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Abstract: Plantation forests, cultivated through artificial seeding and planting methods, are of great
significance to human society. However, most experimental sites for these forests are located in
remote areas. Therefore, in-depth studies on remote forest management and off-site experiments
can better meet the experimental and management needs of researchers. Based on an experimental
plantation forest of Triploid Populus Tomentosa, this paper proposes a digital twin architecture for a
virtual poplar plantation forest system. The framework includes the modeling of virtual plantation
and data analysis. Regarding this system architecture, this paper theoretically analyzes the three
main entities of the physical world, digital world, and researchers contained in it, as well as their
interaction mechanisms. For virtual plantation modeling, a tree modeling method based on LiDAR
point cloud data was adopted. The transitional particle flow method was proposed to combine with
AdTree method for tree construction, followed by integration with other models and optimization.
For plantation data analysis, a database based on forest monitoring data was established. Tree
growth equations were derived by fitting the tree diameter at breast height data, which were then
used to predict and simulate trends in diameter-related data that are difficult to measure. The
experimental result shows that a preliminary digital twin-oriented poplar plantation system can be
constructed based on the proposed framework. The system consists of 2160 trees and simulations
of 10 types of monitored or predicted data, which provides a new practical basis for the application
of digital twin technology in the forestry field. The optimized tree model consumes over 67% less
memory, while the R2 of the tree growth equation with more than 100 data items could reach more
than 87%, which greatly improves the performance and accuracy of the system. Thus, utilizing
forestry information networking and digitization to support plantation forest experimentation and
management contributes to advancing the digital transformation of forestry and the realization of a
smart management model for forests.

Keywords: digital twin; forest modeling; virtual reality; forest management; data analysis

1. Introduction

The role of plantation forests is crucial in achieving sustainable development and
mitigating the impacts of climate change [1]. Plantation forests are cultivated by artificial
seeding, planting or cutting methods. They have clear operational purposes and are an
important component of forest resources in reducing atmospheric CO2 levels [2]. Several
countries have developed plantation forests for many different functional purposes, such as
ecological public interest forests and industrial timber forests, which have made important
contributions to ecological restoration [3], environmental improvement [4], and timber
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security [5]. Due to the special characteristics of experimental space, plantation forests
are often located in remote areas, occupying a large area with numerous trees. Therefore,
it is challenging to allocate personnel for plantation forest cultivation and management,
which requires a considerable amount of manpower, material, and effort. Moreover, the
data obtained through traditional measurement methods may have certain abstraction,
and the completeness and accuracy may also be affected. In the current rapidly devel-
oping information technology environment, it is essential to integrate plantation forests
with emerging technologies, and the development of intelligent forest management [6–8]
becomes an important issue worth considering and discussing.

Currently, the most widely used field for forest management applications is forest
fire prevention [9], which includes some intelligent applications, such as detecting flames
using lightweight convolutional neural networks [10] and detecting early smoke from fires
based on support vector machine (SVM) image segmentation [11]. In addition, there are
other intelligent applications in forestry, such as using machine learning to evaluate the
suitability of plantation sites [12] and using neural networks to enhance height predictions
of mixed forests with uneven age [13]. However, there are still problems in the construction
of forestry informationization, such as the need for improved forestry databases [14],
lagging forestry information infrastructure [15], and low cohesion between forestry work
and information technology [16]. At the same time, the limitations of location, time, and
field observations have not been eliminated in forestry research, and it is still difficult to
remotely monitor, control, and coordinate forest operations. Therefore, combining digital
twin technology for virtual forest modeling and data analysis can effectively help forest
management move towards digitalization and informationization.

Digital twin technology [17] is a popular current research area that combines artificial
intelligence, sensors, and virtual reality to map the full life-cycle processes of physical
equipment by generating virtual models in a digital space. This concept was first applied in
aerospace [18], and it can support simulation-related applications such as analysis and pre-
diction and feed the results back to the physical object to help in optimization and decision
making [19]. Digital twin is a widely applicable theoretical technology system that can be
applied to product design [20,21], engineering construction [22,23], water conservancy and
hydropower [24,25], and biomedicine [26,27]. Among them, there are richer applications in
smart cities [28,29], smart industries [30–32], and smart agriculture [33,34]. With the help
of digital twin technology, research in forestry can achieve a transition from traditional
empirical methods to precise scientific methods. Digital twin technology can not only
establish high-precision models of trees and optimize forest management strategies, but
also help researchers better understand the operational mechanisms of forest systems, thus
improving production efficiency, reducing production costs and promoting sustainable
development. However, the application of digital twin technology to forestry is still a
huge challenge.

As a unique entity, the forest is characterized by complex and diverse data, difficulties
in 3D modeling, and challenges in technical implementation. To address these issues,
many researchers have been exploring new methods and technologies. For simulating
forests, individual plants can be modeled based on their living environment and botanical
knowledge [35], or partial tree modeling can be achieved through imaging [36] and other
means. Markus et al. [37] classified, detected, and reconstructed individual canopies of
urban forests by point clouds, and reduced data gaps by parametric reconstruction of
canopies. Guo et al. [38] proposed a new method for constructing realistic sense plant
models. Jiang et al. [39] proposed a digital twin method based on long short-term memory
(LSTM) to model forests using satellite remote sensing images. Light Detection and Ranging
(LiDAR) [40] is also an advanced active remote sensing technology that can quickly and
accurately acquire spatial 3D coordinate information over large areas. Daniel [41] used
GeoSLAM mobile LiDAR scanner and Virt Silv AI platform to examine the individual
tree segmentation technique efficiency, providing higher accuracy and precision for 3D
trees in digital twin. Du et al. [42] proposed the AdTree approach to 3D reconstruction of
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trees under laser scanning, with an overall fitting error of less than 3 cm. It appears that
currently, most applications for modeling or managing forest objects are based on one-sided
virtual reality (VR) or Internet of Things (IoT) technologies, with fewer comprehensive
forest digital twin applications and research on visualizing forest management.

Based on the work in the experimental forest of Triploid Populus Tomentosa in Qingping,
Shandong, this study has constructed a framework for virtual plantation forest modeling
and data analysis oriented towards digital twin. The main contributions are: (1) proposing
a digital twin-based virtual poplar plantation forest system architecture for forest manage-
ment structures and systematically analyzing the main role of the architecture mechanism;
(2) based on collected point cloud data from the forest, proposing a transition particle flow
method combined with the AdTree method to model trees and establishing and optimizing
virtual plantation forest scene on this basis; and (3) based on the experimental monitoring
data, analyzing forest monitoring data and constructing a database, fitting tree growth
formulas based on the measured tree diameter at breast height data, and thus predicting
and simulating related physiological indicators. From this, a virtual poplar plantation
system can be initially built based on virtual reality to support the realization of the vir-
tual forest management model through the networked and digital application of forest
land information.

2. Methods

The plantation forest in Qingping, Shandong Province, is a relatively gentle plain
terrain with one Triploid Populus Tomentosa sapling planted at 2 m longitudinal and 3 m
lateral intervals. A total of 2160 poplar trees seedlings were planted in this stand area.

2.1. Framework Overview

According to the basic experiments and overall requirements of poplar plantation,
this paper proposes a digital twin-based virtual poplar plantation system as shown in
Figure 1, which consists of three main bodies: the physical world, the digital world and
the researchers.

The physical world is the real experimental forest, which includes the actual forest
management, forest operation, and various sensing and monitoring equipment; the digital
world is a digital “twin” of the physical world, which can be primarily divided into virtual
forest component, data analysis component, object interaction component, etc., based on its
functional requirements; and the researchers are the actual operators of the architecture. In
the perfect poplar plantation forest digital twin system, while the physical world conducts
its own management, experiments and operations, the real information and data captured
and collected, such as pictures and videos, are transmitted to the digital world in real time.
The digital world focuses on the elements of forest ecological environment and employs
integrated analysis and mixed modeling to decipher its complexity. Upon receiving in-
formation and data from the physical world, the digital world processes and performs
intelligent calculations. After simulation and deduction, the digital world provides feed-
back and decisions to researchers and the physical world to support decision-making and
optimization for forest experiments and management. In response to the feedback, the
physical world implements intelligent instructions to maintain or promptly change control-
lable variables of the forest, thereby promoting the conduct of physical world experiments.
Meanwhile, researchers collect feedback from both the physical and digital worlds and
make corresponding adjustments, thus forming a large digital twin cycle.

Currently, the overall management and experiments of the physical world and digital
world in the poplar plantation are operated by “researchers”. Due to the limitations of
the experimental site, technology and equipment, the current physical world has not
been able to achieve adaptive intelligent instruction control of variables. In addition,
the digital world currently does not consider the complex effects among various factors,
and direct information feedback to the physical world can only be achieved through
manual intervention. On this basis, this paper mainly aims to discuss the framework of
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virtual forest modeling component and data analysis component in the digital world of the
poplar plantation.
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Figure 1. Architecture of virtual poplar plantation system based on digital twin.

In the system architecture of the poplar plantation, the virtual forest of the digital
world is the basic carrier of the whole system. It needs to simulate the main research objects
and build a virtual plantation scene. The application data in the virtual forest mainly
consists of images and point cloud information from the physical world. In terms of data
analysis, its main task is to connect and present data from the physical world, including
the display of sensor monitoring equipment data and the analysis and prediction of some
data. The main input data for data analysis are sensor monitoring equipment data and
some manually measured data collected periodically. In this way, key issues analysis and
research of the components and functional implementations are carried out, laying a certain
foundation for the future construction of the virtual forest digital twin system.

2.2. Virtual Forest Modeling

This section mainly introduces the relevant methods for constructing virtual forests.
The specific flowchart is shown in Figure 2.

2.2.1. Point Cloud Data Pre-Processing

The airborne LiDAR scanning system can acquire surface tree point cloud data on a
large scale, and it can contribute to high-precision tree structure parameter extraction and
landscape level geometric reconstruction. The raw point cloud data is large (Figure 3a),
and there are many trees and intricate branches in the woodland, so the completeness of
the edge point cloud is not considered first. An area of the stand point cloud was cut out to
segment the trees using the method of Zhang et al. [43]. With the high central position of the
tree canopy and the low surroundings, as well as the gradually increasing height from the
surroundings to the center, the highest point of the tree point cloud can be projected onto



Forests 2023, 14, 683 5 of 18

the ground plane, which will be distinguished to form a height map and thus distinguish
the single tree point cloud.
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Figure 3. Forest site point cloud data. (a) Local point cloud data of poplar plantation. (b) Point cloud
data of tree branches and trunks.

Noise in point cloud data can be divided into two types: large-scale noise and small-
scale noise. Large-scale noise refers to the point cloud data of the ground that is scanned
over a large area, while small-scale noise refers to outliers around trees. In order to filter
out these outliers, a pass-through filtering method can be used. Generally the point cloud
density of the branch part of the tree will be greater than the density of the leaf point cloud.
Therefore, in the point cloud data, the lowest point in the normal direction is proposed
as the initial root node, and the radius is set. The kd-tree [44] method is used for search
traversal, and points with a distance less than the radius to the root node are continuously
added to the branch point cloud set. Points outside the radius distance are counted as the
leaf point cloud set. The leaf point cloud set is removed to obtain the branch and trunk
point cloud data (Figure 3b).

2.2.2. Tree Modeling

In this paper, the AdTree method is mainly used for the trunk reconstruction of poplar
trees. For tree trunk point cloud data, the main idea is to construct a tree branch model by
getting the initial tree skeleton to fit the columns. The Delaynay method can generate a set
of triangles, or triangular mesh, for a given set P of planar points. However, the generated
triangle mesh is not unique, and the choice of triangle edge length vertices determines the
type of adjacent triangles (Figure 4). The empty circle property of Delaynay is satisfied
when all the external circles of the triangles do not contain any vertices in P in the range
other than the boundary (Figure 4a). In the tree point cloud data, the points with similar
intervals are likely to belong to the same branch. The point cloud data after performing
Delaynay processing can find its minimum spanning tree MST to obtain the initial skeleton
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information of the tree model. By assigning weights to the edge lengths in space through
the Euclidean metric, the weights of the edge lengths in space, De, can be expressed as:

De =

√
n

∑
i=1

(xi − yi)
2 n = 1, 2, . . . , n (1)

where the coordinates of the vertex n are (xn, yn).

Forests 2023, 14, x FOR PEER REVIEW 6 of 19 
 

 

a set of triangles, or triangular mesh, for a given set P of planar points. However, the gen-
erated triangle mesh is not unique, and the choice of triangle edge length vertices deter-
mines the type of adjacent triangles (Figure 4). The empty circle property of Delaynay is 
satisfied when all the external circles of the triangles do not contain any vertices in P in 
the range other than the boundary (Figure 4a). In the tree point cloud data, the points with 
similar intervals are likely to belong to the same branch. The point cloud data after per-
forming Delaynay processing can find its minimum spanning tree MST to obtain the ini-
tial skeleton information of the tree model. By assigning weights to the edge lengths in 
space through the Euclidean metric, the weights of the edge lengths in space, De, can be 
expressed as: 

( )2

1
      1,2,...,

=

= − =
n

i i
i

De x y n n  (1)

where the coordinates of the vertex n are (xn, yn). 

(a) (b)

p1

p2 p3

p4 p4'

p3'p2'

p1'

 
Figure 4. Delaynay triangulation with the empty circle property. (a) The outer circle of a triangle 
formed by p1, p2 and p4 contains only the points of the triangle. (b) The outer circle of the triangle 
formed by p1’, p2’ and p3’ contains p4’ and other vertices. 

Then the Dijkstra algorithm is used to search the shortest path of the point cloud with 
breadth first. The point set S is used to store the vertices on the path, and the point set U 
is used to store the non-path vertices, {S,U} ∈ P. We defined the array dis to store the 
weights from the origin to each vertex. We iterated through the weights from the origin 
to the vertices, added the vertices to the point set S when the weights were smallest, and 
updated dis. We kept cycling through this process until all the vertices were included in 
S, thus obtaining the initial skeleton representation of the tree MST. 

For a branch of a tree, the general simulation method is to use cylinders or polygons 
to represent it. If the actual radius value is known, a series of cylinders can be fitted based 
on the tree skeleton to accurately simulate the tree branch. The point cloud data of the tree 
trunk and main branches is relatively dense and stable, and accurate branch radius can be 
obtained using non-linear least squares method. The point cloud data near the tree crown 
and the top of the branches becomes noisy and obtaining accurate radius data is difficult. 
In this case, the correspondence between the radius of the tree trunk and the radius of the 
sub-branches can be expressed as: 

2 2    1,2,...,= = nR r n nα  (2)

where R is the fitted radius of the main branch, r is the radius of the sub-branch, and α is 
the ratio of the thickness of the main branch to the sum of the thicknesses of the side 
branches. 

It is worth noting that the input point cloud data still contains some redundant and 
noisy points that have not been removed during preprocessing. These points are repre-
sented as redundant and meaningless branches in the skeleton, which exacerbate the ef-
fects of overlapping and invalid operations during fitting, and the resulting tree model 
will appear complex and rough. Therefore, before fitting, it is necessary to simplify the 

Figure 4. Delaynay triangulation with the empty circle property. (a) The outer circle of a triangle
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Then the Dijkstra algorithm is used to search the shortest path of the point cloud with
breadth first. The point set S is used to store the vertices on the path, and the point set
U is used to store the non-path vertices, {S,U} ∈ P. We defined the array dis to store the
weights from the origin to each vertex. We iterated through the weights from the origin
to the vertices, added the vertices to the point set S when the weights were smallest, and
updated dis. We kept cycling through this process until all the vertices were included in S,
thus obtaining the initial skeleton representation of the tree MST.

For a branch of a tree, the general simulation method is to use cylinders or polygons
to represent it. If the actual radius value is known, a series of cylinders can be fitted based
on the tree skeleton to accurately simulate the tree branch. The point cloud data of the tree
trunk and main branches is relatively dense and stable, and accurate branch radius can be
obtained using non-linear least squares method. The point cloud data near the tree crown
and the top of the branches becomes noisy and obtaining accurate radius data is difficult.
In this case, the correspondence between the radius of the tree trunk and the radius of the
sub-branches can be expressed as:

R2 = α∑ r2
n n = 1, 2, . . . , n (2)

where R is the fitted radius of the main branch, r is the radius of the sub-branch, and α is the
ratio of the thickness of the main branch to the sum of the thicknesses of the side branches.

It is worth noting that the input point cloud data still contains some redundant
and noisy points that have not been removed during preprocessing. These points are
represented as redundant and meaningless branches in the skeleton, which exacerbate the
effects of overlapping and invalid operations during fitting, and the resulting tree model
will appear complex and rough. Therefore, before fitting, it is necessary to simplify the tree
skeleton. In AdTree, by assigning different weights to vertices and edges and iteratively
checking the proximity between adjacent points, some vertices are merged to simplify
the tree skeleton, as shown in Figure 5. This approach can not only eliminate the impact
of skeleton branching at noise points, but also make the overall skeleton more concise
and intuitive. In the actual generation process, direct cylindrical fitting based on the tree
skeleton sometimes appears too rigid at the turning and intersection points, and the sharp
transition will lead to the loss of realism of the tree model. Therefore, the tree skeleton can
be curved and optimized before fitting to make the model more natural and smooth.
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b2 have high similarity. (b) Point b′ is merged from b1 to b2, thus simplifying the tree skeleton.

The next step is the simulation of tree leaves. Due to the overlapping part of the point
cloud data information of the tree leaves, it is relatively difficult to reconstruct the tree
leaves by means of the point cloud information. Therefore, a transition particle flow method
is proposed to simulate the leaves of poplar trees. As shown in Figure 6, the completed
trunk model is first labeled. Then, the normal vertex O of the model is adjusted to be close
to the ground, which is the lowest point in the center of the model. We set the height h
upward along the normal direction with O as the demarcation of the particle emission point
of the tree leaves. h′ is the transition value of the emitted particle stream. There exists a
point a(xa, ya) at the partition, upward along the normal direction, at a distance h′ to obtain
the point a′, h′ can be expressed as:

h′ = |ya− ya′ | (3)

where ya takes a value equal to h. We performed the calculation of the downward point
a” similarly. The area with a height of 2h′ is the particle flow transition zone, and the part
above the transition zone is the random particle flow zone, and the part below is the empty
zone. Generally, the value of h′ is set between the main trunk and multiple branches, thus
simulating the characteristics of real trees with few leaves at branches.
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For the empty area, part of the vertices are marked with the color white, the random
particle flow area vertices are marked with black, and the transition particle flow area
takes two color transition values. It is worth noting that the number of leaf particles in the
random particle flow area should be much more than the number of transition areas. Then
the number of particles in each region is expressed as:

Fleaf = Ntree(k× RGBblack)F (4)

where Fleaf is the actual number of particles in the region, F is the initial number of emitted
particles, RGBblack is the region blackness value, Ntree is the number of tree model vertices
in the region, and k is the percentage of particles emitted under RGBblack. When k = 80%
and RGBblack = 50% in the transition particle flow region, a more ideal state of the tree
leaves emitting particles can be achieved. The particle emitting operation is performed on
the overall trunk model to detect the vertex color marker, and the vertices marked as white
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will not show the emitting particles. The transition area has a higher value of whiteness,
but still shows some particles. We set the emitted particles as leaf-shaped facets and the
material as a poplar tree leaf map. We randomized the particle size and rotation angle,
and emitted according to the markers to obtain the leaf particle stream. The higher the
number of particles initially emitted, the higher the overall number of leaves generated. By
controlling the amount of foliage to select the season and time of year of the aspen trees,
the virtual scene is more selective.

2.2.3. Virtual Plantation Simulation

The objects of the virtual plantation forest mainly contain poplar trees, woodland
topography and monitoring equipment. The tree model is obtained by integrating the trunk
model and leaf particles based on Section 2.2.2. Then, the model height values are assigned
within a certain fluctuation range interval based on the tree height data obtained from
different processing methods according to the tree growth formula in Section 2.3.3. For the
plantation forest terrain, the Terrain component of Unity3D is used to complete the drawing
of flat terrain and artificial border irrigation. In addition, to simulate the distribution of
trees according to the real layout, we decorated with weeds and wildflowers and other
models to increase the sense of realism. It can also used to animate water materials to fill the
gullies, add sky boxes to set the overall environmental tone, set parallel light sources, point
light sources to simulate natural sunlight and environmental reflections, adjust the scene
shadows, and set the wind field and other environmental details to build a high degree
of completion of the virtual forest scene. The monitoring equipment mainly includes
equipment for forest management, experiments and instruments on tree physiological
indicators, such as weather stations, groundwater level sensors, etc. Based on the real
pictures and videos of the plantation forest and other information, 3dsMax was used to
assist in modeling it.

2.2.4. Scene Optimization

The virtual forest contains a large number of models with a high degree of redundancy.
There are different sizes and levels of detail depending on how much detail is required.
The simulation of the environment will also involve some specific dynamic scenes, which
will inevitably lead to serious memory consumption, rendering pressure, and occasional
lagging problems.

The main model in this paper is a poplar tree model, which has the problem of
cluttered lines and faces in wiring and arranging points, and thus, it is very laggy when
loading and rendering the tree model continuously. In order to improve the operation
efficiency, we rewired the tree model and performed operations such as model attachment
to reduce the number of points and lines. The Levels of Detail (LOD) [45] technique was
used to simplify the level of detail in the complex model during rendering. In addition,
dynamic loading techniques were used to reduce the burden of running the system scene.
In the process of following the camera tour, the camera viewpoint range is limited, and
the scene models within the viewpoint range are continuously loaded while the models
outside the range are continuously deleted to save the memory of the scene operation.
Reasonable use of buffer pools for caching prefabricated objects and finding useless and
duplicate content in project resources for early deletion can also better reduce the storage
pressure on the system.

In the framework of the digital twin system, the virtual poplar plantation model is
mapped to the real forest. The real forest transmits information to the virtual forest to
simulate the real effect, which causes the problem of model updating. For the update of
the plantation model data, the long growth cycle of Triploid Populus Tomentosa in poplar
plantation, which has to be monitored for a long period of time on an annual basis before
conclusions can be drawn, makes it difficult to observe direct stand changes in a relatively
short period of time. The specific updates of the objects in the stand for the current practical
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research needs are shown in Table 1. Further possibilities need to be explored for a more
efficient update method.

Table 1. Renewal of virtual poplar plantation forest objects.

Plantation Forest Object Update Status Update Cycle

Poplar tree model Need to be updated 4 Months
Plantation forest terrain No need to update 0

Models of monitoring equipment already in existence No need to update 0
Newly added monitoring equipment models 1 Need to be updated 4 Months

Other models (weeds, etc.) Need to be updated 4 Months
1 These devices may be added to real plantation forests in the future.

2.3. Data Analysis

By using tree growth equations and existing data, it is possible to predict the biomass
of trees that are difficult to measure. Predictions involve assessing the future growth status
of trees, and accurate predictions can facilitate guidance for field experiments. For future
monitoring data, exponential smoothing algorithms can be used to simulate the past and
current data, and the goodness of fit R2 can represent its prediction quality. Thus, by
combining existing breast diameter data with data visualization methods, the trends in tree
growth can be intuitively represented in the system, and the future trends and range of the
data can also be clearly indicated.

Analyzing and predicting the data can provide more effective decision-making for ex-
perimental forest management and basic field work. In combination with the experimental
results of researchers, corresponding solutions can be proposed for abnormal situations
that may occur in the analysis of forest data, such as excessively high peaks. Targeted
measures can be formed and feedback can be provided in a timely manner when such
situations arise. This can help forestry researchers prevent events such as forest droughts
and fires.

2.3.1. Database Construction

A SQL Server database is created to store the monitoring data, mainly in the form of
tables. Most of the data are automatically collected by sensors set up in the forest and then
collected by data collectors. A small amount of the data is manually collected, processed
and uploaded to the database. Due to the large amount of redundant and complex content
in the data collected by the data collector, preprocessing is required. Empty or invalid
semantic fields are queried and deleted, and the necessary fields are retained and sorted.
However, since the database serves as a carrier for data storage, it is difficult to analyze
or use it intuitively. Therefore, it is necessary to consider connecting the database to the
system for further analysis and use, as shown in Figure 7.
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Add the relevant class libraries to connect to the SQL Server database in the system
project. In the NET framework, the System.Data.SqlClient namespace is introduced to create
objects that receive data variables and connect to the database through the SqlConnection
object. Connection is equivalent to the connection channel between the system and the
database, and the main access type is determined by the database. Command can execute
commands and return results from the source data. We used SqlDataAdapter adapter
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to make database table calls and create DataSet for instantiation. DataAdapter acts as a
connection between the instantiated object and the source data, it can fill the DataSet by
retrieving the source data, and also modify the source data by Update. After instantiating
the data into the DataSet object, it can directly call the data for analysis and simulation, etc.,
and also conduct the foundation for future data linkage in real time.

2.3.2. Data Visualization

Some of the continuous data from the DataSet were selected for visualization. In this
paper, three parts of sensor monitoring data are selected for visualization and analysis:
groundwater depth data, tension gauge data and stem diameter sensor data. Their main
semantic fields are date, different processing methods of experiments, and different mon-
itoring points. Combining the characteristics of the data and the needs of foresters, line
charts is used to present the trend changes between the different data. Using the date of
data monitoring as the x-axis and the data of different treatments as the y-axis, multiple
line graphs are drawn by UGUI controls. If the data from the same device includes multiple
monitoring points, they are marked using different legends and colors to facilitate the
observation of status information of different tree collection points in the same time state.

2.3.3. Specific Data Analysis and Simulation

For stand growth status, predicting tree growth under forest management status
from specific data or simulating future trends of impact factors can help researchers to
develop subsequent management plans and disaster prevention. In this paper, we choose
to simulate tree height, above-ground biomass, below-ground biomass, and total biomass
as physiological indicators through regular manual measurements of tree diameter at breast
height (DBH).

The measurement of tree DBH is relatively easy compared to the measurement of the
physiological indicators that are to be predicted for the simulation. Based on the knowledge
and laws of forestry, the existing tree DBH and tree height data were selected for scaling,
and a proportional logarithmic relationship was found based on the scatter direction. From
this, it is presumed that a function fit can be performed to obtain the tree growth equation
about tree height. Other physiological indicators were also fitted by the same method, and
some of the scatter plot results were obtained as shown in Figure 8.
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where BS1 includes trunk, branch, root stump, thick root and thin root parts, α2 takes the 
value of 1.3121 and β2 takes the value of 0.2907; BS2 increased both leaves and deciduous 
leaves compared to BS1, with α3 taking the value of 1.7956 and β3 taking the value of 0.2708. 
The relationship between DBH and aboveground biomass BA for a given range is shown 
in Equation (7): 
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Figure 8. Under adequate drip irrigation treatment, scatter plots with fitted curves were constructed
for some tree diameter at breast height (DBH) data as follows: (a) the fitted curve of DBH and tree
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height data; (b) the fitted curve of DBH and total biomass (excluding leaves and defoliation); (c) the
fitted curve of DBH and above-ground biomass (including only trunk and branches); (d) the fitted
curve of DBH and below-ground biomass.

In general, the fitted tree growth equation can assist in determining future physio-
logical indicators and reduce errors to some extent. Combining different tree treatments
in plantation (adequate drip irrigation, water-controlled drip irrigation, adequate furrow
irrigation, water-controlled furrow irrigation), within a certain range of DBH, for tree height
there is a relationship as shown in Equation (5):

H = α1 ln D− β1, 3.47 < D < 16.2 (5)

where H is the tree height, D is the tree DBH, α1 takes the value of 8.586 and β1 takes the
value of 9.1749. The relationship between DBH and total biomass BS for a given range is
shown in Equation (6): 

BS1 = α2eβ2D

, 4.08 < D < 16.02
BS2 = α3eβ3D

(6)

where BS1 includes trunk, branch, root stump, thick root and thin root parts, α2 takes the
value of 1.3121 and β2 takes the value of 0.2907; BS2 increased both leaves and deciduous
leaves compared to BS1, with α3 taking the value of 1.7956 and β3 taking the value of 0.2708.
The relationship between DBH and aboveground biomass BA for a given range is shown in
Equation (7): 

BA1 = α4Dβ4

, 4.08 < D < 16.02
BA2 = α5Dβ5

(7)

where BA1 represents the above-ground biomass including only the trunk and branch parts,
with values of 0.0319 for α4 and 2.8303 for β4; BA2 represents the above-ground biomass
with four parts: trunk, branch, leaf and deciduous leaf, and the value of α5 is 0.0673 and β5
is 2.5651. The relationship between DBH and belowground biomass BU for a given range is
shown in Equation (8):

BU = α6 ln D− β6, 4.08 < D < 16.02 (8)

where BU mainly includes two parts, root stump and thick root, and the value of α6 is taken
as 3.3678 and the value of β6 is taken as 4.0467.

It should be noted that not all data in practical measurements can be described by the
fitting function, and some monitoring data may be distributed around the fitted curve. The
goodness-of-fit R2 is a statistic used to evaluate the degree of fit of the regression line to the
sample observations. In the process of regression fitting, the value of the fitted object y is
mainly influenced by two factors: one is the different values of the explanatory variable x,
and the other is the variation of random factors. Taking linear regression as an example, R2

can be expressed as:

R2 = 1−

n
∑

i=1
(yi − zi)

2

n
∑

i=1
(yi − y)2

(9)

y =
1
n

n

∑
i=1

yi (10)

where R2 represents the percentage of the regression sum of squares in the total sum of
squares of variance for object y, yi is the sample observation, and y is the point on the
regression line as shown in Equation (10). From Equation (9), we know that the range of
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R2 is (0, 1), and the better fit is when R2 is closer to 1. For Equations (5)–(8), the R2 ranges
from 74% to 95% as can be seen from Table 2. When the amount of data n ≥ 100, R2 ≥ 87%.
The physiological data obtained from real-time calculations based on DBH and tree growth
equations are continuous. However, the tree model presents the same visual changes in
tree height following the update cycle of Table 1, in which the measurement period of DBH
still has an impact on it. In addition, other monitoring data, such as transpiration rate,
stomatal conductance, and leaf water potential, which are related to stem sap flow, can also
be simulated by this method.

Table 2. Goodness of fit (R2) of tree growth equations.

Physiological Indicators y Data Volume n (#) R2 (%)

Tree height H (m) 1088 87.11%
Total biomass BS1 (kg) 100 92.70%
Total biomass BS2 (kg) 100 92.28%

Above-ground biomass BA1 (kg) 100 94.94%
Above-ground biomass BA2 (kg) 100 94.12%
Below-ground biomass BU (kg) 85 74.32%

3. Results

In this paper, we use Unity3D to initially build a digital twin-oriented poplar plantation
system based on a virtual forest modeling and data analysis framework. It can run on a
64-bit PC equipped with Windows 10 operating system, Intel(R) Core(TM) i5-8250U CPU,
and 8GB running memory.

3.1. Virtual Forest Results

In terms of virtual plantation forest, modeling of tree point clouds leads to a tree trunk
model (Figure 9a). The simulation of different foliage densities using the transition particle
flow method is shown in Table 3, which shows that the tree model has a stable emission
ratio close to 44% at k=80%, and the storage size is still less than 1MB at an initial emission
particle number of 15000. The first row of foliage particle data is selected into the trunk
model to obtain the results (Figure 9b). In this paper, three different poplar tree models
were selected to be integrated into the virtual plantation forest (Figure 9b–d).
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Figure 9. Models of Triploid Populus Tomentosa. (a) Tree stem model built using the AdTree method.
(b) Tree model obtained by emitting leaf particles from the model in (a). (b′) Optimized model based
on the model in (b). (c,d) Other models. (c′) Model optimized based on the model in (c). (d′) Model
optimized based on the model in (d).
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Table 3. Comparison of number of leaf particles and storage size.

Initial Number of
Particles Emitted (#)

Actual Number of
Particles Emitted (#)

Particle Emission
Ratio (%) Storage Size (KB)

15,000 6677 44.5 972
10,000 4443 44.43 689
8000 3546 44.3 553
4000 1773 44.3 285

Figure 9b′–d′ correspond to the results of the optimized tree models, respectively. The
data comparison of the optimized tree models are shown in Table 4. The number of points,
lines, and surfaces of the optimized model are almost 17% or less than the original number,
and the storage size is reduced by more than 67%. As can be seen from Figure 9 and Table 4,
the constructed tree model can maintain a certain degree of realism and can greatly reduce
the size of the scene memory occupation. Other variables and factors such as soil, moisture,
and climate in the plantation forest are not considered in this paper at this time. Adding
models such as equipment modeled by 3dsMax, a more complete virtual poplar plantation
forest is shown in Figure 10.

Table 4. Before and after optimization of the number of points, lines and surfaces of the tree model.

Tree Models Number of
Vertices (#)

Number of
Lines (#)

Number of
Surfaces (#)

Storage Size
(KB)

Frame Rate
(FPS)

Figure 9b 141,244 669,723 235,484 13,716 97.640
Figure 9b′ 23,777 67,116 22,372 4624 74.144
Figure 9c 140,844 667,826 226,672 13,029 83.96
Figure 9c′ 15,435 43,569 9521 385 75.76
Figure 9d 148,854 705,807 235,484 14,113 141.09
Figure 9d′ 10,777 30,420 6360 4206 46.02
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camera view of the poplar plantation weather station. The right taskbar is the main function
implementation area, with three tabs for switching. The results of the “Tree diameter at
breast height” and “Related predictions” functions are shown in Figure 12. Figure 12a
shows mainly the DBH plot of trees with date, and Figure 12b–g shows the trend plot fitted
according to the DBH. From them, we can visually observe that the trend of DBH and
each data is basically consistent with the results fitted in Section 2.3.3. In addition, the tree
growth data can be output by directly entering the tree DBH.
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chart of above-ground biomass. (g) Trend chart of below-ground biomass.

4. Discussion

The architecture in this paper is developed based on three main dimensions: phys-
ical entities, virtual entities, and the connection between the two. Compared with the
five-dimensional architecture of industry-oriented digital twin proposed by Tao et al. [46],
although the two dimensions of data and services are missing, this paper’s framework
constitutes its own set of systems that are still feasible based on the results of the vir-
tual plantation forest system for digital twin initially shown in Section 3.2. It is also
possible to summarize the digital twin solution under multiple dimensions based on the
five-dimensional model. The present study focuses on a poplar plantation as the main
research object. Compared with the large-scale forest digital twin framework proposed by
Buonocore et al. [47], the factors considered in this study are relatively few, but it is still ex-
pected to derive to larger-scale forest frameworks and target research and implementation
through the study of this forest land. From the experimental results, the proposed frame-
work in this paper can meet the eight evaluation criteria for digital twin models proposed
by Zhang et al. [48], such as effectiveness, integrality, and intuitiveness. This framework
performs analysis by establishing geometric and physical models, and the real data used
in the forest land are both effective and standardized. However, the framework still lacks
intelligent content such as model adaptability and self-learning ability. In addition, the
established model only considers a single tree species, while there are multiple species and
factors in actual forest land, and their interactions are very complex and uncertain, thus
limiting the accuracy and applicability of the model. Therefore, for the optimization of the
overall digital twin architecture, a more complete virtual forest digital twin framework can
be constructed based on these evaluation criteria.

In this study, we have demonstrated the feasibility of the research framework by
initially constructing a virtual poplar plantation system. Based on existing large-scale
point cloud data, we reconstructed virtual forests using a single-tree modeling method,
and the structure of the model was determined solely by the structure of the point cloud.
Fourcaud et al. [49] discussed the importance of plant structure in growth models and
their applications, and summarized the problems of related work. There have been works
and studies on reconstruction of large-scale point cloud data [50], but there is still little
research on the reconstruction of large-scale forest point clouds and the modeling and
processes of simulating tree growth based on the real structure of plants. In addition,
due to the interactions among multiple species and factors, there are still difficulties
in conducting mixed modeling for multiple species. Therefore, in future research, it is
necessary to consider incorporating plant growth models and more factors into virtual
forests to achieve more realistic simulation effects. To achieve real-time data exchange and
interoperability, reliance on intelligent devices is necessary. Currently, the framework relies
on the periodic retrieval of data from the database by the system, lacking a real-time data
transmission monitoring mechanism [51]. In future work, a fast update model based on
real-time IoT communication protocols [52] can be considered to improve data transmission
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performance. In addition, machine learning algorithms can be used to infer forest biomass
for data analysis and derivative functions [53].

A virtual plantation forest system oriented towards digital twin can provide forestry
researchers with a platform to simulate real forest environments, facilitating better exper-
imentation and research. During the research process, the system can help researchers
better understand and analyze data through feedback and visualization, and provide data
sharing functions through data storage and management, making it more convenient and
efficient to assist in adjusting forest management strategies. With future improvements to
the system, researchers can better simulate the effects of different environmental factors
on tree growth, further enhancing research and management of plantation forests. For
the operation of the system, it is currently established to run on a computer with only a
CPU, and the system is based on a C/S architecture [54].The C/S architecture allows for
direct interface operation through the client and a more secure data connection method.
The B/S architecture [55] can better meet the requirements of network interconnection
and information sharing, and is more efficient and convenient for the management of the
virtual forest. In the future, the system can be further improved and optimized by using a
computer with GPU, and a system based on B/S architecture can be built. Considering the
introduction of external VR devices for immersive interaction in the virtual forest can also
be further explored for realizing the digital twin of forest land [56].

5. Conclusions

From the perspective of combining the forest and digital twin, this paper presents a
framework of virtual forest modeling and data analysis. For digital forest management,
a digital twin system architecture for a virtual poplar plantation is proposed. Based on
the real data of Triploid Populus Tomentosa plantation, key problem analysis and function
implementation are carried out for the two components of the framework, resulting in
an initial and operational virtual forest system. For virtual forest modeling, the point
cloud trunk model is constructed using the AdTree method, and the transition particle
flow method is proposed to simulate the leaf particles. The resulting tree model can reduce
memory pressure while maintaining realism. The virtual plantation forest scene is obtained
by integrating and optimizing the tree model and other models. For data analysis, a SQL
Server database is created for storage and then connected to the system. The monitoring
data is pre-processed and parsed to obtain the tree growth equation by fitting, and then
the tree diameter at breast height related data is analyzed and predicted. This enables the
prediction and trend simulation of tree height and tree biomass data. The method is also
applicable to other monitoring data of forest land. By utilizing virtual reality technology, it
is possible to facilitate the overall construction of virtual forests from a three-dimensional
perspective, and help achieve virtual forest management oriented towards digital twin.
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