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Abstract: Ground filtering is necessary in processing airborne light detection and ranging (LiDAR)
point clouds for forestry applications. This study proposes a progressive plane detection filtering
(PPDF) method. First, the method uses multi-scale planes to characterize terrain, i.e., the local terrain
with large slope variations is represented by small-scale planes, and vice versa. The planes are
detected in local point clouds by the random sample consensus method with decreasing plane sizes.
The reliability of the planes to represent local terrain is evaluated and the planes with optimal sizes
are selected according to evaluation results. Then, ground seeds are identified by selecting the interior
points of the planes. Finally, ground points are iteratively extracted based on the reference terrain,
which is constructed using evenly distributed neighbor ground points. These neighbor points are
identified by selecting the nearest neighbor points of multiple subspaces, which are divided from
the local space with an unclassified point as center point. PPDF was tested in six sites with various
terrain and vegetation characteristics. Results showed that PPDF was more accurate and robust
compared to the classic filtering methods including maximum slope, progressive morphology, cloth
simulation, and progressive triangulated irregular network densification filtering methods, with the
smallest average total error and standard deviation of 3.42% and 2.45% across all sites. Moreover, the
sensitivity of PPDF to parameters was low and these parameters can be set as fixed values. Therefore,
PPDF is effective and easy-to-use for filtering airborne LiDAR data.

Keywords: ground filtering; LiDAR; forestry applications; terrain

1. Introduction

Airborne light detection and ranging (LiDAR) can penetrate vegetation to capture
accurate and detailed three-dimensional structure information of forests and is less affected
by weather conditions than optical sensors [1–10]. It has become a mainstream tool in forest
investigation and management [11–13].

Ground filtering, i.e., classifying ground and non-ground points, is a pre-requisite
step of LiDAR data processing in many applications [14]. Therefore, various types of
ground filtering methods have been developed to automatically separate LiDAR point
clouds into ground and non-ground points. However, the performance of these methods
is usually unreliable in forested landscapes especially containing dense vegetation and
complex terrain (e.g., highly steep slopes, break lines, and ridges) [15–18]. In addition,
these methods are not easy to use, because they often require tuning many parameters to
achieve satisfactory results [19].

Existing ground filtering methods can be mainly categorized as slope-based [20–25],
mathematical morphology-based [26–34], and surface-based methods [19,35–41]. The
implementation of these three types of methods can be summarized in two steps: ground
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seed (i.e., the initial ground point) identification and ground point extraction. In general,
ground seeds are identified based on the feature that the ground point has the smallest
height in a local region [41,42]. Ground points are iteratively extracted based on the feature
that the height differences of the ground points to reference ground points or reference
terrain are relatively small [43]. The slope-based methods provide an innovation to the
ground point extraction step. The ground points are extracted by comparing the height
differences between unclassified points and their nearest neighbor ground points (i.e.,
reference ground points). The threshold of height differences is set based on the maximum
terrain slope in a landscape [20]. The greater the terrain slope, the greater the threshold.
This innovation can reduce the risk of ground points being misclassified as non-ground
points on steep slopes [44]. The mathematical morphology-based methods present an
innovation in the ground seed identification step. Ground seeds are identified by selecting
the lowest points within sliding windows. The window sizes are determined adaptively
according to the sizes of the non-ground objects in a landscape through morphological
opening operation [26,45]. The method can identify more ground seeds compared to the
largest size of windows [14,16,46]. The surface-based methods propose an innovation to the
ground point extraction step. Ground points are extracted by judging the height differences
between unclassified points and the reference terrain constructed by neighboring ground
points [35,41]. Compared to the slope-based methods, this innovation can improve filtering
accuracy on undulating terrain due to the use of contextual information [14,47].

However, these methods still have some limitations when applied in forested land-
scapes. First, it is difficult to identify ground seeds on raised terrain, since the height of
raised terrain is the local maximum [48]. The lack of ground seeds leads to poor filtering
results on the terrain. Second, the window sizes in urban landscapes are usually deter-
mined by manually measuring the largest buildings. Nevertheless, the window sizes in
forested landscapes are extremely difficult to be determined, because vegetation would
not always be penetrated by laser pulses and the largest non-penetrated vegetation is not
easily identified by users [15]. Third, the number of laser pulses penetrating vegetation to
reach the ground is inconsistent due to the varying density of the canopy level, resulting in
uneven ground points. The reference terrain for ground point extraction may be unreliable
since the neighbor ground points searched are unevenly distributed. This also reduces the
filtering accuracy.

To overcome these limitations, we propose a progressive plane detection filtering
(PPDF) method, which is expected to effectively filter out non-ground points while preserv-
ing the terrain’s details. Moreover, the proposed method is universally applicable, i.e., the
users without much experience do not need to carefully adjust the parameters to obtain
satisfactory filtering results in different forested landscapes. Compared with the existing
methods, the main contributions of the proposed method are presented as follows:

(1) A progressive plane detection method is proposed to characterize terrain. This method
quantitatively evaluates the reliability of the planes with different sizes to represent
local terrain and adopts the planes with optimal sizes according to evaluation results.
Finally, terrain is characterized by multi-scale planes, that is, the local terrain with
large slope variations is represented by small-scale planes and vice versa. This method
provides a high-quality reference for ground point extraction on various terrains. More
importantly, this method does not require setting the window size, improving its
utility.

(2) An improved surface-based filtering method is developed to extract ground points.
The method uses the interior points of the multi-scale planes as ground seeds. Com-
pared with the local minimum method, it can identify more ground seeds on various
terrains (e.g., raised terrain) and is resistant to negative outliers. In addition, the
neighbor ground points are extracted from multiple subspaces, ensuring the spatial
uniform distribution of the selected neighbor ground points. These improvements
increase the accuracy of ground point extraction.
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2. Data and Method

The research framework consists of three parts, including data preparation, method
design, and performance evaluation (Figure 1). First, the data with various terrain, vegeta-
tion, and point cloud features are prepared. Then, our method is designed, which can be
divided into point extraction under forest canopy, progressive random sample consensus
(RANSAC) plane detection, and ground point extraction. Point extraction under forest
canopy aims to minimize the interference of non-ground points on the plane detection
on the ground by eliminating the points with large height in a neighborhood. Based on
the points under forest canopy, terrain is characterized based on multi-scale planes using
progressive RANSAC plane detection. Ground points are extracted by selecting the points
with small distance between them and the reference terrain characterized by planes. Finally,
based on the prepared data, the performance of the proposed method is evaluated by
adopting the accuracy metrics and comparing with classical filtering methods.
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Figure 1. Research framework.

2.1. Data Description

We selected six 300 × 300 m forested sites to evaluate the performance of the proposed
method (Figure 2). LiDAR data for these sites is supplied by OpenTopography (California,
America). The details of LiDAR data collection are summarized in Table 1. The data
in Site 1 and Sites 2–6 were collected by Leica ALS50 (Leica, Gallen, Switzerland) and
Optech GEMINI (Optech, Ontario, Canada) airborne laser terrain mapper, respectively.
The collection was performed using flight altitudes of 600–900 m above the ground, scan
frequencies of 40–83 Hz, scan angles of 14–25◦ from nadir, and adjacent swath overlaps of
50%–100%, generating average point densities of 2.16–21.74 points/m2.

Table 1. LiDAR data collection information for the six forested sites.

Site Location Collection
Date System Flying

Height (m)
Scan Frequency

(Hz)
Scan Angle

(◦)
Overlap

(%)
Mean Density

(Points/m2)

1 Lake Tahoe,
Sierra Nevada August, 2010 Leica ALS50 900 83 14 100 21.74

2 North,
Wasatch July, 2008 Optech GEMINI

ALTM 700 70 20 50 7.9

3 East, Modesto August, 2010 Optech GEMINI
ALTM 600 40 21 50 7.82

4 East, Ephrain July, 2010 Optech GEMINI
ALTM 600 40 21 50 6.73

5 Southeast,
Butte August, 2010 Optech GEMINI

ALTM 600 40 21 50 8.1

6 West Reno July, 2007 Optech GEMINI
ALTM 700 40 25 50 2.16
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Figure 2. LiDAR point clouds of six forested sites: (a–f) Sites 1–6.

The statistics of terrain and vegetation conditions for six forested sites are shown in
Figure 3. They were calculated based on reference ground and non-ground points, which
were generated through human–computer interaction. The slope of local terrain in each
plot was obtained by calculating the angles between horizontal planes and the local terrain
surfaces that were constructed by fitting planes based on the neighbor ground points of
each ground point. The 10 m pixel-level canopy cover was calculated based on canopy
height models (CHMs). The 1 m resolution CHMs were generated from LiDAR point
clouds and, then, the canopy cover of each 10 m grid cell was estimated by calculating
the percentage of the pixels that are higher than 2 m [16,49]. Canopy height was counted
from the pixels with height higher than 2 m in the 1 m resolution CHMs. The terrain slope,
canopy cover, and canopy height maps of a sample site are given in Figure 4. These sites
contain various terrain conditions (i.e., gentle slopes, steep slopes, hilltops, valleys, ridges,
and break lines) with an average terrain slope of 18.3–37.11◦. Furthermore, vegetation
conditions vary widely with an average canopy cover of 7.27%–84.67% and canopy height
of 7.83–23.6 m.
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2.2. Overview of the Proposed Filtering Method

Irregular terrain can be characterized by multi-scale planes. The larger the slope
variations of local terrain, the smaller the plane size should be (Figure 5). How to auto-
matically detect the planes on the ground and determine optimal plane size are two core
problems. Specifically, detecting planes on the ground of unfiltered LiDAR point clouds is
difficult due to the negative influence of non-ground points. As a result, it is necessary to
reduce non-ground points as much as possible before detecting planes and to adopt a plane
detection method that is robust to noise (i.e., non-ground points). In terms of setting plane
size, a small-scale plane can represent local terrain well, but the plane is often incorrectly
detected in vegetation, since the number of ground points may not be dominant compared
to vegetation points in a small region. In contrast, a large-scale plane tends to smooth local
terrain with large slope variations, such as ridges and break lines. Thus, it is necessary
to evaluate the reliability of the plane to represent local terrain and to determine optimal
plane size based on evaluation results.
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To solve the two problems, a progressive plane detection method is proposed to
characterize terrain. First, the points under forest canopy, which consist of ground and
understory vegetation points, are extracted in unfiltered point clouds based on the feature
that canopy points are higher than the points under forest canopy. Second, the points under
forest canopy are divided into multiple regions and RANSAC plane detection method is
adopted to detect planes in each region. It is because RANSAC has the advantage of being
resistant to noise and, thus, has a greater potential to detect planes on the ground [50]. Next,
the reliability of the plane representing local terrain is evaluated based on the maximum
distance from the points under the detected plane to the plane. The smaller the distance is,
the more reliable the plane is, and vice versa. If the reliability is low, the points in the region
are further divided into multiple subregions with smaller size. The plane detection and
reliability evaluation are iteratively performed, until no local terrain can be represented
by planes. Finally, based on the terrain characterized by multi-scale planes, an improved
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surface-based filtering method is developed to extract ground points. The method identifies
ground seeds by selecting the interior points of the detected planes and, then, extracts
ground points according to the distances of the points to the reference terrain, which is
constructed with the neighbor ground points with spatially uniform distribution.

The proposed method is decomposed into three parts: point extraction under forest
canopy, progressive RANSAC plane detection, and ground point extraction. In the follow-
ing sections, the principle, implementation steps, and parameter settings in each part are
described in detail, and the results of each part are verified by taking Site 2 as an example.

2.3. Point Extraction under Forest Canopy

The negative effects of non-ground points (mainly from forest canopy) require to be
reduced as much as possible to detect planes on the ground. Otherwise, planes may be
detected in non-ground objects even using anti-noise plane detection methods. The points
under forest canopy are extracted according to the feature that these points are lower than
canopy points in a local region. The points (Pu f c) under the canopy are expressed as:

Pu f c =
{

p| h p − h0 < Th

}
(1)

where p is an unclassified point; hp is the height of p; h0 is the height of the local minimum
point; and Th is the height threshold.

The implementation steps include regional division, seed identification under forest
canopy, and point extraction under forest canopy. First, an unfiltered point cloud is gridded
and a grid cell represents a local region. Then, the lowest points in each cell are identified
as the seeds under forest canopy. Finally, the points under forest canopy are extracted
based on the seeds under forest canopy cell by cell. In a cell, a point is identified as the
point under forest canopy if the height difference between the point and the seed is less
than a threshold.

This part includes two parameters, i.e., cell size and height difference. The cell size
was set to 2 m, considering that the lowest point within 2 m is usually located under the
forest canopy. The height difference was set to 5 m, since canopy points usually are 2–5 m
above the ground according to the studies of canopy cover estimation [49,51]. To ensure
that the ground points are completely preserved, the height difference was conservatively
set to 5 m.

The points under forest canopy using the above procedure in a sample site (Site 2) are
shown in Figure 6. Ground points are not only completely preserved but also most of forest
canopy points (gray points) are accurately removed in gentle slopes and steep slopes (see
enlarged figures A and B). Thus, the extracted points under forest canopy can provide an
important basis for subsequent progressive RANSAC plane detection.
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2.4. Progressive RANSAC Plane Detection

Based on the points under forest canopy, the RANSAC plane detection method is
adopted to detect planes on the ground, since this method is robust to noise (including
understory vegetation points and negative outliers). However, determining the optimal
plane size is critical to describe the terrain in detail and accurately. To solve this problem,
we propose a progressive RANSAC plane detection method with decreasing plane sizes.
The method detects a plane in a local region and then evaluates the reliability of the plane
to represent the terrain in the local region by calculating the maximum distance from points
below the detected plane to the plane using Equation (2).

|axm+bym+czm+d|√
a2+b2+c2

< Td (2)

where a, b, c, and d are the coefficients of the detected plane; (xm, ym, zm) is the coordinate
of the point pm below the plane farthest from the plane; and Td is the distance threshold.
In the region with low reliability, the plane with smaller size is detected until the terrain
cannot be characterized by a plane.

The implementation steps include regional division, plane detection, reliability evalu-
ation of plane to represent local terrain, and regional subdivision. First, the points under
forest canopy are gridded. The cell size of grid is the initial plane size for plane detection.
Second, a plane is detected based on the points in a cell using RANSAC. The detected
plane is preserved if the number of interior points for the plane is less than a threshold.
Third, the maximum distance from the points under the detected plane to the plane is
calculated. If the distance is lower than a division distance threshold, the ground in the
cell can be represented with the current size plane. Fourth, the points in the cell with low
reliability are further gridded with 0.5× the cell size. Steps 2–4 are repeated until no planes
can be detected.

The progressive RANSAC plane detection method has three parameters, including
initial plane size, number of interior points, and division distance. These parameters were
set to 10 m, 20 points, and 1 m empirically in this study.

The plane detection results in the sample site are shown in Figure 7. The local terrain
is represented using planes of decreasing sizes as the slope variation increases. Specifically,
gentle slopes, steep slopes, and discontinuous terrain are represented by large-, medium-
, and small-scale planes (Figures 7a, 7b and 7c), respectively. This confirms that the
proposed reliability evaluation method is effective. Thus, the terrain characterized by
multi-scale planes can provide a complete and accurate reference for subsequent ground
point extraction.
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Figure 7. The results of progressive RANSAC plane detection in the sample site. (a) Gentle slopes, (b)
steep slopes, and (c) discontinuous terrain are represented by large-, medium-, and small-scale planes,
respectively. Colored square and gray surface indicate detected planes and true terrain, respectively.

2.5. Ground Point Extraction

After the terrain is characterized by multi-scale planes, ground points are extracted
using an improved surface-based filtering method. The main improvements of the method
include two aspects. On the one hand, ground seeds are identified by selecting the points
within buffers of detected planes, rather than the lowest points within sliding windows.
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On the other hand, the reference terrain for ground point extraction is constructed using
the neighbor ground points with spatially uniform distribution. Specifically, the method
divides the two-dimensional local space into four subspaces with an unclassified point as
center point (Figure 8) and, then, the ground points (Pn) nearest to the center point in each
subspace are extracted to construct the local reference terrain using Equation (3).

Pn =


p1, if xp > xo, yp> yo and arg min‖→op‖2

p2, if xp < xo, yp> yo and arg min‖→op‖2

p3, if xp < xo, yp< yo and arg min‖→op‖2

p4, if xp > xo, yp< yo and arg min‖→op‖2

(3)

where p1, p2, p3, and p4 are the points selected in the four subspaces, respectively; (xo, yo)
and (xp, yp) are the coordinates of the center point o and the neighbor point p, respectively;

and
→
op is the vector between points o and p.
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Figure 8. Schematic diagram of the identification for evenly distributed neighbor ground points.

The implementation steps include point cloud attribute initialization, ground seed
identification, and ground point extraction. First, the attributes of all points in the point
cloud are marked as unclassified points. Second, unclassified points are regarded as ground
seeds if the distances between the points and the detected planes are less than a buffer
difference threshold. The attributes of identified ground seeds are modified to ground
points. Third, the neighbor ground points of an unclassified point are searched from
multiple subspaces. The local reference terrain is constructed based on the searched ground
points using the least-squares plane fitting method. The unclassified point is marked
as ground point if the distance between the point and the local reference terrain is less
than a classification distance threshold. Step 3 is repeated until no points are classified as
ground points.

The part includes two parameters, i.e., buffer difference and classification distance.
They were set to 0.5 m and 1.5 m empirically in this study.

The results of ground seed identification and ground point extraction in the sample
are shown in Figures 9 and 10, respectively. Compared with the local minimum method
(Figure 9a), the proposed method can identify more ground points on various terrain
details (Figure 9b), which provides a more detailed reference for ground point extraction.
In addition, the proposed method obtains more accurate ground filtering results than the
traditional k-nearest neighbor method in regions with uneven ground points (see enlarged
figures A and B in Figure 10).
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Figure 10. The ground points that can be identified only by the proposed method compared to the
traditional k-nearest neighbor method. The proposed method obtains more accurate ground filtering
results in the regions with uneven ground points, as shown in the enlarged figures A and B.

2.6. Experimental Setup

The experiments were carried out on a laptop computer with 40 GB RAM and an
AMD Ryzen 7 5800 H with Radeon Graphics @ 3.20 GHz. The details of the experiments,
including accuracy metrics and comparative methods, are given in this section.

2.6.1. Accuracy Metrics

We quantitatively evaluated the performance of ground filtering methods using type I
error, type II error, and total error for all sites [52]. Type I error indicates the proportion
of ground points being misclassified into non-ground points (Equation (4)). Type II error
represents the proportion of opposite condition (Equation (5)). Total error is the proportion
of all misclassified points (Equation (6)).

Type I =
a
c

(4)

Type II =
b
d

(5)

Total =
a + b
c + d

(6)

where a is the number of ground points misclassified as non-ground points, b is the number
of non-ground points misclassified as ground points, and c and d are the number of
reference ground points and non-ground points.
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2.6.2. Comparative Methods

The proposed method was compared with four well-known filtering methods, includ-
ing maximum slope filtering (MSF) [20], progressive morphology filtering (PMF) [26], cloth
simulation filtering (CSF) [19], and progressive triangular irregular network densification
filtering (PTDF) methods [35]. As described in Section 1, MSF and PMF belong to the
slope-based and mathematical morphology-based methods, respectively, while CSF and
PTDF belong to the surface-based methods. MSF was implemented using the C++ pro-
gramming language. PMF was implemented using the C++ programming language and
the PCL library [53]. CSF was implemented using CloudCompare software v2.11.3 (Daniel
Girardeau, Grenoble, France) [54]. PTDF was implemented using Terrisolid software V8i
(Terrasolid, Espoo, Finland) [55]. Table 2 lists the parameter settings of the comparative
methods. These parameters were set by visually determining whether most ground points
and non-ground points were accurately distinguished. Specifically, the filtered point cloud
was segmented into multiple strips with the width of 50 m, because ground filtering results
can be better checked in cross-section view. We observed the results from different views
in CloudCompare software v2.11.3 (Daniel Girardeau, Grenoble, France) and selected the
parameter settings corresponding to the optimal results.

Table 2. Parameter settings of the comparative methods. MSF, PMF, CSF, and PTDF represent the
four comparative methods, i.e., maximum slope filtering, progressive morphology filtering, cloth
simulation filtering, and progressive triangular irregular network densification filtering methods.

Method Parameter

MSF Cell size: 1 m Window size: 10 m Slope: 15◦ Maximum height: 3 m
PMF Window size: 10 m Slope: 15◦ Initial height: 0.5 m Maximum height: 3 m
CSF Rigidness: 3 Cloth resolution: 0.3 m Max iterations: 500 Classification threshold: 0.5 m

PTDF Window size: 10 m Terrain angle: 88◦ Iteration angle: 15 ◦ Iteration distance: 1.5 m

3. Results

The accuracy comparison of the proposed method (i.e., PPDF) and the comparative
methods (i.e., MSF, PMF, CSF, and PTDF) are given in Figure 11. PPDF had the lowest
average total error of 3.42% and standard deviation of 2.45% across all sites, which include
various terrain (e.g., terrain slope and height) and vegetation conditions (e.g., canopy cover
and height). PPDF also achieved high accuracy with less than 5% total error even in sites
(e.g., Sites 2 and 6) containing dense vegetation and various discontinuous terrain. The
smallest type I errors were achieved by the proposed method in five out of six sites, and the
total error in the remaining sample (i.e., Site 1) was rather close to the optimal result, with a
difference of 0.34%. In terms of type II errors, the proposed method obtained optimal or
near-optimal results in most sites.

The digital terrain models (DTMs) constructed by the proposed method were highly
similar to the reference DTMs in all forested sites. The proposed method completely
preserved various terrain features, including the gentle slopes in Site 1 (Figure 12a), valleys
in Site 2 (Figure 12b), steep slopes in Site 3 (Figure 12c), hilltops in Site 4 (Figure 12d), ridges
in Site 5 (Figure 12e), and break lines in Site 6 (Figure 12f). Meanwhile, vegetation points
with different cover and height values were effectively filtered out.
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Figure 11. Accuracy comparison of the proposed method and the comparative methods: (a) total
error, (b) type I error, (c) type II error, and (d) average and standard deviation values of the three
errors. MSF, PMF, CSF, and PTDF represent the four comparative methods, i.e., maximum slope
filtering, progressive morphology filtering, cloth simulation filtering, and progressive triangular
irregular network densification filtering methods.

Figures 13 and 14 show the DTMs of the proposed and well-known ground filtering
methods for two representative sites (Sites 2 and 6), which are characterized by high
canopy cover and various discontinuous terrain, respectively. In Site 2, the proposed
method generated DTM that are closer to the reference result. In comparison, MSF failed to
preserve highly steep slopes and ridges (see ellipses A and B in Figure 13) and accurately
filtered out vegetation points (see ellipse C in Figure 13). PMF often smoothed ridges
(see ellipse C in Figure 13). CSF tended to misclassify vegetation points as ground points
(see ellipse B in Figure 13). PTDF often smoothed highly steep slopes (see ellipse A in
Figure 13). In Site 6, various morphological break lines were preserved more realistically
by the proposed method compared to other methods, as shown in ellipses A, B, and C in
Figure 14.
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Figure 13. DTMs of (a) reference, (b) PPDF, (c) MSF, (d) PMF, (e) CSF, and (f) PTDF in Site 2.
MSF, PMF, CSF, and PTDF represent the four comparative methods, i.e., maximum slope filtering,
progressive morphology filtering, cloth simulation filtering, and progressive triangular irregular
network densification filtering methods.
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Figure 14. DTMs of (a) reference, (b) PPDF, (c) MSF, (d) PMF, (e) CSF and (f) PTDF in Site 6.
MSF, PMF, CSF and PTDF represent the four comparative methods, i.e., maximum slope filtering,
progressive morphology filtering, cloth simulation filtering, and progressive triangular irregular
network densification filtering methods.
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The computational efficiency comparison between the proposed method and well-
known methods is given in Figure 15. The proposed method was comparable to PMF and
CSF, and significantly higher than PMF. In addition, the computational efficiency of the
proposed method was negatively related to the point density. Site 1, Sites 2–5, and Site 6
had high, medium, and low point densities and exhibited the same trend in runtime. Note
that the computational efficiency of PTDF was not evaluated, since Terrsolid software V8i
(Terrsolid, Espoo, Finland) cannot provide runtime information.
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Figure 15. Runtime comparison between the proposed and well-known ground filtering methods in
terms of (a) each forested site and (b) their average values. MSF, PMF, CSF, and PTDF represent the
four comparative methods, i.e., maximum slope filtering, progressive morphology filtering, cloth
simulation filtering, and progressive triangular irregular network densification filtering methods.

4. Discussion
4.1. Performance Analysis

Compared with other methods, PPDF was more accurate and more robust even in the
landscapes containing dense vegetation and complex terrain, with the smallest average
total error and standard deviation (Figure 11). This is attributed to the contributions
described in Section 1. To test the performance of the proposed method with and without
each contribution, we performed two tests in all sites. The accuracy comparison between
the proposed method with and without the two contributions is given in Figure 16. Results
showed that both contributions helped to improve ground filtering accuracy in all sites.
For the average total errors of the proposed method with both contributions, only the
first contribution and the second contribution were 3.42%, 3.75%, and 9.12%, respectively.
In comparison, the contribution of the progressive plane detection method was greater
especially in the sites containing the terrain with large slope variations, e.g., Site 6.
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PPDF had obviously higher a ground filtering accuracy than MSF (Figure 11). The
possible reasons include two aspects. On the one hand, MSF fails to obtain ground seeds
on raised terrain and negative outliers may also be misjudged as ground seeds. On the
other hand, MSF judges the attributes of unclassified points only based on the nearest
neighbor ground points. In contrast, PPDF can obtain more complete ground seeds on
various terrains based on the terrain characterized by multi-scale planes. The misjudgment
of negative outliers as ground seeds can also be avoided due to the introduction of the
feature that the local terrain is flat. Additionally, ground points are extracted based on the
reference terrain which uses more contexts. As a result, the proposed method outperforms
MSF. Although PMF can obtain more ground seeds than MSF, it still cannot select enough
ground seeds on raised terrain, causing the terrain to be smoothed (Figures 13d and 14d).
Nevertheless, PPDF overcomes this limitation by identifying ground seeds based on the
feature that the local terrain is flat, rather than the local minimum (Figures 13b and 14b).
CSF often produces filtering errors probably because it only extracts ground points based
on the nearest neighbor ground points (Figure 13e). However, PPDF reduces these errors
by using a reference terrain that contains more context. PTDF tends to ignore terrain details,
especially in the sites with steep slopes and break lines (Figures 13f and 14f). Although
PTDF cannot obtain sufficient ground seeds on the terrain, PTDF extracts ground points
through iterative upward densification, that is, ground points are extracted from points
above the reference terrain in each iteration [16,39]. However, PPDF identifies ground
points by iteratively upward and downward densification, thus, better preserving the
terrain’s details. Overall, PPDF has advantages over other methods in terms of accuracy
and reliability.

4.2. Parameter Sensitivity Analysis

The sensitivity of PPDF to key parameters was evaluated, considering that the pa-
rameter settings in different landscapes are a core factor affecting the ease of use for the
method. We iteratively executed the proposed method by replacing one parameter with a
certain interval while keeping other parameters at default settings. The influence of each
parameter on filtering the results is given in Figure 17. The effect of initial plane size on
the total error was limited even using a particularly large plane size (Figure 17a), because
the optimal plane size can be automatically and accurately determined by evaluating the
reliability of the plane to represent the local terrain. The number of interior points had
insignificant influences on filtering the results (Figure 17b). There was no obvious accuracy
difference with the change in the division distance threshold (Figure 17c). The effect of
the classification distance on filtering the results was small in a large interval (Figure 17d),
probably because a more detailed reference terrain weakens the dependence of surface-
based filtering methods on the classification of the distance threshold [14,16,47]. In general,
these results suggested that the proposed method was insensitive to the settings of the
initial plane size, the number of interior points, the division distance, and the classification
distance, and these parameters can be set to fixed values.
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5. Conclusions

To improve the effectiveness and ease of use of ground filtering in forested landscapes
containing dense vegetation and complex terrain, a progressive plane detection filtering
method for airborne LiDAR point clouds is proposed in this study. The novelty of the
proposed method lies within its use of progressive plane detection to identify ground seeds
as completely as possible on various terrains and the identification of evenly distributed
neighbor ground points to construct a reference terrain to increase the accuracy of ground
point extraction in the regions with uneven ground points. We demonstrated the effective-
ness of the proposed method by quantitatively and qualitatively comparing four classic
filtering methods, which belong to different types of filtering methods that have been
published. Meanwhile, the ease of use of the proposed method was verified by testing the
sensitivity of the proposed method to the parameters. There are two major conclusions.

(1) The proposed method can improve the effectiveness of ground filtering in the forested
landscapes. It achieved the smallest average total error and standard deviation com-
pared to other methods and the preservation of terrain details was greatly improved
especially in regions with large terrain slope variations (e.g., steep slopes, break lines,
and ridges).

(2) The proposed method has the advantage of ease of use. It was insensitive to pa-
rameters. Therefore, these parameters can be set as fixed values, which makes it
easier for the users with insufficient experience to execute ground filtering in their
own applications.
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