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Abstract: Aiming at the problems of low classification accuracy and overfitting caused by the limited
number of particleboard image samples, a Capsule Network algorithm based on the improved CBAM
(Convolutional Block Attention Module) attention model is proposed. The improved algorithm
utilizes the GELU equation to improve the CBAM attention model and incorporates it into the
convolutional layer of the Capsule Network. In this way, the improved algorithm optimizes the
feature maps of surface defects and, meanwhile, improves the training efficiency and stability of
the model. The improved algorithm alleviates the overfitting problem by adding a dropout layer,
which makes the model more suitable for small sample classification. The effectiveness of the method
proposed in this paper is verified by classification experiments on the dataset of particleboard surface
defect images.

Keywords: particleboard defects detection; image classification; CBAM attention model; capsule network

1. Introduction

Particleboard, also known as bagasse board, is one of the three main products of
man-made board at present. Particleboard is a kind of wood-based panel made of wood or
other lignocellulosic materials, which is glued under the action of heat and pressure after
applying adhesive. The raw materials of particleboard come from a wide range of sources,
and the board has high strength. The sales market of particleboard-related products is also
broad [1].

At present, there are many kinds of automatic production equipment for particleboard,
among which the continuous flat press is the leading technology. It has the advantages of
high automation and outstanding production capacity. However, due to the particularity
of the raw material source of particleboard, there are some problems in the production line
of the continuous flat press. Due to factors such as uneven size and type of raw materi-
als, machine errors in production equipment, and workshop environmental interference,
individual products may have surface defects. These defects can impact the subsequent
veneer process, the appearance and quality of the finished board, and make secondary pro-
cessing more challenging. With the refinement and high-end development of the furniture
manufacturing industry, the demand for high-quality particleboard is rising. Consequently,
particleboard manufacturers pay more attention to product surface quality testing than
ever before, making it one of the core measurement factors for board grading. Among the
available quality testing methods, surface defect image classification is a critical component
for improving the quality of particleboard products.

During the particleboard production process, surface quality inspection is a crucial
step that greatly impacts the subsequent veneer and edge bonding processes. The influence
of surface defects on the board quality can vary widely depending on factors such as the
damage degree, the defect type, and the defect area [2]. Currently, the treatment schemes
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usually involve either leaving the defect untreated or directly cutting the defective parts of
the board. The former approach often leads to problems such as blistering and layering of
the board after veneering, thereby affecting the quality of the final product and subsequent
processing. The latter approach can result in the wastage of raw materials and production
resources, which is not conducive to the effective utilization of wood resources. Detecting
and identifying surface defects on the board and implementing different treatment methods
based on the detection and identification results can address the aforementioned issues.

With the development of industrial technology, non-destructive testing methods are
emerging as a replacement for manual operations in detecting and identifying defects in
industrial products. In the wood-based panel industry, researchers have been exploring
defect detection technology, resulting in progress in non-destructive testing and identifi-
cation methods. These methods include ultrasonic detection [3], X-ray detection [4], and
machine vision detection [5]. Ultrasonic testing uses ultrasonic propagation attenuation
law to judge the defect position in the panel, but it has drawbacks such as long detection
time, the need for coupling agents, and operator experience. X-ray testing targets internal
defects in the panel, utilizing ray beam attenuation imaging to display the defect size and
position. However, protective equipment is required due to the harmful effects of radiation,
limiting its applicability in open production environments.

Machine vision technology emerged in the 1970s and 1980s, owing to the progress of
digital image processing and computer pattern recognition technologies. In the realm of
product surface defect detection, this technology acquires product surface images through
detection and perception and subsequently produces results of diverse projects such as
defect measurement, classification, and quality evaluation based on algorithms. It is ca-
pable of multi-mode detection, such as quantitative, qualitative, and semi-quantitative.
This method is highly suitable for industrial production fields associated with panel defect
detection due to its fast detection speed, flexible processing, high accuracy, and easy equip-
ment configuration. However, the industrial production line’s production environment is
intricate, and the requirements for surface defect detection differ for different boards. Thus,
surface defect detection and recognition technology based on machine vision still present
extensive research prospects.

In the problem of surface defect detection and recognition based on machine vision,
extracting the defect features to form a sample set, building a defect-type classifier, training
the classifier, and classifying the defects according to their feature values are necessary.
Currently, the main classifiers are the Bayesian Classifier, K-Nearest Neighbor Classifier,
Decision Tree Classifier, Random Forest Classifier, Support Vector Machine Classifier,
and Neural Network Classifier. Scholars have conducted much in-depth research and
innovations on relevant issues in recent years [6–11]. He, T and Liu, Y used the improved
AP (Affinity Propagation) clustering algorithm and SOM (Self-Organizing Maps) neural
network to classify wood defects. The research achieves recall rates of 85.5% and 83.6% and
precision rates of 90.3% and 92.7% [6]. Zhang, H improved the classification speed by using
compressed Random Forest to classify the defects on the surface of solid wood flooring,
achieving a one-time prediction time of 3.44 ms [7]. Liu, S classified wood defects using a
BP (Back Propagation) Neural Network and Support Vector Machine [9]. The experimental
result showed that the Support Vector Machine is more accurate in classification, with a
recognition accuracy of 92% of live joints, dead joints, and cracks. To address the problem
of high labor cost and low efficiency in wood defect detection, Ding, F and Zhuang, Z
used a color charge-coupled equipment camera to collect surface images of red wood and
Pinus sylvestris [11]. They applied the transfer learning method to a Single-Shot Multi-
Box Detector (SSD) and proposed a target detection algorithm. The average accuracy of
detecting a live joint, dead joint, and three types of defects reached 96.1%.

Based on recent research, it is evident that Neural Networks perform particularly
well in related problems and yield satisfactory results for defect detection. Although
many scholars have improved and innovated Neural Networks, current algorithms such
as Convolutional Neural Networks and BP Neural Networks used in defect classification



Forests 2023, 14, 822 3 of 16

have their own limitations. In particular, trained network models may recognize targets as
other objects when interference such as translation, rotation, or scale transformation occurs.
Moreover, many Neural Network algorithms are greatly affected by the number of training
samples, requiring a large number of training samples to achieve better recognition results,
which involves significant computational cost and a long training time.

In this article, we address the challenge of identifying surface defects in particleboards,
which is limited by the availability of defect samples. To overcome this challenge, we
propose using the Capsule Network model, which has been shown to perform well in small
sample classification problems. We improve the model to achieve a better recognition effect.

The Capsule Network (CapsNet) proposes replacing neurons in a Convolutional Neu-
ral Network with capsules to preserve detailed pose information and spatial hierarchical
relationships between objects [12–14]. A capsule, in this network, refers to a small group
of neurons that can identify a specific object in a defined region. The output of a capsule
is a vector with a specific length, representing the probability of object existence, and the
vector direction records the object’s attitude parameters. If there is any slight change in the
object’s position, such as rotation or movement, the capsule would output a vector with
the same length but a slightly varied direction.

In recent years, a Capsule Network has been increasingly utilized in image classifica-
tion and recognition and has shown promising results [15–19]. Shakhnoza, M applied a
Capsule Network to fire smoke image recognition, which demonstrated high recognition
accuracy and robustness for outdoor camera image classification in the presence of smoke
and fire [15]. Wang, W combined a Convolutional Neural Network and Capsule Network
to classify gastrointestinal endoscopic images with a classification accuracy of over 85%
for multiple datasets [16]. Sreekala, K developed a deep transfer learning model for face
recognition using the Capsule Network and utilized a Grey Wolf Optimization (GWO) and
Stacked Autoencoder (SAE) model to classify faces in images [18].

In our study of particleboard surface defect recognition, the recognition process of
the defect type is greatly interfered with by the special characteristic of the surface texture
of the board. To address this, we introduce an improved CBAM attention model into the
Capsule Network. The CBAM (Convolutional Block Attention Module) model is a channel
space mixed attention model [20–22]. It generates attention feature map information in both
channel and space dimensions and multiplies the two feature maps with the original input
feature map to perform adaptive feature correction and obtain an optimized feature map.
By using the CBAM attention model in the particleboard surface defect classification and
recognition problem, important feature information is strengthened, unnecessary features
are suppressed, and feature optimization is achieved, resulting in improved recognition
accuracy with reduced calculation parameters and computing power being saved.

In the particleboard production line, surface defects must be detected, extracted,
classified, and identified to assess the degree of damage to the board. Subsequently, the
boards that do not meet surface quality requirements must be removed from production. To
achieve this objective, we use the CBAM attention model to improve the Capsule Network
and use the improved method to identify five common surface defects (bare shavings,
oil spots, glue spots, sand lines, and holes) on the production line. The study has two
main aspects. Firstly, we propose an algorithm for the Capsule Network based on the
improved CBAM attention model, making it more suitable for identifying particleboard
surface defect types. Secondly, we conduct recognition experiments using defect samples
from the particleboard surface defect dataset and compare the effectiveness of our model
with that of other common recognition methods.

2. Materials and Methods
2.1. The Capsule Network

The network structure of the Capsule Network can be divided into two main parts: the
primary part and the reconstruction part [23,24]. The primary part comprises convolution
layers, convolution capsule layers, and fully connected capsule layers. On the other hand,
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the reconstruction part decodes the characteristic vector to assist in reconstructing the input
image in cooperation with the Capsule Network. The main part structure of the Capsule
Network is illustrated in Figure 1.
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Figure 1. The main structure diagram of the Capsule Network.

The Capsule Network has a network structure that includes two convolution layers
and a classified capsule layer based on the dynamic routing algorithm, as shown in Figure 1.
The first two layers are similar to those of a Convolutional Neural Network. Notably, the
feature map output at the second layer is used to construct the capsule vector. In the
third layer, each capsule vector serves as the input and output of the dynamic routing
algorithm, and each capsule vector has its corresponding weight matrix. The dynamic
routing algorithm is applied to transform the capsules. After the third layer of conversion,
the capsule vector is represented by two equations: one represents the current data sample,
and the other represents the probability of the corresponding category of the input sample.

In the second convolution layer, the primary capsule layer follows a typical Con-
volution Network structure. However, it differs from traditional Convolutional Neural
Networks in that its role is to process the feature map. As shown in Figure 1, the feature
map output from the first convolutional layer is presented on the left side of the primary
capsule layer. Unlike traditional Convolutional Neural Networks, which stretch multiple
feature map matrices and concatenate them into a vector, the Capsule Network groups all
the feature maps according to a specified number, as demonstrated in Figure 2. Capsule
vectors are extracted by grouping feature maps based on the channel direction, allowing
the convolutional kernel to be separated into multiple groups.
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The Capsule Network’s dynamic routing capsule layer performs the conversion of
capsule vectors using the principle depicted in Figure 3, as mentioned earlier. The dynamic
routing algorithm is a crucial component of the Capsule Network and not only facilitates
the implementation of the capsule mechanism but also embodies its ideas. To analyze the
principle of the Capsule Network more easily, the lower-level capsule is transformed into a
high-level capsule, which serves as the target of the conversion.
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Consider ui as the capsule vector of layer l, vj as the capsule vector of layer l + 1,
which represents the weighted sum of all prediction vectors ûj|i. The change formula can
be expressed as:

ûj|i = Wij·ui (1)

where, Wij is the weight matrix that can be learned. Consider cij is the coupling coefficient
corresponding to each prediction vector ûj|i mapped to vi, which is the weight coefficient.
cij determines the weight required to convert the prediction vector of layer l to the corre-
sponding vi of layer l + 1. Since ∑ j cij = 1 can be calculated by dynamic routing algorithm,
there are:

sj = ∑
i

cijûj|i (2)

Each capsule vector represents the probability of the entity’s occurrence, and the entity
can be either an object in the picture or a part of the object. So, the sj obtained through the
calculation of the above formula cannot be used as the vector expression of the high-level
capsule j. In order to solve this problem, a nonlinear extrusion equation is introduced into
the Capsule Network to scale the length of the capsule. By scaling the length of the capsule
in this way, the length of the short capsule approaches 0 and the length of the long capsule
approaches 1. The length of the capsule represents the probability of the existence of the
entity, and its length is between (0, 1). The extrusion equation can be expressed as:

vj =
‖sj‖2

1 + ‖sj‖2 ·
sj

‖sj‖
(3)

According to Formulas (2) and (3), we can know how to calculate the prediction
vector of ui to obtain the vector vi of high-level capsules. In this process, the coupling
coefficient cij is the amount that determines that ui is “routed” to vi. When the similarity
between ui and vi is high, the contribution of ui to vi is greater, and the value of cij is greater.
Similarly, when the similarity between ui and vi is low, the value of cij is smaller. In the
above dynamic routing process, cij is not calculated by gradient training in a Convolutional
Neural Network, but by an iterative process:

cij =
exp(bij)

∑ k exp(bik)
(4)
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where, bij is the logarithmic prior probability of the coupling relationship between ui and
vj, and k is the number of iterations. The iterative process described in Formula (4) is the
process of dynamic routing, which is the core part of the Capsule Network. Before the first
iteration calculation, the initial value of bij is 0, and the update process can be expressed as:

bij = bij + ûj|i·vj (5)

According to the above principles, the calculation process of dynamic routing can be
summarized as follows:

1. Calculate the predictive value ûj|i of ui from Formula (1), and initialize bij to 0;
2. The coupling coefficient cij is calculated from Formula (4) and substituted into

Formulas (2) and (3) to obtain the intermediate value sj and the vector vj of the
upper capsule;

3. Update bij by Formula (5);
4. Judge whether the iteration is completed. If it is not completed, repeat steps 1–3. If it

is completed, output vj.

Dynamic routing routes the original capsule to the category capsule through the above
process. The length of the category capsule describes the probability of the existence
of the represented category. The final classification category of the image is the category
corresponding to the longest capsule. To make the capsules representing the image category
as long as possible, a margin loss function is introduced in the Capsule Network. For the
category capsule vk, the loss function can be described as:

Lk = Tkmax
(
0, m+ − ‖vk‖

)2
+ λ(1− Tk)max

(
0, ‖vk‖ −m−

)2 (6)

where m+ and m− are the capsule length thresholds. λ is the loss adjustment parameter. Tk
is the category parameter. If the image belongs to category k, then Tk = 1, otherwise Tk = 0.
Calculate the loss function values for all categories of capsules, and the sum of which is the
loss value for the Capsule Network.

The reconstruction part of the Capsule Network is used to decode the category capsule
and reconstruct the image. The reconstructed image and the input image use the sum of
pixel differences squared as the image reconstruction loss value LI . The total loss of the
reconstruction part of the Capsule Network can be expressed as:

L = ∑
k

Lk + µLI (7)

where µ is the reconstruction adjustment parameter. Based on the resulting loss L, the
training of the Capsule Network can be realized.

2.2. Capsule Network Based on Improved CBAM Attention Model (CBAM-CN)

The basic structural model of CBAM is shown in Figure 4.
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For any input feature map X ∈ RC×H×W , the feature map obtained after passing the
channel attention module is considered as X′. The feature map obtained after passing the
spatial attention module is considered as X′′ , then:

X′ = MC(X)⊗ X (8)

X′′ = MS
(
X′
)
⊗ X′ (9)

where, MC represent the calculation equations of the channel attention module, and MS
represent the spatial attention module.

In the problem of the board surface defect recognition, due to the limited number of
image samples available for training, the training results are prone to overfitting. A good
classification effect can be obtained for the test set, but the accuracy in the actual detection
is very low. To solve this problem, we introduce a GMLP based on a Gaussian error linear
unit, and construct a new attention model of an anti-overfitting channel.

To calculate channel features more efficiently, the channel attention model needs to
compress the spatial dimensions of the input features. First, the input feature graph is
passed through the parallel maximum pooling layer and the average pooling layer to obtain
the maximum pooling feature FC

max and the average pooling feature FC
avg. Then, input the

two features to GMLP, and the hidden layer output H0 can be expressed as:

H0 = fGELU(XWh + bh) (10)

where, Wh is the hidden layer weight, bh is the hidden layer threshold, and fGELU is the
Gaussian Error Linear Unit activation equation (GELU). It can be described as follows:

fGELU(x) = xP(X ≤ x) =
x
2

[
1 + er f

(
x√
2

)]
(11)

where er f can be expressed as:

er f (x) =
1√
π

∫ x

−x
e−t2

dt =
2√
π

∫ x

0
e−t2

dt (12)

Formula (11) can be approximately described as:

fGELU(x) =
x
2

{
1 + tanh

[√
2
π

(
x + 0.045x3

)]}
(13)

It can be seen from Equation (13) that the multilayer perceptron model using the GELU
introduces random regularization while maintaining the nonlinear mapping ability, which
can better avoid the generation of the overfitting phenomenon and the disappearance of
the gradient. In order to further accelerate the convergence speed of the hidden layers
and suppress the gradient disappearance problem in the back-propagation process, each
hidden layer is batch normalized, and the process can be expressed as:

Hn = fBN(H0) =
γ(H0 − µ)√

σ2 + ε
+ β (14)

where, fBN is the batch normalization equation, γ is the scale factor, and β is the translation
factor.
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In order to prevent overfitting, the output characteristics of the hidden layer after
batch normalization are randomly deleted by using the Dropout equation, and the final
output characteristics of the hidden layer are as follows:

H = dropout(Hn) =

{
0 , r < p
Hn

(1−p) , r ≥ p (15)

where, r is a random value, of which the value range is [0, 1), and p is the dropout coefficient.
The output feature O is obtained by passing the hidden layer output feature H. O can

be expressed as:
O = fS(HWO + bO) (16)

where, WO is the hidden layer weight, bO is the hidden layer threshold, and fS is the
Sigmoid equation.

To sum up, the output characteristics of the channel attention model can be expressed as:

MC(F) = fS(FCH
max + FCH

avg ) (17)

where, FCH
max is the hidden layer output feature of the maximum pooling feature FC

max, and
FCH

avg is the hidden layer output feature of the average pooling feature FC
avg. MC ∈ RC/r×1×1,

and r is the dimension reduction coefficient. The basic structure of the anti-overfitting
channel attention model is shown in Figure 5.
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After obtaining the channel attention feature MC, the CBAM model continues to
calculate the spatial attention feature MS. Average pooling and maximum pooling are
performed in the channel dimension to obtain the maximum pooling feature FS

max and the
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average pooling feature FS
avg. The two are superposed and the dimension is reduced by

convolution. In the same way as the channel attention model, the final spatial attention
feature map can be obtained after using the Sigmoid equation. MS can be expressed as:

MS(F) = fS( f (FS
max, FS

avg)) (18)

where, FS
max ∈ R1×H×W , FS

avg ∈ R1×H×W , and MS(F) = RH,W . The basic structure of the
spatial attention model is shown in Figure 6.
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In summary, the improved CBAM attention model is applied to the convolution layer
of the Capsule Network, resulting in reduced interference from the particleboard surface
textures and improved recognition accuracy through optimized feature maps. Additionally,
the improved Capsule Network model has strong anti-overfitting characteristics due to the
adoption of the GELU and the addition of the Dropout layer, which can be more suitable for
feature recognition with limited sample sizes. The improved model has good applicability
to the problem of particleboard surface defect recognition that this article focuses on.

2.3. Experiment Equipment

The research system comprises an image acquisition system and a detection and
recognition system. The image acquisition system should capture particleboard surface
images clearly, facilitate further processing by the software environment, and transmit data
quickly to the computer software system to ensure the overall detection efficiency of the
system. The system should also be economically durable and offer good technical support,
taking into account the practicality of the production line.

The image acquisition system in this study meets the aforementioned requirements by
selecting the GigE color industrial camera model DFK 23GP031 from the imaging source with
an acquisition rate of 15 fps. The camera is equipped with an ON Semiconductor CMOS
sensor (MT9P031) that ensures high-quality images while also reducing equipment cost.
Additionally, the camera uses a surface scanning mode which enables a quicker collection of
the particleboard surface image in the field of vision compared to line-scanning cameras. This
ensures real-time detection at the image acquisition level while maintaining high definition.
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The image acquisition system used in this study employs two industrial cameras
positioned side by side, as depicted in Figure 7. By adopting a dual-camera parallel
acquisition mode, the system can cover the entire surface of the particleboard, ensuring
a comprehensive acquisition range. Moreover, using two cameras enhances the accuracy
of the acquisition, which contributes to the precision and reliability of the recognition and
analysis of particleboard surface defect images.
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The detection and identification system comprises computer hardware and internal
software. The computer hardware system employed in this research includes Microsoft
Windows 10 (64-bit), Inter Xeon Silver 4216 CPU, RAM Tesla V100 GPU, 512 GB memory,
and 16GB video memory. IC Capture 2.4 serves as the display software of the camera in the
image acquisition system, while the deep learning framework used in the experiment is Py-
Torch. The programming language used is Python 3.7, and the programming environment
is PyCharm 20.1.3.

2.4. Sample Acquisition

At the initial stage, over 2000 particleboard surface images with varying types and
degrees of surface defects were collected. Parts of the collected particleboard surface images
are shown in Figure 8.

The constructed dataset of the particleboard surface defect images has significant
application value in verifying the overall effectiveness of the algorithm, as well as the uni-
versality and scope of the real reaction algorithm in the process of simulation experiments.
Therefore, it is important that the images in the dataset are typical, inclusive, and authentic.
To achieve this, the collected images are further screened, sorted, and classified. Atypical
images with incomplete defects, blurred images, excessive interference, and other issues
are removed, resulting in a set of 2000 standardized images, each sized 120× 120 pixels.
The number and percentage of images of each defect type included in the dataset are shown
in Table 1.

Table 1. Statistical data of the number and percentage of images of defect types.

Category Number Percentage

Shavings 895 44.73
Sand grain 292 14.62

Hole 196 9.80
Glue spot 167 8.37
Oil stain 450 22.48
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In this study, we collected particleboard surface defect images that encompassed five
different types of surface defects: bare particles, sand grains, oil stains, dust stains, and
holes. The percentage of frames containing each type of defect in the total sample size of the
dataset simulates the frequency difference of these defects in the actual production line. By
utilizing these image samples as research objects, we can conduct simulation experiments
to ensure the reliability of data analysis and the effectiveness of the results obtained in
this article.
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3. Results

The sample set of defect features to be tested is divided into a training set and a test
set in a 7:3 proportion. The training set comprises 1400 defect feature maps, while the test
set contains 600 defect feature maps.

Common classification recognition methods such as an AP Clustering algorithm, SOM
Neural Network, Capsule Network (CapsNet), Fast Capsule Network (Fast CapsNet), and
the proposed CBAM-Capsule Network (CBAM CapsNet) were selected to identify and
compare the types of surface defects. The size of the sliding pane in the AP clustering
algorithm is 40× 40, and the reference threshold is P = 20. The SOM Neural Network
takes the number of competing layer nodes as 200. CapsNet, Fast CapsNet, and CBAM-CN
employ the loss function shown in Formula (6), wherein the loss regulation parameter
λ = 0.5, the capsule length threshold m+ = 0.9, m− = 0.1, and the reconstruction loss as
shown in Formula (7), where the reconstruction regulation parameter µ = 0.05. Table 2
show the other training parameter settings.

Table 2. Training parameter settings.

Parameter Value

Initial learning rate 0.01
Momentum 0.99

Weight decay rate 0.001
Epoch 100

Batch size 10

Each recognition algorithm is utilized to conduct recognition experiments on the five
types of surface defect images. The accuracy rates and F1 score evaluation index results
obtained from the recognition experiments on the training set and test set are presented in
Tables 3 and 4.

Table 3. Classification results of feature images in the training set.

Experimental Methods Accuracy F1-Score

AP 0.9158 0.9153
SOM 0.9315 0.9316

CapsNet 0.9629 0.9625
Fast CapsNet 0.9543 0.9542

CBAM-CN (p = 1) 0.9853 0.9851
CBAM-CN (p = 0.5) 0.9861 0.9862

Table 4. Classification results of feature images in the test set.

Experimental Methods Accuracy F1-Score

AP 0.8315 0.8323
SOM 0.8294 0.8312

CapsNet 0.8536 0.8532
Fast CapsNet 0.9025 0.9029

CBAM-CN (p = 1) 0.9459 0.9453
CBAM-CN (p = 0.5) 0.9560 0.9556

The data show that the CBAM-CN achieves a higher classification accuracy and F1
score than other algorithms in both the training and test sets when recognizing particleboard
surface defect feature images with small sample sizes. This indicates that the CBAM-CN
proposed in this paper is effective in eliminating background texture interference and
improving classification accuracy. Moreover, by comparing the recognition accuracy of the
CBAM-CN at dropout probabilities of 0.5 and 1, it is observed that the introduction of a
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dropout layer into the improved CBAM attention model results in a relatively small gap
between the test set and the training set. These results suggest that the CBAM-CN with a
dropout layer can better alleviate overfitting problems caused by small sample sizes.

To verify the effectiveness of the CBAM-CN on the particleboard surface defect image
sample set, we analyzed the relationship between recognition accuracy, loss rate, and
epochs for CapsNet, Fast CapsNet, and the CBAM-CN. The corresponding curves are
presented in Figures 9 and 10.
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The graph above demonstrates that the CBAM-CN achieves a stable training effect at
40 epochs, while the curves of CapsNet and Fast CapsNet tend to stabilize at 60 epochs.
This indicates that the CBAM-CN can optimize the feature graph and improve the training
efficiency of the capsule network model. Moreover, it is evident from the curves that the
CBAM-CN has higher recognition accuracy and lower loss rate when the training curve
tends to be stable, indicating that it can achieve a stable and accurate recognition effect in
identifying surface defects of particleboard under the same epoch conditions.

In general, image recognition problems require a large number of training samples
for Convolutional Neural Networks to achieve optimal performance. However, in the case
of particleboard surface defect recognition, the number of available samples is limited.
Therefore, we compare and analyze the recognition accuracy and loss rate of the AP
Clustering algorithm, SOM Neural Network, and the CBAM-CN, with varying sample
sizes. The resulting curves are shown in Figures 11 and 12. To compare the effects of these
recognition algorithms on the problem of overfitting, we include the recognition results of
the training set as a comparison in Figure 12. The solid line represents the experimental
data of the test set, while the dotted line represents the experimental data of the training
set.
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The curves in Figures 11 and 12 reveal that when the sample size is small, the training
performance of the AP Clustering algorithm and SOM Neural Network will be greatly
affected, and a satisfactory recognition effect cannot be achieved. In contrast, the CBAM-
CN can achieve an accuracy rate of nearly 85% and a loss rate of less than 15% with just
100 training set samples. When the training set of samples is more than 500, the CBAM-CN
can maintain an accuracy rate of more than 90% and a loss rate of less than 5%. On the
other hand, other neural network models require over 1000 training samples to attain an
accuracy rate of more than 90%. Moreover, under the same number of training samples,
the loss rate is also higher than the CBAM-CN.

It is evident from Figure 12 that when the number of samples is small, there is a
significant difference between the recognition loss rate of the test set and the training set
for the AP Clustering algorithm and SOM Neural Network, indicating the presence of an
overfitting problem. However, the two experimental data curves of the CBAM-CN are
similar, and it can maintain a low loss rate for the test set even when the number of training
samples is small. This result highlights that the CBAM-CN can effectively address the
overfitting problem caused by the insufficient number of training samples.

4. Discussion

According to the experimental results and analysis presented above, the CBAM-
CN proposed in this article outperforms other effective recognition methods in terms of
faster training efficiency and stability for the recognition of particleboard surface defects.
Additionally, with a small number of samples in the training set, the CBAM-CN can
effectively suppress overfitting and maintain high recognition accuracy. These results
also indicate that the CBAM-CN requires fewer training samples to achieve satisfactory
recognition results, thereby meeting the recognition requirements for a greater variety of
challenging scenes.

5. Conclusions

In this article, we propose a Capsule Network algorithm based on the improved
CBAM attention model (CBAM-CN) to tackle the challenges faced by particleboard surface
defect recognition technology, including the interference of background texture and the
limited availability of image samples for training. We introduce the GELU-enhanced CBAM
attention model into the convolution layer of the Capsule Network to optimize the feature
map of the surface defects to be detected, thereby improving the model’s training efficiency
and stability. Additionally, we add a Dropout layer to alleviate the overfitting problem
caused by the small number of samples in the training set, ensuring that the model is more
applicable to small sample classification problems. We compare the CBAM-CN with several
common effective image recognition methods, and the experimental results demonstrate
its effectiveness.

The proposed method in this paper can be analogously applied to other problems of
small sample image classification and background texture interference. Further research
can experimentally investigate such problems.
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