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Abstract: The accurate monitoring of vegetation phenology is critical for carbon sequestration and
sink enhancement. Vegetation phenology in arid zones is more sensitive to climate responses;
therefore, it is important to conduct research on phenology in arid zones in response to global
climate change. This study compared the applicability of the enhanced vegetation index (EVI),
which is superior in arid zones, and global solar-induced chlorophyll fluorescence (GOSIF), which
has a high spatial resolution, in extracting vegetation phenology in arid zones, and explored the
mechanism of the differences in the effects of environmental factors on the phenology of different
vegetation types. Therefore, this study employed a global solar-induced chlorophyll fluorescence
(GOSIF) dataset to determine the start and end of the vegetation growth season (SOSSIF and EOSSIF,
respectively) in the arid zone of Northwest China from 2001 to 2019. The results were compared with
those from the EVI-based MODIS climate product MCD12Q2 (SOSEVI and EOSEVI). Variations in
the sensitivity of these climatic datasets concerning temperature, precipitation, and standardised
precipitation evapotranspiration index (SPEI) were assessed through partial correlation analysis.
Results: Compared to the MCD12Q2 climatic products, SOSSIF and EOSSIF closely matched the
observed climate data in the study area. Spring onset was delayed at higher altitudes and latitudes,
and the end of the growing season occurred earlier in these areas. Both SOSSIF and EOSSIF significantly
advanced from 2001 to 2019 (trend degrees −0.22 and −0.48, respectively). Spring vegetation
phenology was chiefly influenced by precipitation while autumn vegetation phenology was driven
by both precipitation and SPEI. GOSIF-based climate data provides a more accurate representation
of vegetation phenology compared to traditional vegetation indices. The findings of this study
contribute to a deeper understanding of the potential ability of EVI and SIF to reveal the influence of
vegetation phenology on the carbon cycle.

Keywords: vegetation phenology; GOSIF; partial correlation analysis; SPEI; arid zone

1. Introduction

Global change research has primarily focused on assessing the impact and feedback
loops of climate change on terrestrial ecosystems [1]. The growth and transformation of
vegetation are pivotal in shaping the structure and functions of ecosystems and influencing
aspects that include carbon cycling, photosynthesis, and species composition. These
changes, in turn, have broader impacts on the climate system [2]. It is important to
recognise that different vegetation types exhibit varying responses to climate change,
and their spatial and temporal distributions differ significantly. This underscores the
significance of vegetation phenology, a field dedicated to studying the interplay between
plants (including crops) and their environment. The goal is to uncover the patterns and
mechanisms governing shifts in the physiological cycles of vegetation. This knowledge is
crucial both for agricultural production and scientific research [3].

Forests 2023, 14, 2310. https://doi.org/10.3390/f14122310 https://www.mdpi.com/journal/forests

https://doi.org/10.3390/f14122310
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/forests
https://www.mdpi.com
https://orcid.org/0000-0001-8306-6184
https://doi.org/10.3390/f14122310
https://www.mdpi.com/journal/forests
https://www.mdpi.com/article/10.3390/f14122310?type=check_update&version=1


Forests 2023, 14, 2310 2 of 20

The United Nations Intergovernmental Panel on Climate Change (IPCC) has high-
lighted the importance of vegetation phenology as a sensitive indicator of terrestrial ecosys-
tem responses to climate change [4,5]. Consequently, monitoring vegetation phenology
and studying the cyclical patterns of change hold significant theoretical and practical value.

The recent availability of satellite remote sensing data has become a valuable tool
for monitoring vegetation phenology across different ecosystems and scales [6,7]. Tradi-
tional remote sensing methods for climate estimation mainly include a vegetation index
(VI) derived from reflectance data to assess vegetation greenness and invert vegetation
climate [8,9], such as the normalized vegetation index (NDVI) and enhanced vegetation
index (EVI), and remote sensing indices reflecting vegetation canopy. Other remote sensing
indices that reflect the vegetation canopy and weaken the influence of the background, such
as the plant phenology index (PPI), which reduces the influence of soil, rain, and snow;
the normalised differential green index (NDGI), which reduces the influence of fall foliage;
the enhanced vegetation index (EVI), which is insensitive to soil brightness; differential
green index (NDGI), which reduces the effects of fall foliage; and vegetation phenology
and productivity (VPP). However, previous studies have found that PPI have greater lim-
itations in arid regions [10]. NDGI has better accuracy for monitoring the phenology of
grasslands with snow cover, whereas vegetation phenology without snow cover is subject
to greater uncertainty [11]. The higher spatial resolution of VPP data is also suitable for
phenological research, but the VPP dataset that can be directly accessed at present has only
been available since 2017; therefore, the use of VPP for the long time series of phenological
studies is still limited [12]. Some studies have shown that EVI is more suitable for veg-
etation phenology research in arid zones than other vegetation indices that characterise
canopy morphology [13,14]. Moreover, traditional vegetation indices are limited due to
their correlation with the morphological characteristics of vegetation canopies, resulting
in errors when characterising vegetation phenology based solely on canopy morphology,
as observed in the study by Miao et al. (2017) [15]. Gross primary productivity (GPP), the
amount of organic carbon fixed by photosynthesis, is the most directly relevant factor for
vegetation phenology, but it is commonly used as a validation dataset as it contains flux
site data, which are spatially discontinuous and difficult for large-scale plant phenology
monitoring [16,17]. SIF is an indicator of the photosynthetic performance of vegetation that
can accurately reflect vegetation phenology [18,19]. Therefore, in this study, remote sensing
indices suitable for different vegetation types in arid zones were selected from different
angles to carry out long time series climate studies.

Sunlight-induced chlorophyll fluorescence (SIF) is a type of fluorescence emitted by
vegetative chloroplasts that absorb active radiation photosynthetically at a wavelength of
650–800 nm under sunlight [18]. In contrast to the vegetation index of canopy reflectance,
SIF is closely related to photosynthesis, is less affected by cloud cover and atmospheric
scattering, and is a fast, direct, and non-invasive indicator of vegetation photosynthetic
performance. Moreover, the cyclic change rule of SIF is more obvious [19] and can provide
a favourable basis for research on vegetation phenology, vegetation drought stress, disease
and pest monitoring, vegetation yield estimation, and the carbon cycle [20,21]. Some studies
have shown that the SIF of forests at high latitudes is more sensitive to climate change than
traditional vegetation indices [22]. The current remote sensing satellites for acquiring SIF
are mainly the Carbon Observatory-2 (OCO-2) and Global Ozone Monitoring Experiment-2
(GOME-2); however, the spatial resolution of the acquired SIFs is low, which brings a
great deal of uncertainty to the remote sensing estimation of vegetation phenology [23].
Therefore, the inversion of vegetation phenology using high spatial and temporal resolution
SIF data has important practical application value.

Currently, the methods of vegetation phenology extraction through vegetation in-
dices mainly include two categories, in which rule-based phenology extraction methods
(e.g., amplitude threshold, first-order derivative, second-order inverse, third-order deriva-
tive, relative change curvature, and rate of change in curvature) have been widely used for
vegetation phenology extraction due to their simplicity, ability to minimise the influence



Forests 2023, 14, 2310 3 of 20

of background interference, and lack of a need for a variety of sample data; however, the
accuracy greatly depends on the selection of thresholds [24,25]. The other category is
machine-learning-based climate extraction methods (e.g., random forest and neural net-
work models), which are more accurate in extracting vegetation phenology from remotely
sensed data; however, their accuracy is limited by the number and quality of training sam-
ples as they require a large number of ground-based climatic observations as samples for
training models [24,26]. All the above methods can be used to extract vegetation phenology
information from coarser resolution remote sensing indices.

While extensive research has explored vegetation phenology in humid climates, there
is a distinct need to address this issue in arid regions, which encompass a substantial 41%
of the global land area. Vegetation in arid regions demonstrates heightened sensitivity to
climate change, yet their responses on a global scale remain unclear [27,28]. Arid regions in
Northwest China exhibit considerable variability in topography, geomorphology, and cli-
mate, resulting in substantial spatial and temporal variations in vegetation phenology [29].
Understanding the mechanisms governing plant phenology responses to climate change in
arid and semi-arid regions of China is vital for broader studies on vegetation and global
change. This knowledge also serves as a theoretical foundation for adapting to global
change [30,31].

The vegetation in arid northwest China was selected as the research subject in this
study. The latest high-resolution global solar-induced chlorophyll fluorescence (GOSIF)
dataset from 2001 to 2019 was utilized, and the Savitzky–Golay (S–G) and dynamic thresh-
old methods were employed for estimating the phenological characteristics of vegetation.
A comparative analysis with the MODIS phenological product MCD12Q2 was conducted,
followed by a discussion on the responses of two climate datasets to various climate factors
through partial correlation analysis. The research objectives of this study were to (1) identify
more suitable vegetation indices for the inversion of vegetation phenology in arid zones,
(2) clarify the effects of environmental factors (temperature, precipitation, and SPEI) on the
phenology of different vegetation types, and (3) explore the reasons for the differences in
the sensitivity of vegetation phenology to climatic factors. The results of this study provide
a theoretical basis for the response of vegetation phenology to climate change and the study
of the relationship between vegetation phenology and the carbon cycle in the northwest
arid zone.

2. Materials and Methods
2.1. General Description of Study Area

The arid region of Northwest China is located in the heart of the Eurasian conti-
nent at mid-latitudes. Precipitation primarily originates from mountainous areas and
glacial meltwater, resulting in an average annual precipitation of <200 mm, character-
istic of a continental climate [32]. Geographically, the region (34◦44′11′′–49◦077′24′′ N,
73◦47′17′′–106◦43′00′′ E) spans from the Pamir Plateau in the west to the Helan Mountains
in the east, and from the southern periphery of the Tarim Basin in the south to the Altai
Mountains in the north. It encompasses a wide range of altitudes, extending from 192 to
8545 m, covering approximately 2.6 × 106 km2, equivalent to 30% of the total land area of
China [33]. Within this expanse, there are areas designated for forest land, grassland, crop-
land, and other land-use types, measuring 6.6× 104, 5.1× 104, 4.1× 104, and 6.7 × 103 km2,
respectively [33]. The study area encompasses the Xinjiang Uyghur Autonomous Region,
Alashan Plateau of Inner Mongolia, and the area west of the Helan Mountains in the
Ningxia Hui Autonomous Region (Figure 1). This area is a vital component of the Central
Asian arid zone, ranking among the world’s driest regions at its latitude [34]. Its delicate
ecological environment is highly susceptible to global changes [35]. Therefore, it is impera-
tive to investigate the influence of climate change on vegetation growth within this region
to preserve ecosystem stability.



Forests 2023, 14, 2310 4 of 20

Forests 2023, 14, x FOR PEER REVIEW 4 of 21 
 

 

investigate the influence of climate change on vegetation growth within this region to pre-
serve ecosystem stability. 

 
Figure 1. Overview map of the study area. 

2.2. Data Sources and Preprocessing 
2.2.1. SIF, EVI, and Gross Primary Production (GPP) Data 

Global SIF product (GOSIF) based on Orbiting Carbon Observatory-2 (OCO-2) data 
was utilised. The spatial and temporal resolution of the dataset from Global Ecology 
Groupʹs data repository was 0.05° and 8 d, respectively. (available at http://data.globale-
cology.unh.edu/data/GOSIF_v2/Annual/, accessed on 6 May 2023), and was created by 
integrating discrete OCO-2 SIF point clouds with remote sensing data from MODIS and 
meteorological reanalysis data, spanning from 2001 to 2019. 

To ensure the accuracy of our vegetation phenology estimation, we used ArcGIS10.8 
software to eliminate data rasters with pixel values of 32,767, representing water bodies, 
and values of 32,766, indicating year-round snow and ice. This step aimed to mitigate po-
tential interference from water bodies, snow, and ice on our vegetation phenology assess-
ments [36]. 

For comparative analysis, we obtained EVI and GPP data from the MOD13A1 and 
MOD17A2H.061 products of MODIS data, accessible through NASA in the United States 
(https://lpdaac.usgs.gov/, accessed on 5 May 2023). These datasets have temporal resolu-
tions of 16 and 8 days, respectively, with a spatial resolution of 500 m. 

To ensure consistency in our analysis, we employed the maximum value synthesis 
method of ArcGIS10.8 software to harmonise the temporal resolutions of SIF, GPP, and 
EVI in the study area from 2001 to 2019 at intervals of 16 days. Additionally, we aligned 
the spatial resolutions of the EVI and GPP datasets with those of SIF, setting them at 0.05° 
using a downscaling method [37]. 

2.2.2. Vegetation Type and Meteorological Data 
Vegetation type information obtained from the Northwest Institute of Eco-Environ-

ment and Resources combined with data from the Second Land Survey (accessible at 
http://www.nieer.cas.cn/kyfw/kxsj/, accessed on 20 May 2023) were extracted to create a 

Figure 1. Overview map of the study area.

2.2. Data Sources and Preprocessing
2.2.1. SIF, EVI, and Gross Primary Production (GPP) Data

Global SIF product (GOSIF) based on Orbiting Carbon Observatory-2 (OCO-2) data was
utilised. The spatial and temporal resolution of the dataset from Global Ecology Group’s data
repository was 0.05◦ and 8 d, respectively. (available at http://data.globalecology.unh.edu/
data/GOSIF_v2/Annual/, accessed on 6 May 2023), and was created by integrating discrete
OCO-2 SIF point clouds with remote sensing data from MODIS and meteorological reanalysis
data, spanning from 2001 to 2019.

To ensure the accuracy of our vegetation phenology estimation, we used ArcGIS10.8
software to eliminate data rasters with pixel values of 32,767, representing water bodies,
and values of 32,766, indicating year-round snow and ice. This step aimed to mitigate
potential interference from water bodies, snow, and ice on our vegetation phenology
assessments [36].

For comparative analysis, we obtained EVI and GPP data from the MOD13A1 and
MOD17A2H.061 products of MODIS data, accessible through NASA in the United States
(https://lpdaac.usgs.gov/, accessed on 5 May 2023). These datasets have temporal resolu-
tions of 16 and 8 days, respectively, with a spatial resolution of 500 m.

To ensure consistency in our analysis, we employed the maximum value synthesis
method of ArcGIS10.8 software to harmonise the temporal resolutions of SIF, GPP, and
EVI in the study area from 2001 to 2019 at intervals of 16 days. Additionally, we aligned
the spatial resolutions of the EVI and GPP datasets with those of SIF, setting them at 0.05◦

using a downscaling method [37].

2.2.2. Vegetation Type and Meteorological Data

Vegetation type information obtained from the Northwest Institute of Eco-Environment
and Resources combined with data from the Second Land Survey (accessible at http://www.
nieer.cas.cn/kyfw/kxsj/, accessed on 20 May 2023) were extracted to create a comprehensive
vegetation type map of the study area (Figure 1). The prominent vegetation types within the
arid zone of Northwest China encompass woodland, grassland, and cropland.

http://data.globalecology.unh.edu/data/GOSIF_v2/Annual/
http://data.globalecology.unh.edu/data/GOSIF_v2/Annual/
https://lpdaac.usgs.gov/
http://www.nieer.cas.cn/kyfw/kxsj/
http://www.nieer.cas.cn/kyfw/kxsj/
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We sourced 1 km month-by-month gridded temperature (TMP) and precipitation
(PRE) data for the study area from 2001 to 2019 through the National Earth System Science
Data Center (available at http://gre.geodata.cn, accessed on 1 June 2023). This dataset is
a fusion of global 0.5◦ climate data from the Climatic Research Unit, University of East
Anglia, and high-resolution climate data from WorldClim (https://worldclim.org, accessed
on 2 June 2023), achieved via spatial downscaling methods. Importantly, it has undergone
rigorous validation with data obtained from 496 independent meteorological observation
sites [38].

To characterise drought conditions within our study area from 2001 to 2019, we employed
the standardised precipitation evapotranspiration index (SPEI) with a spatial resolution of
0.5◦, which were obtained from the global SPEI database SPEI base v2.7. (https://digital.
csic.es/handle/10261/268088, accessed on 2 June 2023). The SPEI amalgamates the strengths
of both the Palmer drought severity index (PDSI) and the standardised precipitation index
(SPI). SPEI accounts for the processes of moisture and heat balance, offering insights into
the extent of the surface water deficit and its accumulation. The China Meteorological
Administration (CMA) provides the SPEI drought classification criteria, with SPEI categories
as follows: SPEI > −0.5 indicates no drought; −1 < SPEI ≤ −0.5 signifies mild drought;
−1.5 < SPEI ≤ −1 denotes moderate drought; −2 < SPEI ≤ −1.5 corresponds to severe
drought; and SPEI≤ −2 represents exceptional drought (https://www.cma.gov.cn/, accessed
on 3 June 2023).

2.2.3. MODIS Climate Data and Ground-Based Climate Observations

For the comparative analysis, MODIS phenology product data, MCD12Q2, from the
NASA website (https://lpdaac.usgs.gov/, accessed on 4 June 2023) were obtained. These
data have a spatial resolution of 500 m. Greenup in the MCD12Q2 product is the period of
onset of vegetative growth (SOSEVI) and dormancy is the period of the end of vegetative
growth (EOSEVI). The MCD12Q2 product utilises a segmented logistic function fitted to the
EVI from MODIS as the primary data source. It identifies the extremes of curvature change
points in the EVI to determine the initiation, maturity, peak, and conclusion of vegetation
growth [37].

MCD12Q2 products spanning 2001 to 2019 were processed by splicing, projecting
transformation, and cropping to extract data on the SOSEVI and EOSEVI of vegetation
within our study area. This allowed calculation of the duration of the vegetation growth
period. Climatic parameters were expressed as Julian days, converting the dates of climatic
phenomena into the actual number of days from January 1 of the current year (days of the
year, doy), thereby creating a time series for each climatic period.

To validate the accuracy of our findings, we sourced ground-based climatic observa-
tions from the National Ecological Science Data Center (http://rs.cern.ac.cn/data/meta?
id=40177, accessed on 4 June 2023). These observations included climatic data for both
herbaceous and woody plants at 21 ecological stations across China, covering the period
from 2003 to 2015. To ensure precision, climate observation data from the Fukang, Celle,
and Linze stations were selected, as they had recorded data for at least three years and
monitored at least eight plant species annually. Additional information about these stations
is presented in Table 1.

Table 1. Sites analysed in the study.

Field Test Site Name Longitude Latitude

Linze Station 99◦35′′ 39◦04′

Fukang Station 87◦55′ 44◦17′

Cele Station 80◦43′ 37◦00′

The Fukang, Celle, and Linze stations are strategically located in desert, grassland,
and cropland areas, respectively, and are representative of typical vegetation ecosystems
in the northwestern arid zone [36]. For woody plants, the start of the growth period was

http://gre.geodata.cn
https://worldclim.org
https://digital.csic.es/handle/10261/268088
https://digital.csic.es/handle/10261/268088
https://www.cma.gov.cn/
https://lpdaac.usgs.gov/
http://rs.cern.ac.cn/data/meta?id=40177
http://rs.cern.ac.cn/data/meta?id=40177
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defined as the leaf-spreading phase, and the end of the period was set as the deciduous
phase. For herbaceous plants, the start of the growth season was defined as the average
of the greening and flowering periods, while the end of the season was defined as the
yellowing period. Since remote sensing technology relies on vegetation greenness data
to calculate phenology parameters, there may be some discrepancies with the phenology
periods observed at ground stations. To minimise errors, the averages of the different
growth seasons of herbaceous and woody plants were defined as the beginning and end
of the growing season for each year at the respective station. Data for this site are from
the National Ecological Science Data Centre (NESDC) Resource Sharing Service Platform.
(http://rs.cern.ac.cn/, accessed on 6 June 2023) [39].

2.3. Vegetation Phenology Extraction
2.3.1. Time Series Reconstruction of SIF Data

SIF time series data are robust against cloud cover and atmospheric scattering. How-
ever, random factors and missing values can introduce noise. Therefore, data smoothing
is a necessary step. In comparison to the double logistic (DL) and asymmetrical Gaussian
(AG) filtering methods, the Savitzky–Golay (S–G) smoothing technique provides smoother
and more stable reconstructed curves [40]. This method effectively reduces noise while
preserving the nuances and fine details in long time series data [41].

In this study, we employed the S–G filter, which is available in the TIMESAT3.3
software, to reconstruct the SIF data time series from 2001 to 2019 within the study area.
This filtering method yielded smoothed curves that can more accurately capture the peaks
and valleys within the SIF time series data [20]. The S–G filter utilises an iterative algorithm
that relies on convolutional fitting using the least squares method [42]. The process involves
specific steps that are detailed below.

In the initial step, for the peaks and valleys evident in the SIF curves before denoising,
the left and right segments of the curves are fitted using the S–G function. The local fitting
function (f 1(t)) is expressed by Equation (1):

f 1(t) ≡ f (t; a1, a2, b1, . . . , b5) = a1 + a2g(t; b1, . . . , b5) (1)

where a1 and a2 are linear parameters that ensure a reasonable rate of increase or decrease
in the basis function span.

Step two is

g(t; b1, . . . , b5) =


exp
[
−
(

1−b1
b2

b3
)]

exp
[
−
(

1−b3
b4

b5
)]

(t > b1)

(t > b2)
(2)

where g(t;b1,. . .,b5) is the S–G function, b1 is the location parameter of the peak or trough
of the time variable t, and b2, b3, b4, and b5 are the width and steepness of the left and right
halves of the fitted curves, respectively.

The local fitting function model can be used to plot the maximum and minimum
values of the SIF curve. The overall fitting function combines the characteristics of the local
fitting function [43], which is calculated as

f 2(t) =
{

α(t) fL(t) + [1− α(t)] fC(t)
β(t) fC(t) + [1− β(t)] fR(t)

}
(tL < t < tC)
(tL < t < tC)

(3)

where f 2(t) is the overall fitting function, [tL, tC] is the variation interval of the SIF data
series, fL(t), fC(t), and fR(t) represent local functions corresponding to the left valley, middle
peak, and right valley in the interval [tL, tC], respectively, and α(t) and β(t) are the truncation
functions located between [0, 1]. The merging of locally fitted functions is a key feature of

http://rs.cern.ac.cn/
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Gaussian function simulations. This approach increases the flexibility of the fitted functions
to simulate more complex time series variations [44].

2.3.2. Dynamic Thresholding

Based on the reconstruction of SIF time series data from 2001 to 2019, the dynamic
threshold method was used to extract the vegetation phenology parameters SOSSIF and
EOSSIF. First, the dynamic threshold of SIF (SIFratio) was calculated as

SIFratio =
SIFt − SIFmin

SIFmax − SIFmin
(4)

where SIFt is the SIF value for a given day in a given year, and SIFmax and SIFmin are the
annual maximum and minimum SIF values, respectively, for the time span of the study.
SOSSIF is defined as the doy when the SIF value exceeds the local threshold SIFratio. EOSSIF
is defined as the doy when the SIF value is below the local threshold SIFratio. Considering
the effects of different wavelengths of light on chlorophyll fluorescence, this threshold was
set to one-fifth of the difference between SIFmax and SIFmin [45].

2.3.3. Sen and Mann–Kendall Trend Analyses

Sen trend degree was first used to analyse the trend of climate information. Then,
Matlab R2021b software was used to test the significance of climate data trends by Mann–
Kendall test [46]. The degree of Sen trend is calculated as follows:

βsi f = median
( xj − xi

j− i

)
, 1 < i < j < 19 (5)

where xj and xi are the annual mean vegetation phenology doy for the j-th and i-th year
image elements, respectively, βsif is the slope of phenology change, βsif > 0 indicates an
upward trend in phenology data, and βsif < 0 indicates a downward trend in phenology.

The S statistic for the Mann–Kendall trend significance test was calculated as follows:

S = ∑n−1
i=1 ∑n

j=i+1 sgn(xj − xi) (6)

where the sgn function is a step function that symbolises the difference between xj and xi,
and is calculated as follows:

sgn
(
xj − xi

)
=


−1 xj − xi < 0
0 xj − xi = 0
1 xj − xi > 0

 (7)

The length of the time series data was 19 years, and the statistic S followed a normal
distribution. Therefore, the test statistic Z was used to test for trend, and the test was
taken at a significant level of α = 0.05 and Z1−α = Z0.975 = 1.96 [47]. The Z test statistic was
calculated as follows:

Z =


S+1√
VAR(S)

S < 0

0 S = 0
S−1√
VAR(S)

S > 0
(8)

where VAR(S) is the variance of the statistic S, calculated as follows:

VAR(S) =
n(n− 1)(2n + 5)−∑m

i=1 ti(ti − 1)(2ti + 5)
18

(9)

where n is the number of points in the sequence, i is the number of repetitions, m is
the number of non-repetitive numbers, and ti is the number of repetitions in the i-th
repetitive dataset.
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2.4. Standardised Processing

To reduce errors in the evaluation results caused by differences in the nature, scale, and
order of magnitude of the evaluation indicators in the multi-indicator evaluation system, it
was necessary to standardise the raw data [48,49]. In this study, the minimum-maximum
normalization method in ArcGIS10.8 was used to standardize GOSIF, GPP, and EVI data,
as follows:

yi =
xi −min

(
xj
)

max
(
xj
)
−min

(
xj
) (10)

where yi is the result after normalisation of the i-th original data xi and min(xj) and max(xj)
represent the minimum and maximum values of the original data, respectively.

2.5. Partial Correlation Analysis

Previous research has demonstrated that partial correlation analysis is an effective
approach for examining the connection between vegetation phenological responses and
environmental factors in arid regions [50,51]. Specifically, the onset of the phenological
period appears to be more responsive to the mean temperature in March and April, precipi-
tation in the preceding November, and the 12-month scale of the standardized precipitation
evapotranspiration index (SPEI-12). In contrast, the conclusion of the phenological period
is more sensitive to the mean temperature and precipitation in July and August, as well as
SPEI-12 [52,53].

In this study, MATLAB R2021b software was used to select the mean temperature in
March and April, the precipitation from November of the previous year, and SPEI-12 to
analyse their relationships with the onset of the vegetation phenology. Similarly, the mean
temperature, precipitation, and SPEI-12 in July and August were chosen as key climatic
factors to examine their climate response in relation to the phenological conclusion [52,53].

For the bias correlation analysis between phenological and climatic factors, the other
two factors were excluded, and the bias correlation coefficient was computed as follows:

Rxy,z =
Rxy − Rxzryz

(1− R2
xz)
(

1− R2
yz

) (11)

where Rxy,z is the correlation coefficient between x and y after the control variable z, z is the
other variable to be excluded, and Rxy, Rxz, and Ryz represent the correlation coefficients of
the variables x and y, x and z, and y and z, respectively.

3. Results
3.1. Comparison of GOSIF- and MODIS-Based Phenology
3.1.1. Spatial Characteristics of GOSIF- and MODIS-Based Phenology

The distribution patterns of both the SOSSIF and EOSSIF are presented in Figure 2.
The multi-year average SOSSIF exhibited a “late–early–late” pattern from the southeast
to the northwest. Within the designated research area, the multi-year average SOSSIF for
vegetation was 149 d, typically falling at the end of April. Vegetation SOSSIF in this region
was predominantly concentrated between 85 and 165 d, from late March to early June.
More specifically, in Linze County of Gansu Province and the Junggar Basin area of the
Tianshan Mountain Range in Xinjiang, located in the southeast portion of the study area,
SOSSIF was primarily concentrated between 85 and 150 d, from late March to late April.
In contrast, in other regions, SOSSIF was concentrated between 150 and 180 d, from early
May to early June. Additionally, the study area exhibited noticeable spatial heterogeneity
in vegetation phenology from north to south, with the northern region experiencing a later
start to the growing season than the southern region.
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SOSEVI was predominantly concentrated between 70 and 160 d, from mid-March to
early June. The multi-year average of SOSEVI occurred 10 d earlier than that of SOSSIF, and
the spatial distribution patterns of SOSEVI and SOSSIF displayed similarities.

The multi-year average EOSSIF for the study area was 258 d, typically occurring in
mid-September. In the southeast and northwest regions, EOSSIF was mainly concentrated
between 260 and 310 d, from mid-September to early November. In contrast, in other
regions, EOSSIF primarily occurred on day 310, in mid- to late-November. The multi-
year average EOSEVI was predominantly concentrated between 260 and 320 d, from late
September through late November, and it was on average 25 d later than EOSSIF. The
northern part of the study area saw an earlier conclusion to the growing season in contrast
to the southern region. Relative to EOSEVI, the spatial distribution of EOSSIF exhibited less
heterogeneity and greater uniformity.

Figure 3 illustrates the month-by-month time series data for the mean values of GOSIF,
EVI, and GPP in the study area from 2001 to 2019. The curves of these variables display a
cyclical single-peak shape, portraying the dynamic attributes of the arid zone’s vegetation
growth cycle. The curves of GOSIF, EVI, and GPP all exhibit a cyclical single-peak shape,
which corresponds to the typical pattern of vegetation growth cycles in arid regions. These
curves exhibit a rapid ascent towards the end of April. The GOSIF curve peaked in mid-
June during the growing season, followed by a swift decline. The EVI curve lagged behind
the GOSIF curve but eventually coincided in mid-July. The EVI time series curve of MODIS
rose earlier than the GPP curve. This finding suggests that the growing season duration
derived from vegetation index data exceeded that determined using SIF and GPP.
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3.1.2. Temporal Trends between GOSIF- and MODIS-Based Phenology

Figure 4 presents the results of Sen trend analysis for vegetation SOSSIF and EOSSIF in
the study area from 2001 to 2019. Both indicators demonstrated a fluctuating downward
trend, with trend degrees of −0.22 and −0.49 d/yr, respectively, signifying an overall
advancement in the start and end periods of vegetation growth. On the other hand, the
overall SOSEVI and EOSEVI in the study area from 2001 to 2019 displayed a fluctuating
upward trend. This indicates a delayed trend in the start and end periods of vegetation
growth, with delayed trend degrees of 0.11 and 0.48 d/yr, respectively.
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Figure 5 presents the MK test results for the trend analysis of vegetation phenology
from 2001 to 2019. Over 27.81% of the SOSSIF image elements displayed an advancing trend,
with 9.35% being statistically significant. The significant image elements were primarily
located in the Tianshan Mountains and Qilian Mountains. Similarly, more than 33.16% of
the EOSSIF image elements exhibited an advancing trend, with 7.29% being statistically
significant. The significant image elements were mainly distributed in the Tian Shan, Altay
Shan, Qilian Shan, and Tarim Basins.

In contrast to the SIF climatic trend, 25.79% of the image elements in the vegetation
climatic SOSEVI showed a delayed trend, with 6.96% being statistically significant. For
EOSEVI, 46.36% of the image elements displayed delayed trends, with 18.93% being sta-
tistically significant. The significant image elements were primarily situated in the Qilian
Mountains and Altai Mountains.
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Figure 5. Spatial characteristics of Mann–Kendall significance test for SEN trend of vegetation
phenology in the arid zone.

3.2. Sensitivity of Vegetation Phenology to Environmental Factors
3.2.1. Sensitivity of GOSIF- and MODIS-Based Phenology to Hydrothermal Changes

The results of the bias correlation analysis between the mean temperature in March–April
and the precipitation in November of the previous year with corresponding climatic param-
eters for the same years revealed several insights (Figure 6). The average annual mean
temperature from March to April exhibited a negative correlation with both SOSSIF and
SOSEVI. In other words, as the temperature increased, the beginning of the growing season
advanced. Specifically, 64.99% of SOSSIF pixels and 62.86% of SOSEVI pixels in the study
area were negatively correlated with temperature, with 7.10% and 5.29% of pixels showing
a significant negative correlation. These significant correlations were primarily observed
within the Tianshan region’s northern and southern slopes, northern Altai, and western Qilian
Mountains. Additionally, the average precipitation in November of the previous year showed
a negative correlation with both SOSSIF and SOSEVI in 59.65% and 58.03% of the pixels, re-
spectively. These negative correlations were primarily concentrated in the Tarim Basin, the
eastern Altai Mountains, and the western Qilian Mountains.
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The impact of climatic factors on the termination of vegetation growth in the study
area is more intricate. As indicated in Figure 6, 61.97% and 55.82% of the image elements of
EOSSIF and EOSEVI exhibited positive correlations with the multi-year mean temperature
in July and August. Additionally, 5.29% and 7.16% of the image elements had statistically
significant positive correlations (Figure 7). These findings suggest that an increase in
temperature leads to a delay at the end of the vegetation growth period. EOSSIF and
EOSEVI also displayed positive correlations with 67.42% and 65.41% of the image elements
with multi-year average July and August precipitation, respectively. Moreover, 7.79% and
9.11% of the image elements exhibited significant positive correlations. These findings
suggest that greater precipitation is linked to a prolonged vegetation growth season. The
significant image elements were primarily located in the Altay, Tianshan, and western
Qilian Mountains.
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3.2.2. Sensitivity of GOSIF- and MODIS-Based Phenology to SPEI

When precipitation and temperature were constant, it was observed that in the study
area, the proportion of image elements with a negative correlation between SOSSIF and
SOSEVI and the annual mean SPEI was 59.65% and 58.03%, respectively (Figure 8). This
means that, overall, with a decrease in the degree of drought, the beginning of the vege-
tation growth period has advanced. Of these correlations, 8.52% and 5.25% of the pixels
displayed statistically significant negative correlations, primarily located in the eastern
Altai Mountains, western Tianshan Mountains, Tarim Basin, and western Qilian Mountains.

Conversely, the proportions of EOSSIF and EOSEVI were positively correlated with
the annual average drought degrees of 67.42% and 65.41%, respectively. In general, these
findings suggest that the end of the vegetation growth period was delayed by a decrease in
drought severity. Statistically significant positive correlations were observed in 6.66% and
3.92% of the pixels, mainly found on the southern slopes of the western Altai Mountains,
Tianshan Mountains, and the Tarim Basin.

In summary, in comparison to SOSEVI and EOSEVI, there were more image elements
with significant correlations between vegetation SOSSIF and EOSSIF and SPEI in the study
area. This indicates that vegetation SOSSIF and EOSSIF in arid regions exhibited greater
sensitivity to SPEI.

3.2.3. Phenological Response to Environmental Factors across Diverse Vegetation Types

As depicted in Figure 9, the climatic responses of the three primary vegetation types
(forest, grassland, and cropland) in the study area to temperature, precipitation, and SPEI
extracted from GOSIF and MODIS data were consistent across the study area. However,
GOSIF-extracted vegetation demonstrated greater sensitivity to climate in comparison to
MODIS-extracted vegetation.



Forests 2023, 14, 2310 14 of 20Forests 2023, 14, x FOR PEER REVIEW 14 of 21 
 

 

 

 
Figure 8. Bias correlation analysis between SIF- and MODIS-based phenology with SPEI changes in 
the arid zone. (a) Spatial pattern of bias correlation coefficients between vegetation phenology and 
SPEI. (b) Frequency plot displaying bias correlation coefficients between vegetation phenology and 
SPEI. (c) Frequency distribution of image elements with a significant bias correlation between veg-
etation phenology and SPEI. 

3.2.3. Phenological Response to Environmental Factors across Diverse Vegetation Types 
As depicted in Figure 9, the climatic responses of the three primary vegetation types 

(forest, grassland, and cropland) in the study area to temperature, precipitation, and SPEI 
extracted from GOSIF and MODIS data were consistent across the study area. However, 
GOSIF-extracted vegetation demonstrated greater sensitivity to climate in comparison to 
MODIS-extracted vegetation. 

For GOSIF-extracted forest growth, the bias correlation coefficients with climate fac-
tors were higher than those for MODIS-extracted forest growth. The difference between 
the bias correlation coefficients of GOSIF-extracted forest growth and climate, compared 
to MODIS forest growth and temperature, was most pronounced, with a difference of 
0.063. This indicates that GOSIF-extracted forest growth was highly sensitive to all three 
climatic indicators. 

In the case of croplands, the bias correlation coefficients of SOSEVI with temperature 
and SPEI were higher than those of SOSSIF. Similarly, the bias correlation coefficient of 
EOSEVI with grassland temperature was greater than that of EOSSIF, with a difference of 
0.016. Furthermore, the bias correlation coefficient of SOSSIF with cropland precipitation 

Figure 8. Bias correlation analysis between SIF- and MODIS-based phenology with SPEI changes
in the arid zone. (a) Spatial pattern of bias correlation coefficients between vegetation phenology
and SPEI. (b) Frequency plot displaying bias correlation coefficients between vegetation phenology
and SPEI. (c) Frequency distribution of image elements with a significant bias correlation between
vegetation phenology and SPEI.

For GOSIF-extracted forest growth, the bias correlation coefficients with climate factors
were higher than those for MODIS-extracted forest growth. The difference between the bias
correlation coefficients of GOSIF-extracted forest growth and climate, compared to MODIS
forest growth and temperature, was most pronounced, with a difference of 0.063. This indicates
that GOSIF-extracted forest growth was highly sensitive to all three climatic indicators.

In the case of croplands, the bias correlation coefficients of SOSEVI with temperature
and SPEI were higher than those of SOSSIF. Similarly, the bias correlation coefficient of
EOSEVI with grassland temperature was greater than that of EOSSIF, with a difference of
0.016. Furthermore, the bias correlation coefficient of SOSSIF with cropland precipitation
was larger than that of SOSEVI, with a difference of 0.027. This means that the SOSSIF of the
croplands was more sensitive to precipitation than the SOSEVI.
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3.3. Verification of Phenological Results

As depicted in Figure 10, Field-measured climate data from the Linze, Fukang, and
Celle stations was used to validate and compare the vegetation estimated by the GOSIF
and MODIS climate products. The validation results of the three stations in Figure 10 show
that there was an overestimation of SOSSIF and an underestimation of SOSEVI compared
with the observed data. However, SOSSIF was closer to the measured data. The EOSSIF
and EOSEVI curves are distributed on both sides of the measured data curves. The SOSSIF
curves show a later time than that of SOSEVI, while the EOSSIF curves show a later time
than that of EOSEVI.
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4. Discussion
4.1. Temporal and Spatial Differences in GOSIF- and EVI-Based Phenology

This discrepancy can be attributed to the fact that the response to precipitation pri-
marily dominates during the growth-opening period of croplands in the study area [54]. In
contrast, the growth-ending period of grassland is influenced by a combination of various
climatic factors, including precipitation and SPEI, and the response to precipitation is more
sensitive during the growth-ending period of grassland [54,55]. Therefore, vegetation
phenology data extracted using GOSIF can enhance the accuracy of phenological responses
to climate change.

Figure 3 is consistent with prior research findings [56,57]. As SIF is the fluorescence
signal emitted by plant leaves during photosynthesis, EVI is mainly used to reflect factors
that include vegetation cover. This timing difference can be attributed to the fact that in the
early stages of the growing season, the ecosystem is still in the carbon source stage, with
plants beginning to respire before the leaf spreading stage. Photosynthesis of vegetation
leaves occurs later than ecosystem respiration, causing the extraction of the beginning of
the growing season based on vegetation index data to be earlier than that based on GOSIF
data [58,59]. Similarly, at the end of the growing season, the degradation of chlorophyll
in vegetation leaves is a slower process than the decline in photosynthesis, resulting in a
lag in the extraction of the end of the growing season based on EVI data compared to that
based on GPP data [60].

Figure 4 depicts the spatial trends of the mean values of SOSSIF and SOSEVI of the
multi-year vegetation. The spatial distribution was characterised by a gradual advance
and then a delay from southeast to northwest. The spatial trends of vegetation EOSSIF
and EOSEVI were mainly characterised by advancement, whereas SOSSIF was delayed.
The reason for the discrepancies in fall phenology could be attributed to the degradation
of chlorophyll in leaves and the appearance of other pigments, such as carotenoids and
anthocyanins, leading to changes in the reflectance of vegetation in visible and near-infrared
spectra and impacting the accuracy of EVI-based fall phenology, whereas SIF-extracted fall
phenology effectively avoids such spectral interference [5,45].

In addition, some studies have shown that the vegetation phenology reflected by SIF
is more consistent with the wind and wave areas of the flux tower [61]. The SOSSIF curves
are shown earlier than those in EOSEVI. This difference may be because photosynthesis
starts after plant leaf unfolding and stops before leaf senescence. The similarities and
differences between the phenological periods extracted from GOSIF and MODIS EVI
contribute to the understanding of the mechanisms that drive ecosystem phenological
periods and their carbon cycling [28]. In addition, the differences between EOSSIF and
EOSEVI indicate the complexity of the end period of vegetation growth (i.e., fall phenology).
Previous findings have shown that autumn warming leads to increased carbon loss due
to enhanced respiration [62]. As shown in Figure 10, the fall phenology extracted based
on GOSIF ended earlier than that based on MODIS EVI. This is likely because vegetation
may have stopped absorbing photosynthetic carbon in late fall but still maintained the
greenness of the leaves [63]. This further elucidates why increased autumn warming could
result in a net loss of ecosystem carbon. These findings provide important insights into
vegetation phenology and reveal the influence of environmental factors on phenological
periods and the mechanisms by which they affect carbon cycling. However, further studies
are needed to validate these observations and probe the response mechanisms of SIF and
EVI to phenology under different environmental conditions.

4.2. Uncertainty Analysis

This study considered two main aspects of uncertainty. First, there is a scale effect in
remote sensing of vegetation phenology. The MODIS phenology product possesses a 500 m
spatial resolution, and GOSIF has a spatial resolution of 0.05◦ × 0.05◦. Regional differences
in phenology estimated from remote sensing data with different spatial resolutions have
been analysed [64]. In terms of temporal resolution, the reliability of sky-scale remote
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sensing data is low because of the influence of the atmosphere and sensors. Furthermore,
reconstruction methods for time series remote sensing data can introduce errors in the
estimation of phenology. The S–G filtering method used in this study has a better effect
on noise removal [65,66]. However, owing to the inability of the time series data curves
of GOSIF and MODIS EVI to completely overlap, the growth cycle is not completely
symmetrical, resulting in an algorithm for extracting the beginning of the vegetation
growth period that is unable to extract the end of the growth period well [41].

Furthermore, while SIF is related to photosynthetic activity, photosynthesis in plants
is a multifaceted physiological process affected by diverse environmental factors. Thus,
accurately interpreting plant physiological states from SIF data may require the consider-
ation of multiple factors to better understand the underlying processes [67]. This paper
compares the applicability of SIF and EVI in estimating phenology in arid zones and their
sensitivity to climate, so as to find the most suitable remote sensing index for estimating
vegetation phenology in arid zones, and also provides a theoretical basis for responding
to climate change by vegetation phenology in arid zones around the world. However, the
accuracy of the results in this study was affected by the spatial resolution of the SIF and
EVI. Therefore, the accuracy can be further improved using the following two methods.
The first method integrates many types of new high-resolution remote sensing indices to
improve the climate monitoring ability of SIF, such as VPP, PPI, and NDGI. Secondly, it is
also possible to combine meteorological factors to calibrate the critical period of phenology
for different vegetation types based on existing remote sensing estimations of phenology to
improve the precision of phenology monitoring in SIF [68,69].

5. Conclusions

In this study, a comparative analysis was performed to examine how climatic factors
affected vegetation phenology in the arid region of Northwest China from 2001 to 2019,
utilising data from GOSIF and MODIS EVI. The key findings of the study are as follows:

(1) The overall SOSSIF of the perennial vegetation in the study area was later than the
SOSEVI, whereas the overall EOSSIF was earlier than the EOSEVI. Validation results
indicated that SIF-based phenology estimations were more consistent with ground-
truth data than those derived from MODIS EVI. The beginning and ending phases
of vegetation phenology growth exhibited similar spatial patterns, but the ending
phase showed more significant spatial heterogeneity compared to the beginning phase.
The spatial distributions of the change trends of SOSSIF and SOSEVI were relatively
consistent. However, the spatial trends of EOSSIF and EOSEVI varied; EOSSIF mainly
exhibited a trend of advancement, while SOSSIF exhibited a trend of delay in SOSSIF.

(2) The vegetation phenology extracted from GOSIF was more sensitive to temperature,
precipitation, and SPEI compared to that derived from MODIS EVI. Temperature,
precipitation, and SPEI were negatively correlated with the initiation of the vegetation
growth period, while temperature was negatively correlated with the end of the
growth period. Precipitation and SPEI were positively correlated with the end of
the growth period. In terms of spatial distribution, vegetation phenology showed a
higher level of sensitivity to climate factors in specific regions, including the Altay
Mountains, Tianshan Mountains, western Qilian Mountains, and Tarim Basin.

(3) The vegetation phenology of forests, grasslands, and croplands extracted using GOSIF
exhibited higher sensitivity to temperature, precipitation, and SPEI compared to
those derived from MODIS EVI. Specifically, croplands exhibited greater sensitivity
to precipitation, and the fall phenology of grasslands was primarily influenced by
precipitation and SPEI. These findings indicate that employing SIF extraction to
investigate the response of vegetation phenology to climate change in arid regions
can yield more scientifically meaningful insights.

In summary, the study demonstrates the effectiveness of using SIF data (GOSIF)
for assessing vegetation phenology and how it reacts to climatic factors in arid regions,
highlighting its advantages in terms of sensitivity and accuracy compared to MODIS EVI.
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These findings emphasise the significance of considering SIF extraction when conducting
future research on vegetation phenology in arid zones.
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