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Abstract: Field drying Eucalyptus biomass can minimize the storage requirements, transportation
costs, and/or the cost associated with biomass drying for biochar and other products. In central
Florida, 12 6-year-old and 12 8-year-old Eucalyptus amplifolia and Eucalyptus grandis trees were field
dried over two seasons, with two months of field drying in each season, and two tree forms (logs,
whole tree). The whole tree average initial moisture content (MCod) on a dry basis ranged between
115 and 121% in E. amplifolia and 116 and 119% in E. grandis. The season and duration of field drying
affected drying, but species, tree size, and tree form did not. In southern Florida, 19 3+-year-old
coppice stems of an E. grandis × Eucalyptus urophylla hybrid clone (EH1) were field dried over two
months of one season, with and without tree tops. The whole tree initial MCod ranged between 119
and 138%. The duration of field drying affected drying, but tree size and tree tops did not. Both
studies suggest that field drying can effectively reduce wood MC and thus enhance E. amplifolia,
E. grandis, and EH1 biomass quality.
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1. Introduction

Woody biomass has received worldwide attention for energy production which can
significantly reduce dependency on fossil fuel. Woody biomass conversion involves bio-
chemical and thermochemical (directly-fired or conventional steam approach, co-firing,
pyrolysis, and gasification) processes. Both processes require moisture content (MC) at
different levels. While biomass with >50% MC is ideal for biological conversion, depending
on the conversion method, woody biomass MC needs to be 5%–20% for thermochemical
processes [1–3]. As woody biomass generally is harvested, processed, and transported for
immediate use, the period between harvest and conversion is too short for the biomass to
dry naturally. A higher MC can decrease the efficiency of coal-fired power plants when
biomass is co-fired [4]. A higher MC also increases the capital cost as larger equipment
(e.g., boilers) are needed to convert biomass with higher MC levels [5]. On the other hand,
a low biomass MC increases the net energy yield [6]. Therefore, the biomass either needs to
be stored until achieving the desired MC or dried before it can be used, which requires time
and/or energy. A lower MC is also one of the many ideal wood properties for ethanol and
methanol production regardless of the technology used [7]. Transpirational, i.e., field, dry-
ing is one of the most economical methods to reduce biomass MC and produce significant
heat energy gains [8,9].

The end-product and process requirements influence the desired MC in the thermo-
chemical conversion of biomass. For example, the pyrolysis process may be optimized for
biochar, pyrolytic liquids, or syngas and energy. Depending on the optimization objective,
higher or lower MCs may be desirable [10]. MC will also influence the economics of the
end-product, and research reveals that a low MC after field drying produces savings in
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energy during feedstock transportation and on-site drying [11]. Irrespective of the end-
product objective, there are significant thermochemical production benefits to using a mono
feedstock with a consistent MC.

While several woody species can be used for bioenergy, Eucalyptus is uniquely posi-
tioned as a feedstock given its fast growth, consistency, and relatively high density. When
these woody biomass features are combined with a low moisture content as a result of
effective field drying, there can be significant product benefits.

Of the many Eucalyptus species, the world’s most widely planted hardwoods [12],
E. grandis Hill ex Maiden, E. amplifolia Naudin, and E. grandis × E. urophylla S.T. Blake
hybrids are well suited to subtropical central and southern Florida, USA, because of their
fast growth, short rotation, high productivity, and tolerance of various site conditions,
and they have numerous potential applications whether grown in long rotations or
as short rotation woody crops (SRWC). Through genetic improvement, high planting
density, and intensive site amendments such as biochar [13], E. grandis cultivars may
have maximum mean annual increments up to 78.2 green Mg ha−1 year−1 and sequester
over 10 Mg of C ha−1 year−1 when grown as SRWCs [14]. Biochar increases soil carbon
and productivity [15–20], which is especially important for the sandy soils common to
central and southern Florida [21]. Soil amendment using biochar derived from eucalypts
may therefore both enhance long-term carbon sequestration and increase plantation
productivity [22].

Despite its high productivity, there is some environmental concern about Eucalyptus
because of its high water use and transpiration rate. Comparative studies have shown
that water use by Eucalyptus and Pinus is not significantly different under certain con-
ditions [23,24]. A recent study has shown water use by Eucalyptus to be more efficient
than Pinus [25]. A part of the water taken from the soil through the roots is lost through
transpiration and a part is retained in different parts of the tree. Water is stored in wood
in two forms: free water and bound water [26]. Free water is present in liquid and vapor
form in the lumen and voids in wood above the fiber saturation point (FSP). Bound
water, which is below FSP, is held in cell walls in vapor form by intermolecular forces.

Because of the variation in forces involved in the storage of free and bound water,
their movement in the wood is different. The movement of free water is caused by capillary
forces whereas the movement of bound water through a cell wall is caused by diffusion as
a result of the moisture gradient [27]. During the drying process, free water is removed
early on at a higher rate usually with less energy until the FSP is reached. After the FSP is
reached, more energy is needed to remove the bound water. Wood will continue to lose
moisture until an equilibrium is reached with ambient moisture. Moisture at this point is
called equilibrium moisture content (EMC), after which further moisture loss from wood
will be difficult without energy input.

The MCs of E. grandis and E. amplifolia in Florida have been recorded as high as
131% [9] and 108% [28], respectively. Because wood MC reduction could significantly
enhance woody biomass quality for energy production and at the same time reduce drying
energy costs, we assessed field drying as a potentially cost-effective technique to minimize
storage and/or processing requirements. The specific main objectives were to estimate the
effects of season, the duration of drying, the species, the tree form, and the tree size for
reducing wood MC.

2. Materials and Methods

The two studies contributing to assessing these effects represented three species
and two management scenarios. Trees in the Florida Organics Recycling Center for
Excellence (FORCE) study were older, larger seed-origin E. amplifolia and E. grandis in a
longer first-rotation, and the trees in the Indian River Research and Education Center
(IRREC) study were younger, smaller cultivars of E. grandis × E. urophylla (EH1) in a
shorter coppice rotation.
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2.1. FORCE Study

The FORCE drying study beginning in February 2010 utilized existing FORCE field
studies 102 and 102A near Sumterville, Florida (28◦44′51′′ N, 82◦5′17′′ W). Average maxi-
mum and minimum temperatures at FORCE are 27.2 and 15.6 ◦C, respectively, and average
annual rainfall is 1261 mm. Study 102 included three species and four silvicultural treat-
ments in a split-plot, randomized complete block design to evaluate the effect of compost
on tree growth (Table 1). Trees were planted 1 m apart in 14 rows that were 3 m apart and
in two rows that had paired trees planted 0.8 m apart. Study 102A, established west of
Study 102, further evaluated the effect of compost on four species under four treatments
with trees planted 1 m apart in 14 paired rows (0.8 m apart) on 4.3 m centers.

Table 1. Planting date, species, planting density (trees ha−1), and silvicultural treatments for the
FORCE and IRREC studies.

Study Date Species Density Treatments

FORCE-102 09/2002
E. amplifolia,
E. grandis,

Populus deltoides Bartr.
3333, 6666

Control,
compost, irrigation,

compost + irrigation;

FORCE-102A 04/2004
E. amplifolia, E.grandis,

P. deltoides,
Taxodium distichum (L.) Rich

4651 Control, compost, irrigation,
irrigation + fertilizer, irrigation + compost

IRREC 06/2015 E. grandis× E. urophylla 1111, 1667, 3333 Control,
four fertilizers

Tree size data from 2009 were used to select 12 E. amplifolia and 12 E. grandis represent-
ing small, medium, and large size classes (one whole tree and one tree for logs in each size
class for each species for each season) in FORCE studies 102 and 102A (Tables 2, A1 and A2).
The six E. amplifolia trees and six E. grandis trees for the spring field drying test were felled
in February 2010, and the six E. amplifolia and six E. grandis in the summer test were felled
in May 2010 (Table 3).

Table 2. Number and size ranges of E. amplifolia and E. grandis trees in the FORCE spring and summer
studies and EH1 in the IRREC summer study.

Study Season/Species Number of Trees Height (m) DBH (cm) Crown Length (m) Crown Diameter (m)

FORCE Spring 1

E. amplifolia 6 9.4–22.8 10.8–31.1 7.7–18.2 1.8–3.9
E. grandis 6 12.1–25.9 10.4–29.6 7.0–17.1 2.6–10.2

FORCE Summer 2

E. amplifolia 6 11.4–21.5 10.9–26.1 9.4–16.6 2.3–4.9
E. grandis 6 14.6–26.3 13.1–25.7 10.5–14.3 0.8–4.0

IRREC Summer 3

EH1 19 9.5–18.9 4.1–12.9 2.8–8.5 -
1 Individual trees listed in Table A1; 2 Individual trees listed in Table A2; 3 Individual trees listed in Table A3.

Table 3. Dates of monthly moisture content (MCod) determinations of logs and trees in the FORCE
and IRREC studies.

Study Season
Months after Harvest

0 1 2

FORCE Spring 10 February 2010 10 March 2010 13 April 2010
FORCE Summer 12 May 2010 15 June 2010 13 July 2010
IRREC Summer 1 August 2022 2 September 2022 3 October 2022
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In each season, two delimbed trees of each species were paired within three tree size
classes (small, medium, and large). One tree in each pair was cut into 2.4 m logs; the other
was kept whole. Logs and whole trees were stacked (slightly elevated on cottonwood
(P. deltoides logs) to provide maximum drying and left out in the open field (Figure 1). Bark
was intact on both logs and whole trees.
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Figure 1. Stacked trees (left) and logs (right) in the FORCE Summer study.

In each season, stem cores were collected approximately monthly for two months
after the season began. On each sampling date (Table 3), 12 mm diameter cores (bark-
to-bark) were extracted from the middle of 2.4 m logs and corresponding stem positions
(approximately 1.2, 3.6, 6, 8.5, 11, 13.5, 15.8, and 18.2 m heights = stem core positions 0, 1,
2, 3, 4, 5, 6, and 7, respectively) on whole trees using a powered increment borer. After
extraction, the core holes were sealed immediately with expanding foam to avoid moisture
loss from the holes. Each core was next weighed in the field and then dried in the lab at
101 ◦C until a constant weight was observed (Figure 2). After drying, core dry weights were
taken, and MCod at the time of sampling was calculated on an oven dry weight (ODW)
basis [29,30] as follows:

MCod (%) = [(Weight during sampling − ODW)/ODW] × 100 (1)

Whole tree MCods were averages of component stem sections weighted by stem diameter.
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Three E. amplifolia stem wood and bark samples weighing ~1 kg each were collected
for chlorine analysis. These sample disks were bagged, refrigerated, and then shipped to
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Standard Laboratories Inc. in Freeburg, Illinois, for chlorine content analysis using ASTM
method D6721.

Statistical analyses of FORCE MCod data involved calculating standard errors for
various means. These included stem cores at positions 0 to 7 by species, species–season,
species–season–tree form–drying duration, and species–drying duration. Standard errors
were also determined for whole tree means by species–season–drying duration–tree form.

2.2. IRREC Study

Cultivar EH1 was planted June 2015 on a sandy former pasture at the IRREC near Ft.
Pierce, Florida (27◦25′33′′ N, 80◦26′14′′ W). Average maximum and minimum temperatures
at IRREC are 27.7 and 18.3 ◦C, respectively, and average annual rainfall is 1368 mm. Trees
in five three-row (twenty-six trees/row) plots received one of five fertilizers (control,
GE 6-4-0 + micronutrients at 112, 224, and 336 kg of N ha−1 rates, and diammonium
phosphate equivalent to 336 kg of N ha−1) and two replications of five-tree row plots of
three planting densities (Table 1). This study was coppiced in June 2019. The interior row
of each plot was periodically measured for tree size and number of coppice stems/stool at
least half the DBH of the largest stem.

Tree size and planting density were used to select 18 EH1 sample trees representing
the range of tree sizes (Tables 2 and A4). All 18 and an additional tree were felled in
August 2022 (Table 3). Two trees in each of the three planting densities were paired
for immediate sampling, one month of drying, and two months of drying. One tree in
each 1-month and 2-month pairing was topped at the base of its crown; the other was
kept whole. Nine topped and nine whole trees with bark were stacked on EH1 logs to
promote drying. Seven ~13 cm long disks were taken near the 3.6 m stem position of the
additional tree (from the 1667 planting density): two with bark were weighed fresh, five
were subsequently cut into blocks without bark, and all seven were sun-dried for two
months near Indiantown, Florida.

Due to the generally smaller sizes of the IRREC trees (Table 2), IRREC wood sam-
pling was based on stem disks instead of cores. On each sampling date, ~10 cm long
stem disks were cut at the 1.2, 3.6, 6, 8.5, and 11 m stem heights (disk positions 0, 1, 2, 3,
and 4, respectively) of the 18 trees and weighed with bark. The bark was next removed
from each disk of a tree, combined, and weighed fresh, as were individual disks, before
drying at 101 ◦C until constant weight was observed. After drying, wood disk and whole
tree bark dry weights were taken, and MCod was calculated on an ODW basis as in the
FORCE study.

Statistical analyses of IRREC MCod data were limited to calculations of standard errors
and means tests. Standard errors were determined for disk means by month-top-position
combinations and for whole tree means by top-month combinations, top, and month.
Means tests were performed for whole tree monthly MCod means.

Weather data for the two studies were obtained from the nearest UF/IFAS Florida Au-
tomated Weather Network (FAWN, https://fawn.ifas.ufl.edu accessed on 8 December 2022)
weather stations: Okahumpka, FL, USA, for FORCE, and Ft. Pierce and Okeechobee,
Florida, for IRREC. FAWN average daily temperature, relative humidity, and evapotranspi-
ration (ET) data were averaged and summed, respectively, for the monthly and bimonthly
periods in the two studies (Table 4).

Drying conditions were lower for the FORCE spring season and similar for the FORCE
and IRREC summer seasons (Table 4). The first month of the FORCE spring season had
less than half of the ET of the summer months and combined with the second FORCE
spring month, the FORCE spring season had 8–14 cm less ET than the summer seasons.
The IRREC summer at Ft. Pierce was similar to the IRREC season experienced by the EH1
blocks dried at Indiantown.

https://fawn.ifas.ufl.edu
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Table 4. Average temperatures (T, ◦C), relative humidities (RH, %), and total evapotranspiration (ET,
cm) during drying periods in the FORCE and IRREC studies.

Variable
Months after Harvest

0–1 1–2 0–2

FORCE Spring
T; RH; ET 10.1; 67; 5.59 18.1; 73; 10.08 14.4; 71; 15.67

FORCE Summer
T; RH; ET 26.0; 75; 16.23 27.3; 82; 13.11 26.8; 78; 29.34

IRREC Summer (Ft. Pierce)
T; RH; ET 27.8; 75; 14.61 25.9; 77; 10.52 26.8; 76; 25.12

IRREC Summer (Okeechobee)
T; RH; ET 26.9; 84; 13.03 25.4; 87; 10.13 26.1; 86; 23.16

3. Results and Discussion
3.1. FORCE Study

The average initial MCod ranged between 136 and 96.2% at stem core positions
0 and 7, respectively, in E. grandis and from 120 and 112.3% at E. amplifolia stem core
positions 5 and 4. Initial MCod declined with height in E. grandis but was nearly constant
in E. amplifolia (Figure 3, Table A4).
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Figure 3. Average initial moisture content (MCod) in E. grandis (EG) and E. amplifolia (EA) trees at
stem core positions 0 to 7 in the FORCE study.

The average initial MCod was similar in the spring and summer seasons for E. grandis
and E. amplifolia trees (Figure 4, Table A4). Trees generally showed a slight decline in MCod
with height except in the spring E. amplifolia trees. Combining both tree forms, E. grandis
whole tree MCod was 122% in spring and 114% in the summer, compared with E. amplifolia’s
119% in spring and 117% in summer.
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Figure 4. Average initial moisture content (MCod) at E. grandis (EG) and E. amplifolia (EA) stem core
positions 0 to 7 in the spring and summer seasons in the FORCE study.

An earlier Florida study [9] also noted decreasing E. grandis MC with height. Decreas-
ing MC with height in Eucalyptus, however, contrasts with the findings in Pinus. Clark and
Daniels [31] observed that MC varied in three age groups and increased with height in
loblolly pine (P. taeda L.). Stohr [32] also reported increasing MC with height in loblolly pine,
slash pine (P. elliottii Engelm.), and Mexican weeping pine (P. patula Schiede ex Schlecht-
endal et Chamisso), with a fairly constant MC after 50% height in Mexican weeping pine.
McMinn and Taras [9] also reported increasing MC with height in slash pine. In Western
hemlock (Tsuga heterophylla (Raf.) Sarg.), a relatively constant MC was observed throughout
the stem [33]. The highest MCod (120%) at position 5 in EA was probably due to the single
sample point at that height.

The average initial whole tree MCod (i.e., at 0 months) was similar in the spring and
summer seasons for E. grandis and E. amplifolia trees (Figure 5, Table A4). E. grandis whole
tree MCod was 122% in spring and 116% in the summer, compared with E. amplifolia’s
119% in spring and 117% in summer. Similar observations have been made in softwoods
such as loblolly pine and slash pine [34], but significant differences have been observed
between species, geographic location, and the interaction of the two. However, Patterson
and Doruska [35] reported seasonal MC variation in loblolly pine.

Both E. grandis and E. amplifolia lost moisture at a higher rate in the first month
(Table 5, Figure 6) which is consistent with the observations in other studies [29,30].
The average MCod in E. grandis ranged between 63.5 and 86.1% in the first month and
between 70.7 and 102.1% in E. amplifolia. Moisture loss has been observed as early as a
week after felling hardwoods such as red oaks (Quercus spp.), sweetgum (Liquidambar
styraciflua L.), and yellow poplar (Liriodendron tulipifera L.) [8]. Most of the free water
is removed during this initial drying period due to the weak capillary force holding
it [30,36]. Eucalyptus wood tends to have relatively more free water. Free water starts
moving out of the wood in the form of drips from cut ends as soon as the trees are cut or
via evapotranspiration by trees with intact foliage. The moisture gradient of the wood
and its environment continues to decrease until the wood moisture is approximately
25–30%, at which point FSP is reached. Any additional moisture removal below this
level will require additional energy due to the stronger bonds that hold bound water. In
the second month, the average MCod in E. grandis ranged between 57.8 and 71.1% and
between 54.4 and 82.9% in E. amplifolia.
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Table 5. Number of trees (n) and whole tree average moisture content (MCod, %) by species, tree
form, season, and drying duration (months) in the FORCE and IRREC studies.

Study-Species Form Season n
MC by Duration

0 ~1 ~2

FORCE-E. grandis
Whole

Spring 3 115.9 86.1 71.1
Summer 3 106.0 63.5 57.8

Log Spring 3 128.2 83.7 62.4
Summer 3 122.0 80.4 60.9

FORCE-E. amplifolia
Whole

Spring 3 118.5 102.1 82.9
Summer 3 111.8 70.7 54.4

Log Spring 3 119.2 94.0 78.1
Summer 3 122.1 86.1 66.2

IRREC-EH1
No Top Summer 3 38.3 60.1

Top Summer 6; 3; 3 130.5 47.9 46.2
Blocks Summer 7 - 19.4
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Summer season drying tended to exceed spring drying, both for trees and logs (Table 5).
For example, E. grandis trees after one month averaged 63.5% in the summer compared
with 86.1% in the spring, while E. grandis logs averaged 80.4% in the summer and 83.7%
in the spring. E. amplifolia and E. grandis whole trees dried more than logs in the summer
(Table 5). After one month, trees were over 15% drier than logs.

In the first month, the rate of moisture loss was higher towards the top in E. grandis
but remained fairly constant throughout the tree in E. amplifolia. The highest moisture loss
of 49.3% was observed at stem core position 6 in E. grandis, but the lowest loss of 31.8% was
at position 3. The extent of moisture loss in E. grandis from the higher heights was similar
to the observations made by McMinn and Taras [9] in the same species—50% moisture loss
in one month. In E. amplifolia, the highest loss of 33.4% was observed at position 3. Higher
moisture loss from small diameter stems or smaller wood samples is expected because
water has to travel less distance from inside the wood to the surface [26,29,30]. In addition,
tree tops are dominated by sapwood resulting in higher water storage but faster water
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flow [30,37,38]. Moisture loss in the second month was fairly constant and similar in both
E. grandis and E. amplifolia.

Consequently, drying duration had slightly different effects in E. amplifolia and E.
grandis. The absolute MCod in E. grandis was less than 100% at all stem positions after
1 month and less than 80% after 2 months of drying (Figure A1). While the absolute MCods
in E. amplifolia were similar after 1 and 2 months of drying, and the MCods were very
uniform up the stem (Figure A2).

Other studies suggest that season significantly impacts the rate of drying, with more
drying possible if trees are left in the field longer. Within two weeks of harvest, slash pine
MC was reduced by 1–18% in winter but 14–41% in summer [9]. Transpirational drying
reduced whole tree MC of the sitka spruce (Picea sitchensis (Bong.) Carr.) by 13% over a
5-month period while the reduction was only 17% in lodgepole pine (P. contorta Dougl.)
over one winter and two summers [39].

The chlorine content in E. amplifolia wood ranged from 0.15 to 0.49% (Table 6). These
values are higher than the 0.07% previously reported for E. grandis grown in central
Florida [40] and suggest that using E. amplifolia in certain biomass energy plants may
be problematic.

Table 6. Chlorine content in E. amplifolia wood in the FORCE study.

Tree ID Stem Height (m) Chlorine Content (%)

16-78E 2.4 0.15
16-70E 4.8 0.32
20-68 4.8 0.49

3.2. IRREC Study

The average initial MCod for EH1 coppice ranged between 138.0 and 114.2% at stem
disk positions 0 and 4, respectively (Table 7). Initial MC declined over 20% with height, a
pattern similar to that of E. grandis in the FORCE study (Figure 3).

Table 7. EH1 stem disk moisture content (MCod, %) means and standard errors for disk position by
month and top in the IRREC study.

Month-Top n
MC by Disk Position

0 1 2 3 4 Average

0-All 6 138.0 ± 3.2 135.0 ± 4.2 127.3 ± 3.6 121.1 ± 4.4 114.2 ± 3.5 130.5
1-All 6 54.4 ± 9.9 42.7 ± 9.5 34.7 ± 7.6 33.5 ± 7.8 32.9 ± 3.7 43.1
2-All 6 69.6 ± 4.3 56.3 ± 5.2 41.9 ± 3.5 36.4 ± 2.9 34.8 ± 5.0 53.2

1-No Top 3 47.7 ± 18.4 37.9 ± 19.7 28.1 ± 14.6 37.1 ± 18.7 22.8 38.3
1-Top 3 61.0 ± 10.4 47.6 ± 6.1 41.2 ± 6.0 31.0 ± 7.7 37.9 ± 2.3 47.9

2-No Top 3 75.5 ± 6.5 65.5 ± 7.0 48.1 ± 4.6 40.0 ± 4.9 45.3 ± 3.1 60.1
2-Top 3 63.8 ± 3.9 47.1 ± 1.0 35.7 ± 0.6 32.8 ± 2.4 24.2 ± 1.8 46.2

A similar pattern was observed in the initial MCod of stem disks from one of two
larger E. urophylla clones in Brazil [41]. One clone, 20.3 cm in DBH, had basal, midstem,
and upperstem MCs of 121.5, 112.6, and 126.2%, respectively, while the 19.4 cm DBH clone
had corresponding MCs of 94.5, 84.5, and 81.0%.

After two months of field drying, EH1 MCod at all disk positions had decreased by
more than 70%, averaging 53.2% across all five positions with and without tops (Table 8).
EH1 coppice with retained tops had 8 to 21% less MCod, depending on disk position,
with an average decrease of nearly 14%. Whole tree MCod decreased with the duration
of field drying and was lowest at 46.2% after two months of drying trees with tops
(Tables 8 and A4).
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Table 8. EH1 whole tree moisture content (MCod, %) means and standard errors by top and month of
drying factors in the IRREC study.

Factor MC Average

Top Month Top Month 1

Yes 0 130.5 ± 3.1 130.5 ± 3.1 A
No

1
38.3 ± 12.7

43.1 ± 7.3 BYes 47.9 ± 5.8
No

2
60.1 ± 3.9 53.2 ± 3.5 B

Yes 46.2 ± 1.1
1 Letters indicate differences among means at the 5% level.

Field drying stem disks and blocks appears to lower MCod even more. Averaging
19.4% MC after two months of drying at Indiantown (Table 5), the two wood disks with
bark intact and five squared blocks without bark suggest that cutting and piling short stem
sections in open air piles has merit.

Using large field dried trees directly for feedstock in energy facilities can be challenging
because of inconsistent fuel moisture across stem sections as the diameter influences the
drying rate. Moreover, a high MC reduces the efficiency of the energy facilities. The results
of this study and others [30,38] show small diameter stems can dry faster and have relatively
consistent moisture. Because of the higher productivity, adaptation to various climates, and
its ability to coppice, Eucalyptus therefore has the potential to supply year-round quality
feedstock. The field drying of E. saligna Sm. SRWC coppice was an essential component
of year-round harvesting to fuel a proposed 10MW bioenergy plant in New Zealand [42].
Based on field trials of 3- and 5-year-old trees cut throughout the year that showed that the
MC initially dropped rapidly in the first few weeks after cutting regardless of season and
then declined at various rates [43], harvesting would be continual throughout the year, and
the biomass would be stored on the farms or at the plant.

Biochar pyrolysis plants, such as Green Carbon Solutions’ (GCS) [22], are designed
to be continuous, to minimize electricity use, and to capture and convert volatiles into
usable forms of energy. A wood supply with a low MC will contribute to cost-effectively
producing biochar for use in applications such as soil nutrient and water retention, the
remediation of contaminated soils and water, filler in various products, acoustic and
thermal insulation, carbon fibers and polymers, filtration media, carbon sequestration,
and heavy metal adsorption [22]. As producers look to increase the quality of biochar, so
the woody biomass quality and associated specifications become increasingly important.
Beyond biomass specific specifications, a low and consistent MC is a key contributor to
enhancing biochar consistency and quality.

Though field drying can significantly reduce wood MC, there are still some logis-
tical issues that need to be addressed. In traditional uses, wood is transported to the
facility soon after harvest and dried. Eucalyptus wood contains relatively more moisture,
sometimes more than the wood itself. If drying is performed at the facility, a lot of money
will have to be spent to transport the water. Field drying seems ideal in that regard, but
equipment may not be available on site on later dates for loading wood as equipment is
usually moved to other sites after harvest. As is often the case, producers will need to
evaluate economic tradeoffs, and in this case, the pros and cons of field drying versus
paying for transport of water.

4. Conclusions

These studies assessed the potential effectiveness of field drying Eucalyptus logs and
trees for twelve combinations of species, seasons, drying durations, and tree sizes and
forms. Species, tree size, and tree form were not important in reducing wood MCod, but
harvest season and drying duration affected MCod, which decreased with longer storage
and increased seasonal temperature, relative humidity, and evapotranspiration. The results
of the FORCE and IRREC studies suggest that field drying can improve wood quality
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for biochar and other products by reducing wood MCod, perhaps most when short stem
sections are dried. However, the higher chlorine content in E. amplifolia wood may be a
concern for its use in some technologies.
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Appendix A

Table A1. Description of six E. amplifolia (EA) and six E. grandis (EG) trees in the FORCE spring
season study.

Tree ID Species Tree Form Class Size Height (m) DBH (cm) Crown Length (m) Crown Width (m)

16-78E a EA Tree Large 19.5 31.1 16.2 4.0
16-70E a EA Log Large 22 26.1 15.8 3.4
20-68 a EA Log Medium 22.8 21.2 17.4 3.9
20-63 EA Tree Medium 20.5 20.0 18.2 4.7
20-40 EA Tree Small 9.4 11.5 7.4 1.8
20-28 EA Log Small 12.8 10.8 11.4 2.3
20-42 EG Tree Large 25.9 29.6 15.0 7.3

20-104 EG Tree Large 23.8 27.5 17.1 10.2
20-58 EG Log Medium 24.5 21.2 17.1 6.0
20-47 EG Tree Medium 21.3 21.1 17.1 6.0

20-100 EG Log Small 13.1 19.2 9.0 2.6
20-41 EG Log Small 12.1 10.4 7.0 3.3

a Tree used for chlorine analysis.

Table A2. Description of six E. amplifolia (EA) and six E. grandis (EG) trees in the FORCE summer
season study.

Tree ID Species Tree Form Class Size Height (m) DBH (cm) Crown Length (m) Crown Width (m)

20-23 EA Log Large 21.5 26.1 15.9 4.9
20-137 EA Tree Large 20.0 25.2 16.5 4.4
20-140 EA Tree Medium 18.3 21.5 16.6 3.8
20-25 EA Log Medium 19.2 21.4 16.5 4.2

20-139 EA Tree Small 12.5 11.5 10.0 2.3
16-40E EA Log Small 11.4 10.9 9.4 2.9
13-44 EG Tree Large 26.3 25.7 12.9 2.8
13-45 EG Log Large 24.3 25.5 13.4 2.9
20-53 EG Log Medium 25.5 22.3 14.3 3.7

16-171E EG Tree Medium 21.2 21.6 12.2 4.0
20-113 EG Log Small 19.5 13.9 11.6 1.8
20-162 EG Tree Small 14.6 13.1 10.5 0.8
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Table A3. Planting density (trees ha−1), top retained, months of drying, DBH (cm), height (m), crown
height (m), and whole tree moisture content (MCod, %) of 19 EH1 trees in the IRREC study.

Tree ID Density Top Month DBH Height Crown Height MC

1 3333 Yes 0 8.7 15.5 11.9 136.6
2 3333 No 2 6.1 13.4 9.5 50.8
3 3333 No 1 4.1 10.1 6.4 22.4
4 3333 Yes 0 7.3 14.3 9.8 138.5
5 3333 Yes 2 8.8 18.9 11.9 46.9
6 3333 Yes 1 5.1 11.9 9.1 34.1
7 1111 Yes 0 12.9 18.3 9.8 123.9
8 1111 No 2 9.9 17.4 9.8 63.1
9 1111 No 1 4.9 9.5 4.3 23.0
10 1111 Yes 2 10.7 17.7 11.0 48.0
11 1111 Yes 1 9.0 16.5 10.7 52.0
12 1111 Yes 0 9.4 16.8 10.4 138.3
13 1667 No 1 8.7 15.3 9.5 69.5
14 1667 No 2 11.8 17.7 9.5 66.4
15 1667 Yes 0 8.8 17.1 9.5 119.4
16 1667 Yes 1 10.3 17.4 9.5 57.6
17 1667 Yes 2 10.8 15.5 9.8 43.7
18 1667 Yes 0 10.9 18.0 9.8 126.4
G 1667 No 2 13.4 - -

Table A4. Moisture content (MCod, %)) by stem core position for species (E. grandis (EG), E. am-
plifolia (EA)), tree form, season, and approximate drying duration (months) combinations in the
FORCE study.

Species Form Season Duration
MC by Core Position

0 1 2 3 4 5 6 7

EG

Whole

Spring
0 136.0 132.8 117.0 108.1 106.0 105.8 105.4 96.2
1 107.7 102.4 92.6 83.6 79.3 71.6 60.2 61.4
2 88.4 91.4 83.2 72.9 61.6 54.2 38.9 43.1

Summer
0 127.6 119.9 102.8 94.8 91.1 91.7 98.3 97.2
1 96.8 78.3 57.1 59.4 51.2 44.1 45.2 29.1
2 95.0 73.6 55.3 51.5 45.8 35.4 33.3 12.2

Log

Spring
0 147.2 146.5 115.2 107.0 108.4 107.8 103.1 -
1 91.7 102.1 79.8 73.8 63.1 63.8 62.5 -
2 78.0 64.2 62.3 58.0 47.2 50 41.8 -

Summer
0 131.7 128.6 128.2 123.3 116.0 115.8 112.4 95.1
1 106.6 90.2 82.5 84.4 75.3 61.9 56.6 52.5
2 88.6 69.9 62.6 63.6 47.0 44.4 42.1 38.3

EA

Whole

Spring
0 121.0 117.0 119.8 118.2 115.3 - - -
1 104.0 108.3 97.5 99.6 100.3 - - -
2 86.2 85.5 84.1 79.5 77.4 - - -

Summer
0 116.7 115.2 107.2 111.9 108.9 - - -
1 76.6 75.5 69.4 66.7 58.9 - - -
2 62.2 55.4 58.9 49.9 44.2 - - -

Log

Spring
0 110.9 119.1 124.0 119.7 117.2 138.1 - -
1 74.6 104.7 105.6 92.3 98.6 102.2 - -
2 53.0 95.6 95.4 73.2 84.3 81.3 - -

Summer
0 130.7 122.5 123.3 117.0 103.3 102.0 - -
1 102.2 98.3 80.1 74.7 48.0 73.1 - -
2 77.9 78.4 62.3 56.6 33.3 48.1 - -
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