1.45 27 Koelreuteria paniculata Laxm 2.75 1.43
13 Sophora flavescens Aiton 1.83 2.45 28 Periploca sepium Bunge 1.98 3.73
14 Anemone chinensis Bunge 1.76 2.23 29 Rubus parvifolius L. 1.84 2.29
15 Agropyron cristatum (L.) Gaertn 1.71 3.77 30 Rhamnus utilis Decne 1.52 1.54

3.2. Niche Overlap

The Oik ranged from 0 to 0.9996. In general, 56 pairs (12.87% of the total) had Oik ≥ 0.5,
and these pairs were subject to intense competition when environmental resources were
limited. Another 127 pairs (29.2% of the total) had Oik between 0.1 and 0.5, and these pairs
were subject to a certain degree of competition but could still coexist when resources were
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sufficient. The remaining 252 pairs (57.93% of the total) had Oik < 0.1, and competition
among these pairs was weak (Figure 2).
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Sorted by life form, 37 pairs of herbs had Oik ≥ 0.5, accounting for 35.24% of the
total number of pairs of herbs; 29 pairs of herbs had Oik between 0.1 and 0.5, accounting
for 27.62% of the total; and 39 pairs of herbs had Oik < 0.1, accounting for 37.14% of the
total. A. pilosa and A. argyi had the largest Oik value at 0.9996. Among the woody plants,
11 species pairs had Oik ≥ 0.5, accounting for 10.47% of the total; 49 pairs had Oik between
0.1 and 0.5, accounting for 46.67% of the total; and 45 pairs had Oik < 0.1, accounting for
42.86% of the total. L. japonica and R. parvifolius had the largest Oik value at 0.6875 (Figure 2).

3.3. Overall Association Analysis

As shown in Table 3, the VR of herbaceous and woody plants as a whole, herbaceous
and woody plants during vegetation succession were 1.20, 2.40, and 2.49, respectively. The
VRs of all three scenarios vegetation is greater than 1, indicating a positive association
among the dominant species in general. The χ2 table was checked according to the degrees
of freedom, and the test statistics (W) did not fall under χ2 critical values, indicating that
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the interspecies association was significant (p < 0.05). Therefore, the overall association
between the dominant species in this succession was significantly positive.

Table 3. Overall association of the 30 dominant species at the Ziwuling study area on the Chinese
Loess Plateau.

Life Form Variance Ratio (VR) Test Statistics (W) χ2
(0.95,N), χ2

(0.05,N) Test Results

Herb 2.40 115.20 33.10, 65.17 Significant association
Woody 2.49 119.52 33.10, 65.17 Significant association

Herb + Woody 1.20 57.82 33.10, 65.17 Not a significant association

Note: Herb + Woody denotes all associations formed by herbaceous and woody plants in this study.

3.4. Species Association Analysis
3.4.1. Test of Species Associations

The results of the χ2 tests (Figure 3, Supplementary Materials) showed that, the χ2

statistic was less than 3.841 for more than 90% of the species pairs in all three scenarios.
There were 25 significantly associated species pairs. Meanwhile, Table 4 shows that the
strongest positive linkage among herbaceous species pairs, followed by woody plants, and
the weakest herb + woody in the three scenarios. There were 16 pairs of significantly posi-
tively associated species pairs and 9 pairs of significantly negatively associated species pairs.
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Table 4. V values of interspecific association among the 30 species at the Ziwuling study area on the
Chinese Loess Plateau.

Life Form Positive Association (p) Negative Association (N) p/N

Herb 85 20 4.25
Woody 78 27 2.89

Herb + Woody 317 118 2.69

3.4.2. Strength of Species Associations

The results of the association coefficient (AC) and percentage co-occurrence (PC) of
dominant species demonstrate the strength of association between species (Figure 4 and
Table 5). The number of positive association species pairs was 61, 63, and 211, with
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corresponding positive and negative species pair association ratio values of 1.39, 1.54, and
0.95 in the Herb, Woody, and Herb + Woody Scenarios, respectively, based on the AC results
(Table 5).
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Table 5. Interspecific associations strength analysis among the 30 species at the Ziwuling study area
on the Chinese Loess Plateau.

Index Type Strength
of Association

Herb Woody Herb + Woody

Species Pair Number % Species Pair Number % Species Pair Number %

AC

Positive
association

AC ≥ 0.6 12 11.43 13 12.38 38 8.74
0.2 ≤ AC < 0.6 31 29.52 30 28.57 74 17.01
0 < AC < 0.2 18 17.14 20 19.05 99 22.76

No association AC = 0 0 0.00 1 0.95 3 0.69

Negative
association

−0.2 ≤ AC < 0 8 7.62 18 17.14 59 13.56
−0.6 ≤ AC < −0.2 23 21.91 21 20.00 93 21.38

AC < −0.6 13 12.38 2 1.91 69 15.86

PC
0.5 ≤ PC < 1 6 5.71 11 10.48 22 5.06
0 < PC < 0.5 88 83.81 93 88.57 360 82.76

PC = 0 11 10.48 1 0.95 53 12.18

Among the three scenarios, the woody scenario had the largest proportion of species
pairs with a high degree of positive interspecific association (AC ≥ 0.6) at 12.38%; the
Herb + Woody scenario had the largest proportion of species pairs with a high degree of
negative interspecific association (AC ≥ 0.6) at 15.86%; the degree of association coeffi-
cient was average (0.2 ≤ AC < 0.6 and −0.6 ≤ AC < −0.2) and tended to be independent
(0 < AC < 0.2 and −0.2 ≤ AC < 0) ranged from about 30% to 50% and 25% to 35%, respec-
tively; there were three and one pair of species pairs with Herb + Woody and Woody
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scenarios with complete independence (AC = 0). The number of species pairs with weak
connectivity (0 < PC < 0.5) for all three scenarios exceeded 80%. The largest percentage
of species pairs with a high degree of linkage (0.5 ≤ PC < 1) was 10.48% for the Woody
scenario. The number of species pairs with no association (PC = 0) between Herb, Woody,
and Herb + Woody scenarios was 11, 1 and 53, respectively (Table 5).

3.5. Regression Analysis between Association Strength and Niche Overlap

The regression analyses of interspecific association coefficients and ecological niche
overlap index during vegetation succession in this research are shown in Figure 5. The
p-values were less than 0.05 for interspecific association coefficients and Oik of the dominant
species in the three scenarios. Also, the slopes of the plots were all greater than 0, indicating
that a significant linear positive correlation existed between them. Thus, the stronger the
positive interspecific association is, the more likely it is for interspecific pairs to live together
and the larger the Oik. Conversely, the stronger the negative interspecific association is, the
more independent the pairs are and the smaller the Oik.
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4. Discussion
4.1. Importance Values and Ecological Niches of Dominant Plants

C. lanceolata and L. bicolor were the most important species in the process and had a
highly functional position in the community. They are strongly competitive, use resources
efficiently, adapt to a wide ecological range, and have a strong storage effect on generalized
species [55]. This may be because both species are temperate and fit the local climatic
characteristics [43]. In addition, they are positively associated with each other, are engaged
in symbiosis and synergistic evolution, and serve as a basis for community construction,
playing important roles in promoting positive succession and maintaining community
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stability [56]. However, other plants with high importance values and relatively narrow
ecological niche breadth indicate that they are sensitive to environmental changes, have a
poor adaptive capacity, play important roles in only a few stages of succession, are more
likely to be specialized (for a particular habitat), and are vulnerable to elimination and
replacement during the development of the community [57].

Ecological niche overlap is an important indicator of differences in the ability of species
to use environmental resources and engage in competitive relationships. A relatively large
overlap of ecological niches indicates that two species have similar life forms and ecological
needs for environmental resources and that there may be fierce competition between them.
At the same time, species can also adjust their resource use and competitive ability to
cope with different ecological and evolutionary pressures through adaptive changes in
traits [9,58,59]. Species exhibit feedback effects between ecological processes and evolution
to drive community succession development [9]. The degree of overlap of ecological
niches among dominant species was found to be generally low in this research, which
indicates that there is strong competition among a few species pairs and weak competition
among most species pairs and that interspecific relationships are stable. The degree of
ecological niche overlap for herbaceous plants was greater than that for woody plants,
indicating a greater similarity in environmental resource requirements among dominant
herbaceous plant species. Meanwhile, A. Pilosa—A. argyi, and L. japonica—R. parvifolius
interspecies pairs showed non-significant positive associations. These species have the
potential to co-occur in the community as companion species, thus enhancing the utilization
of resources.

4.2. Interspecific Association Strength and Niche Overlap Relationships

Interspecific associations reflect species interactions and community dynamics. A
positive correlation means that they have the same or similar needs for environmental re-
sources, strong complementarity between species, fuller use of resources, and an ecological
compensation effect [12,60]. Contrary of that, negative correlations indicate an adaptation
of species pairs to environmental heterogeneity due to large differences in biological charac-
teristics, leading to exclusion and ecological niche separation [9]. The results of the overall
association analysis and the results of χ2 test in this research were consistent, showing
that most species pairs were positively associated in all three scenarios. This suggests that
dominant species in the community weaken interspecific competition and help each other
during this process. The community structure stabilizes and adapts to the environment,
with the community moving toward top succession [61,62].

However, the overall non-significant positive associations between herbaceous and
woody plants suggest that species pairing between different life forms may still enhance.
This effect is in line with the forest secondary succession pattern, developing from a single
herbaceous community with simple structural functions to an advanced multifunctional
community with multiple life forms that coexist to maximize resource environment uti-
lization [63,64]. This finding suggests that vertical spatial complementation of plants with
different functional traits is an important mechanism for species coexistence [65].

χ2 tests showed that the dominant species pairs were mostly non-significantly as-
sociated in all three scenarios, with weak interspecific associations and relatively strong
independence. This is mainly because the environment experienced by plants during the
150-year natural restoration period was highly heterogeneous, and habitat filtering may
still be an important ecological process for species to achieve coexistence patterns at each
stage. This finding supports those of Tilman [66], Pedersen et al. [67], and Wu et al. [68]
that, when vegetation is restored, competition tends to decrease, and interactions between
species tend to be neutral.

In this research, the significant positive correlations were found between the interspe-
cific association coefficients (AC and PC), and Oik among dominant species, which showed
that the degree of Oik is greater among positively associated species pairs. This reflects
the consistency of habitat requirements for these species. By comparing Tables 2 and 4,
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we also found that the species pairs are negatively associated, but their Oik values are not
necessarily small (e.g., C. lanceolata—A. lancea). The causes of negative associations are
complex. The associativity between species pairs correlates with the species’ ecological
niches and with the frequency of distribution, habitat, and resource utilization capacity
of the species pairs, which may explain these findings. This conclusion has also been
confirmed in many studies on ecological niches and interspecific associations [69,70].

4.3. Inspirations and Prospects

Past two decades, the introduced species black locust (Robinia pseudoacacia L.) is widely
monocultured on the Loess Plateau due to its rapid growth and high tolerance to drought
and poor soils [71,72]. Nevertheless, its high-water consumption makes it difficult for native
plantations to survive, with an unbalanced community structure and lower plant diversity
than natural secondary forests [73–76]. As future droughts intensify [77,78], the rising risk
of decline and mortality of R. pseudoacacia stands could severely impact sustainability of
ecological functions [72,76,79].

As shown in Table 1 and Supplementary Materials, our findings provide a good
template for plantation forest construction and theoretical support for local ecosystem
function restoration. This research demonstrates that, under the ecological process of
environmental filtering, species within communities can ultimately reduce interspecific
competition and promote species coexistence through storage effects via the use of spatial
heterogeneity and temporal asynchronous differences. This is consistent with the findings
of Usinowicz et al. [80] and Levine et al. [2]. We also find weak associations among
dominant species during the 150 years of natural vegetation restoration succession. The
communities were all in a positive and healthy development period. So, we should continue
to protect the native environment, prevent anthropogenic disturbance, and enhance the
protection of not significantly positively associated species, such as A. chamaemelifolia
and A. tataricum subsp. ginnala. Among herbaceous plants, P. chinensis, A. hispidus, and
A. lancea formed the most significant negative associations with woody plant species in
pairs, suggesting that they are susceptible to replacement by woody plant influences on the
microenvironment, such as light resources, during community formation. The status of
these negatively associated species should be given attention when the plantation forest
is constructed.

Meanwhile, we can consider adding C. lanceolata and L. bicolor, two plants that gener-
ally coexist easily with other species for mutual benefit, to enhance the community function
and stability of the plantation forest. Thus, in the reconstruction and restoration of a com-
munity, it is important to fully understand the ecological and biological traits of each tree
species, take into account how different habitats affect the relationships between species at
different times, and choose tree species that can adapt well to their environment and coexist
well with other species for collocation planting, which will prevent extreme interspecific
competitive exclusion.

5. Conclusions

During 150 years of natural vegetation restoration succession, species within the
community reduced interspecific competition and promoted coexistence through spatial
heterogeneity and temporal asynchronous differences with storage effects. The ranges of
ecological niche breadth variation in this research are [1.07, 12.80] for herbaceous plants
and [1.43, 9.42] for woody plants. C. lanceolata and L. bicolor are the most important
species in this process. Local plantation forest construction can consider adding these two
plants to enhance ecological functions, maintain community stability, and promote the
healthy development of the community. Overall, 379 pairs of ecological niche overlap
index Oik < 0.5 were identified, accounting for 87.13% of the total, and most of the pairs
had weak interspecific competition and stable interspecific relationships. The similarity
in environmental resource requirements among dominant species of herbaceous plants is
greater than that of woody plants. The overall positive association among the 30 dominant
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plants indicates that the community is in a positive succession process. Plant coexistence
relationships in Supplementary Materials can provide a reference for plantation forest
construction. The results of the AC, PC, and χ2 tests were essentially consistent, all showing
that the dominant species pairs were mostly insignificantly associated. The degree of
association between species pairs was weak, while independence was relatively strong.
Meanwhile, a significant positive correlation was found between AC, PC, and Oik.

Habitat filtering is an important ecological process for species at each stage to achieve
coexistence patterns. With vegetation restoration, competition tends to lessen in intensity,
and interactions between species tend to be neutral. In the future, we should enhance
the protection of positively associated species and pay attention to negatively associated
species during forest management. Then, to get more complete analysis results, the soil,
topography, climate, and vertical structure of the forest should be considered.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/f13091456/s1, Figure S1. Half matrix graph of the interspecific
association χ2 test among the 30 plant species at the Ziwuling study area on the Chinese Loess Plateau.
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