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Abstract: This study aims to verify the wood classification performance of convolutional neural
networks (CNNs), such as VGG16, ResNet50, GoogLeNet, and basic CNN architectures, and to
investigate the factors affecting classification performance. A dataset from 10 softwood species
consisted of 200 cross-sectional micrographs each from the total part, earlywood, and latewood of
each species. We used 80% and 20% of each dataset for training and testing, respectively. To improve
the performance of the architectures, the dataset was augmented, and the differences in classification
performance before and after augmentation were compared. The four architectures showed a high
classification accuracy of over 90% between species, and the accuracy increased with increasing
epochs. However, the starting points of the accuracy, loss, and training speed increments differed
according to the architecture. The latewood dataset showed the highest accuracy. The epochs and
augmented datasets also positively affected accuracy, whereas the total part and non-augmented
datasets had a negative effect on accuracy. Additionally, the augmented dataset tended to derive
stable results and reached a convergence point earlier. In the present study, an augmented latewood
dataset was the most important factor affecting classification performance and should be used for
training CNNs.

Keywords: softwood; identification; convolutional neural networks (CNNs); VGG16;
ResNet50; GoogLeNet

1. Introduction

Globally, there is excess demand for wood [1], resulting in a gradual appreciation
of the value of wood as a resource in various sectors. Species identification is increas-
ingly recognized as a significant process for enhancing the diversity and value of wood
resources. This is required in numerous fields such as optimizing the utilization of conven-
tional wood resources, protecting endangered species, and facilitating practical customs
clearance operations.

The commonly employed traditional microscope-based identification method for
wood species requires substantial time, cost, specialized training for equipment operation,
and background knowledge cultivation to become an expert [2]. Furthermore, the tradi-
tional method has limitations such as potential variations in species classification among
researchers and the need for information on wood species [3].

Research on the application of artificial neural networks to identify wood species is
actively underway to simplify the species identification process and increase accessibility.
Since 2010, the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC), hosted by
ImageNet (https://www.image-net.org (accessed on 10 April 2023)), has been conducted
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worldwide to classify images using artificial neural networks. In particular, the ResNet
model, the winner of ILSVRC 2015, achieved a performance of 3.6%, surpassing the 5.1%
cognitive error rate known to occur in humans [4]. Since then, many artificial neural
network models have achieved a 2%–5% cognitive error rate, thereby achieving remarkable
technological advancements.

Deep learning has been used to reconstruct high-resolution images from low-quality
images [5] and has improved high-resolution microscopy [6]. In the field of wood science,
various attempts have been made to automate species identification, owing to the discovery
of the potential of computer-based wood identification by the IAWA [7]. Machine vision has
been applied by many researchers to identify wood samples, including species identification
using convolutional neural networks and microscopic images [8], species analysis through
thermal conductivity analysis by learning the thermal conductivity trend of each species
using artificial neural networks [9], defect detection on wood surfaces using the Mask
R-CNN model [10], object detection on wood surfaces for defect detection using the YOLO
v3 algorithm [11], and detection of ray tissue features through pixel segmentation [12]. With
advances in information technology, automated wood species identification has gradually
become more sophisticated and precise.

Numerous studies have verified the performance of convolutional neural networks
(CNNs) in wood species identification. For example, five Korean softwood species were suc-
cessfully classified with high accuracy using an ensemble learning approach based on the
CNN-based LeNet3 architecture [13]. Lopes et al. [14] also succeeded in classifying North
American hardwood species from macroscale cross-sectional photographs of 10 species
using a smartphone and portable magnifier. Fabijanska et al. [15] classified 14 softwood
and hardwood species based on an R-CNN architecture using macroscale cross-sectional
photographs of wood as a dataset. However, these studies aimed to classify wood species
without discussing the factors that affect wood classification.

Therefore, in the present study, we selected VGG16 [16], ResNet50 [17], and
GoogLeNet [18], which have demonstrated outstanding performance in the ImageNet
Large-Scale Visual Recognition Challenge (ILSVRC), and basic CNN architecture. We
verified their ability to classify 10 softwood species. Additionally, we analyzed the effects of
various factors, such as the body part of the dataset, scale, data augmentation, and training
iteration, on the accuracy and loss of the neural network models.

2. Materials and Methods
2.1. Materials

Ten softwood species were used as samples to construct a training dataset for the
neural networks. Six commercially imported species were purchased from the market,
and four domestic species were obtained from the research forest of Kangwon National
University. Detailed information on the wood samples is provided in Table 1.

Table 1. Sample information.

Common Name Scientific Name Origin Supplier

Cedar Cryptomeria japonica Japan

W Wood Co., Ltd.
(Daejeon, Republic of Korea)

Japanese cypress Chamaecyparis obtusa Japan
Mugo pine Pinus mugo Finland

Radiata pine Pinus radiata USA
Spruce Picea abies Estonia

Yin shan shu Cathaya argyrophylla Russia

Korean red pine Pinus densiflora
Chuncheon,

Republic of Korea

Research forest of
Kangwon National University

(Chuncheon, Republic of Korea:
37.7748857, 127.8134654)

Korean white pine Pinus koraiensis
Metasequoia Metasequoia glyptostroboides

Juniper Juniperus chinensis
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2.2. Methods
2.2.1. Sample Preparation for the Dataset

We employed common microscopy for wood anatomy [19,20]. The four species har-
vested from the heartwood and sapwood at Kangwon National University were processed
into small blocks with dimensions of 30 (R) mm × 10 (T) mm × 10 (L) mm from heartwood
and sapwood, whereas the six other species purchased as wood panels were randomly pro-
cessed into small blocks. We collected 15–20 small blocks from each species. These blocks
were converted to 20–30 µm-thick slices using a sliding microtome (MSL Model; Nippon
Optical Works, Nagano, Japan). The sections were stained with a 1% safranin solution,
dehydrated using an ethanol series, cleared with xylene, and mounted on a permanent
slide using Canada balsam.

To collect the dataset, cross-sections were observed with an Infinity-1 camera (1.3 MP;
Lumenera, Ottawa, ON, Canada) connected to an ECLIPSE E600 optical microscope
(NIKON, Tokyo, Japan), with 4× and 20× objective lenses. Micrographs were taken
and analyzed using the i-Solution Lite image analysis software (IMT, Victoria, BC, Canada).

To analyze the effect of the micrograph capture location on the performance of the
artificial neural networks, three types of dataset were prepared: total part, earlywood, and
latewood datasets. The entire dataset comprised a total part of earlywood and latewood
captured with a 4× objective lens. The earlywood and latewood datasets were captured
using a 20× objective lens. The actual areas captured in the micrographs under the 4× and
20× objective lenses were approximately 10.89 mm2 and 0.44 mm2, respectively.

2.2.2. Dataset Preprocessing

Prior to training, the RGB coefficients were reduced using a 1/255 ratio to decrease the
range to 0–1. The ImageDataGenerator function was used to augment the dataset and to
evaluate its impact. Various argument factors were applied to augment the dataset, such as
a rotation range of 10◦, width_shift_range and height_shift_range of 10%, zoom_range of
20%, and horizontal_flip and vertical_flip. An example of dataset augmentation is shown
in Figure 1.
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We used 80% and 20% of the prepared dataset for training and testing, respectively,
based on the size of the non-augmented dataset. Data augmentation was applied only to
the training dataset and not to the testing dataset. Based on these criteria, the quantities of
the datasets utilized in the present study are listed in Table 2 for the non-augmented state
and in Table 3 for the augmented state.

Table 2. Composition of training and test dataset with non-augmentation.

Common Name Scientific Name
40× Dataset

(Total)

200× Dataset
(Earlywood,
Latewood)

Train Test Sum Train Test Sum

Cedar Cryptomeria japonica 160 40 200 160 40 200
Japanese cypress Chamaecyparis obtusa 160 40 200 160 40 200

Mugo pine Pinus mugo 160 40 200 160 40 200
Radiata pine Pinus radiata 160 40 200 160 40 200

Spruce Picea abies 160 40 200 160 40 200
Yin shan shu Cathaya argyrophylla 160 40 200 160 40 200

Korean red pine Pinus densiflora 160 40 200 160 40 200
Korean white pine Pinus koraiensis 160 40 200 160 40 200

Metasequoia Metasequoia glyptostroboides 160 40 200 160 40 200
Juniper Juniperus chinensis 160 40 200 160 40 200

Sum 1600 400 2000 1600 400 2000

Table 3. Composition of the training and test datasets with augmentation.

Common Name Scientific Name
40× Dataset

200× Dataset

Earlywood Latewood

Train Test Sum Train Test Sum Train Test Sum

Cedar Cryptomeria
japonica 160 40 200 1764 40 1804 1768 40 1808

Japanese
cypress Chamaecyparis obtusa 160 40 200 1774 40 1814 1754 40 1794

Mugo pine Pinus mugo 160 40 200 1775 40 1815 1772 40 1812
Radiata pine Pinus radiata 160 40 200 1781 40 1821 1775 40 1815

Spruce Picea abies 160 40 200 1773 40 1813 1781 40 1821

Yin shan shu Cathaya
argyrophylla 160 40 200 1762 40 1802 1776 40 1816

Korean
red pine Pinus densiflora 160 40 200 1783 40 1823 1785 40 1825

Korean
white pine Pinus koraiensis 160 40 200 1767 40 1807 1777 40 1817

Metasequoia Metasequoia glyptostroboides 160 40 200 1764 40 1804 1779 40 1819
Juniper Juniperus chinensis 160 40 200 1784 40 1822 1768 40 1808

Sum 1600 400 2000 17,739 400 18,125 17,735 400 18,135

Micrographs of the dataset were constructed with 1280 × 1024 pixels (1,310,720 pixels)
and resized to 224 × 224 pixels (50,176 pixels) to conserve the system resources used
during training.

2.2.3. Verification Factors Influencing Neural Networks

The classification performance and factors influencing the performance were analyzed
using four models, VGG16, ResNet, and GoogLeNet, which had excellent performance in
ILSVRC, and a basic CNN architecture consisting of 12 layers. Their structural features
were described in Table 4, and the basic CNN architecture was schematized in Figure 2.
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Table 4. Features of each neural network.

Architecture Layers Convolutional Filter Structural Features

VGG16 25 3 × 3 convolutional layer
- 13 convolutional layers
- 3 dense layers

ResNet50 50 3 × 3 convolutional layer

- Introducing the concept of skip connection to solve
the gradient vanishing problem

- Shortcut connection between inputs and outputs in a
convolutional layer

GoogLeNet 16

1 × 1 convolutional layer
3 × 3 convolutional layer
5 × 5 convolutional layer

3 × 3 pooling layer

- Repetition of inception module
- Parallel performance of 1 × 1, 3 × 3, and 5 × 5

convolutional operations

Basic CNN 12 3 × 3 convolutional layer

- 4 convolutional layers
- 4 max pooling layers
- 2 dense layers
- 1 flatten layer
- 1 dropout layer
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The four neural network models used in this study are based on the reports of Si-
monyan and Zisserman [16], He et al. [17], Szegedy et al. [18], and Elgendy [21], which
describe the characteristics of each model.



Forests 2023, 14, 1249 6 of 15

To classify the 10 species using the results generated by the artificial neural networks,
the softmax function was used as the activation function. For compilation, a categorical
cross-entropy function was applied as a multi-classification loss function. For the optimiza-
tion, the RMSprop function was applied to the VGG16 model, whereas the SGD function
was used for the ResNet50 and GoogLeNet models.

2.2.4. Correlation Analysis between Factors

In this study, the Pearson correlation coefficients among the variables were analyzed
using bivariate correlation analysis in SPSS 26.0 (IBM, New York, NY, USA). Nominal
variables, including the dataset collection region (total, earlywood, and latewood) and
augmentation for analysis, were applied, while accuracy and loss were applied as scale vari-
ables. Furthermore, we analyzed homogeneous subsets among the results using Duncan’s
post-hoc analysis with one-way ANOVA.

3. Results and Discussion
3.1. VGG16 Architecture

Figure 3 shows the results of the wood species classification using the VGG16 model.
Under all conditions, as the number of epochs increased, the loss decreased, and the classi-
fication accuracy increased. In terms of the composition of the dataset, both the augmented
and non-augmented datasets, in terms of stability, showed the best performance in the
latewood dataset, followed by the earlywood dataset and the total part dataset. However,
the use of augmented datasets resulted in faster stabilization of the results compared to non-
augmented datasets. The test dataset showed greater instability than the training dataset,
whereas the classification accuracy increased proportionally with the number of epochs,
showing results similar to those of the training dataset. Therefore, to achieve more stable
performance using the VGG16 architecture to classify wood species, the dataset should be
constructed with a latewood part. Training and testing processes should be conducted after
expanding the dataset through augmentation to achieve efficient performance.
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Table 5 presents the results of the homogeneous subsets among the verification condi-
tions of the dataset based on the verification results of the VGG16 architecture, as shown in
Figure 3. During the training process, the augmented dataset showed a comparable trend
in both loss and accuracy across all parts, including the total, earlywood, and latewood
parts, whereas the non-augmented dataset was classified as a self-reliant group among
the parts. During the test process, the augmented datasets of the total and latewood parts
showed similar trends in both loss and accuracy, whereas the earlywood parts showed
similar accuracy and loss in the non-augmented and augmented datasets.

Table 5. Homogeneous subset output of the VGG16 model.

Dataset
Total (40×) Earlywood (200×) Latewood (200×)

NAug Aug NAug Aug NAug Aug

Train
dataset

Loss 0.546 d 0.136 ab 0.340 c 0.080 a 0.200 b 0.058 a

accuracy 0.803 a 0.955 cd 0.876 b 0.972 d 0.926 c 0.980 d

Test
dataset

Loss 1.500 c 0.364 ab 1.769 c 1.968 c 0.721 b 0.157 a

accuracy 0.649 a 0.916 d 0.682 a 0.780 b 0.844 c 0.963 d

Note: The same superscript lowercase letters beside the mean values in the same row denote non-significant
outcomes at the 5% significance level for comparison between datasets. NAug: non-augmented; Aug: augmented.

3.2. ResNet50 Architecture

Figure 4 shows the results of the wood species classification using the ResNet50
architecture. Under all conditions, an increase in epochs led to a decrease in the loss and an
increase in the classification accuracy. The difference in stabilization due to the composition
and augmentation of the dataset was not clearly analyzed, but most datasets under all
conditions reached a stabilization state at approximately 10–15 epochs during the training
process. However, the total, 40× image, and non-augmented condition datasets had the
longest stabilization time: that is, approximately 20 epochs.
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The test dataset showed a tendency for the loss to decrease and the accuracy to increase
with increasing epochs, but it exhibited much greater instability than the training dataset.
This instability can be attributed to a shortage of the test dataset and the occurrence of
gradient vanishing owing to the deep neural network structure of the ResNet architecture,
resulting in greater fluctuations in accuracy and loss.

Table 6 presents the results of the analysis of the homogeneous subsets of the dataset
for each verification condition based on the results of the ResNet50 architecture, as shown
in Figure 4. The datasets used for the ResNet50 architecture belong to the same group as
the augmented datasets under all conditions. The non-augmented dataset was classified
into the same subset as the earlywood and latewood datasets during the training process.
Only the accuracies using the total part and earlywood datasets were classified as the same
subset during the test process.

Table 6. Homogeneous subset analysis of the ResNet50 model.

Dataset
Total (40×) Earlywood (200×) Latewood (200×)

NAug Aug NAug Aug NAug Aug

Train
dataset

Loss 0.544 c 0.121 ab 0.287 b 0.064 a 0.237 ab 0.048 a

accuracy 0.822 a 0.959 bc 0.900 b 0.978 c 0.923 bc 0.984 c

Test
dataset

Loss 1.697 c 0.637 ab 2.435 d 0.334 a 1.100 b 0.090 a

accuracy 0.572 a 0.854 c 0.578 a 0.927 cd 0.765 b 0.974 d

Note: The same superscript lowercase letters beside the mean values in the same row denote non-significant
outcomes at the 5% significance level for comparison between datasets. NAug: non-augmented; Aug: augmented.

3.3. GoogLeNet Architecture

Figure 5 shows the results of wood species classification using the GoogLeNet (Incep-
tion v1) model. Under all conditions, the loss decreased and the classification accuracy
increased as the number of epochs increased; however, the variations in loss and accu-
racy were more gradual compared with the verification results of other neural network
architectures. The influence of the collected dataset was more significant than that of
data augmentation, and both the loss and accuracy were highest for the latewood dataset,
followed by the earlywood dataset and the total dataset. The GoogLeNet architecture
showed a relatively delayed stabilization of the loss and accuracy compared to the other
architectures analyzed in the present study. The latewood dataset showed the fastest stabi-
lization achieved in the range of approximately 160–170 epochs. In contrast, the loss and
accuracy did not stabilize until the end of learning at 200 epochs in the earlywood dataset.

Table 7 presents an analysis of the homogeneous subsets of the datasets across the
verification conditions based on the results of the GoogLeNet architecture, as shown in
Figure 5. Most of the datasets used for the GoogLeNet architecture were classified into
significantly different groups, regardless of augmentation and composition. However, the
earlywood test dataset exhibited the same subset only under both non-augmented and
augmented conditions.

Table 7. Homogeneous subset output of the GoogLeNet model.

Dataset
Total (40×) Earlywood (200×) Latewood (200×)

NAug Aug NAug Aug NAug Aug

Train
dataset

Loss 1.429 e 1.680 f 1.113 c 1.246 d 0.711 a 0.972 b

accuracy 0.480 b 0.387 a 0.595 d 0.549 c 0.734 e 0.639 d

Test
dataset

Loss 1.462 d 1.609 e 1.138 c 1.159 c 0.659 a 0.898 b

accuracy 0.464 b 0.411 a 0.582 c 0.575 c 0.752 e 0.673 d

Note: The same superscript lowercase letters beside the mean values in the same row denote non-significant
outcomes at the 5% significance level for comparison between datasets. NAug: non-augmented; Aug: augmented.
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3.4. Basic CNN Architecture

Figure 6 shows the results of wood species classification using a basic CNN architec-
ture. As the number of epochs increased in both the training and test datasets, the loss
decreased and the accuracy increased until 100 epochs of the last training. The accuracy and
loss of the verification results were influenced by the augmentation and composition of the
datasets. The augmented datasets showed rapid training and stabilization within the range
of 10–20 epochs, whereas the non-augmented datasets progressed slowly during training
and stabilization up to 40–80 epochs. Depending on the composition of the datasets, the
training and stabilization speeds of the latewood dataset were the best, followed by those
of the earlywood and total datasets.
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Table 8 presents the results of the analysis of the homogeneous subsets for each
verification condition of the basic CNN architecture, as shown in Figure 6. The augmented
datasets used in the basic CNN architecture were classified into the same group as those
in the training condition. However, in the non-aggregated datasets, all conditions were
independent of the training and test processes. During the test process, only the augmented
earlywood and latewood datasets were in the same group, whereas the other conditions
were independent groups.
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Table 8. Homogeneous subset output of the basic CNN model.

Dataset
Total (40×) Earlywood (200×) Latewood (200×)

NAug Aug NAug Aug NAug Aug

Train
dataset

Loss 0.925 d 0.205 ab 0.671 c 0.130 a 0.349 b 0.101 a

accuracy 0.675 a 0.930 d 0.777 b 0.957 d 0.873 c 0.965 d

Test
dataset

Loss 1.038 e 0.466 c 0.832 d 0.238 b 0.503 c 0.074 a

accuracy 0.642 a 0.873 d 0.714 b 0.927 e 0.819 c 0.972 e

Note: The same superscript lowercase letters beside the mean values in the same row denote non-significant
outcomes at the 5% significance level for comparison between datasets. NAug: non-augmented; Aug: augmented.
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3.5. General Trend

Table 9 presents the comparison of the average accuracy at the final five stages during
the testing process for the four architectures analyzed in the present study. The results
show that the average accuracy at the final five stages varies depending on the collected
part of the dataset and the data augmentation. Regarding the influence of the collected
part of the dataset on accuracy, the highest accuracy was achieved in the latewood dataset
for training, followed by the earlywood dataset, whereas the total part dataset exhibited
the lowest accuracy. Data augmentation demonstrated an improvement in classification
accuracy with employing augmented datasets for all collected parts, resulting in higher
classification accuracy compared to non-augmented datasets.
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Table 9. Average accuracy of the last five steps by neural network architecture (unit: %).

Total (40×) Earlywood (200×) Latewood (200×)

NAug Aug NAug Aug NAug Aug

VGG16 72.5 (0.3) 92.9 (0.1) 87.9 (0.6) 86.8 (0.7) 96.6 (0.9) 97.8 (1.4)

ResNet50 86.3 (4.5) 93.6 (3.8) 91.9 (18.0) 99.1 (22.2) 96.1 (23.8) 99.5 (5.5)

GoogLeNet 73.9 (2.7) 70.5 (6.8) 83.8 (6.1) 81.5 (7.9) 98.1 (1.4) 91.6 (4.1)

CNN 86.3 (4.3) 94.0 (1.9) 91.4 (1.2) 98.3 (0.9) 88.1 (5.4) 99.3 (0.5)
Note: Numbers in parentheses are standard deviations. NAug: non-augmented; Aug: augmented.

Table 10 shows the correlation of the variables applied to the training and test process
of the four architectures, namely, VGG16, ResNet50, GoogLeNet, and basic CNN, which
were used to classify the 10 softwood species in the present study.

Table 10. Correlation of the factors influencing convolutional neural networks.

N = 2700 Epochs Loss
(Train)

Accuracy
(Train)

Loss
(Test)

Accuracy
(Test)

Position
(Total)

Position
(Earlywood)

Position
(Latewood)

Augmentation
(No)

Augmentation
(Yes)

Epochs 1 −0.157 ** 0.166 ** −0.225 ** 0.267 ** 0.000 0.000 0.000 0.000 0.000
p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 0.000

Loss
(train)

−0.157 ** 1 −0.996 ** 0.442 ** −0.886 ** 0.227 ** −0.012 −0.214 ** 0.073 ** −0.073 **
p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 0.521 p = 0.000 p = 0.000 p = 0.000

Accuracy
(train)

0.166 ** −0.996 ** 1 −0.442 ** 0.889 ** −0.219 ** 0.018 0.201 ** −0.068 ** 0.068 **
p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 0.337 p = 0.000 p = 0.000 p = 0.000

Loss
(test)

−0.225 ** 0.442 ** −0.442 ** 1 −0.719 ** 0.120 ** 0.127 ** −0.248 ** 0.137 ** −0.137 **
p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 0.000

Accuracy
(test)

0.267 ** −0.886 ** 0.889 ** −0.719 ** 1 −0.238 ** −0.051 ** 0.289 ** −0.172 ** 0.172 **
p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 0.008 p = 0.000 p = 0.000 p = 0.000

Position
(total)

0.000 0.227 ** −0.219 ** 0.120 ** −0.238 ** 1 −0.500 ** −0.500 ** 0.000 0.000
p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 0.000

Position
(earlywood)

0.000 −0.012 0.018 0.127 ** −0.051 ** −0.500 ** 1 −0.500 ** 0.000 0.000
p = 0.000 p = 0.521 p = 0.337 p = 0.000 p = 0.008 p = 0.000 p = 0.000 p = 0.000 p = 0.000

Position
(latewood)

0.000 −0.214 ** 0.201 ** −0.248 ** 0.289 ** −0.500 ** −0.500 ** 1 0.000 0.000
p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 0.000

Augmentation
(yes)

0.000 0.073 ** −0.068 ** 0.137 ** −0.172 ** 0.000 0.000 0.000 1 −0.000 **
p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 0.000

Augmentation
(no)

0.000 −0.073 ** 0.068 ** −0.137 ** 0.172 ** 0.000 0.000 0.000 −0.000 ** 1
p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 0.000

** The correlation is significant at the 0.01 level (two-tailed).

The loss tended to decrease with increasing epochs in both the training and test
processes, whereas the accuracy tended to increase in proportion to the epochs. This
tendency was more significant in the test dataset than in the training dataset, which could
be attributed to the performance improvement of the test dataset due to weight updates
through training. In addition, accuracy tended to decrease with the application of the
total part or the non-augmented dataset, whereas it increased with the application of
the latewood part or the augmented dataset. The loss tended to be opposite to that of
the accuracy.

Table 11 presents the correlation between variables within the final five epochs during
the training and test processes for the four architectures. Due to biased data, it shows
partially different results from Table 10, which compared the overall correlation of vari-
ables across all epochs. Representative differences include increasing loss and decreasing
accuracy as the epochs progress during the training process, as well as the decreasing trend
of accuracy with increasing epochs during the test process. The influence of the collected
part of the dataset and augmentation was consistent with the trends observed in Table 10.
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Table 11. Correlation of the factors within the last five steps influencing convolutional neural networks.

N = 120 Epochs Loss
(Train)

Accuracy
(Train)

Loss
(Test)

Accuracy
(Test)

Position
(Total)

Position
(Earlywood)

Position
(Latewood)

Augmentation
(No)

Augmentation
(Yes)

Epochs 1 0.658 ** −0.703 ** 0.107 −0.390 ** 0.000 0.000 0.000 0.000 0.000
p = 0.000 p = 0.000 p = 0.246 p = 0.000 p = 1.000 p = 1.000 p = 1.000 p = 1.000 p = 1.000

Loss
(train)

0.658 ** 1 −0.982 ** 0.181 * −0.568 ** 0.212 * 0.026 −0.238 ** −0.023 0.023
p = 0.000 p = 0.000 p = 0.047 p = 0.000 p = 0.020 p = 0.782 p = 0.009 p = 0.799 p = 0.799

Accuracy
(train)

−0.703 ** −0.982 ** 1 −0.189 * 0.591 ** −0.230 * −0.021 0.251 ** 0.068 −0.068
p = 0.000 p = 0.000 p = 0.039 p = 0.000 p = 0.012 p = 0.821 p = 0.006 p = 0.463 p = 0.463

Loss
(test)

0.107 0.181 * −0.189 * 1 −0.827 ** 0.328 ** −0.033 −0.295 ** 0.165 −0.165
p = 0.246 p = 0.047 p = 0.039 p = 0.000 p = 0.000 p = 0.721 p = 0.001 p = 0.071 p = 0.071

Accuracy
(test)

−0.390 ** −0.568 ** 0.591 ** −0.827 ** 1 −0.420 ** 0.012 0.408 ** −0.209 * 0.209 *
p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 0.896 p = 0.000 p = 0.022 p = 0.022

Position
(total)

0.000 0.212 * −0.230 * 0.328 ** −0.420 ** 1 −0.500 ** −0.500 ** 0.000 0.000
p = 1.000 p = 0.020 p = 0.012 p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 1.000 p = 1.000

Position
(earlywood)

0.000 0.026 −0.021 −0.033 0.012 −0.500 ** 1 −0.500 ** p = 0.000 p = 0.000
p = 1.000 p = 0.782 p = 0.821 p = 0.721 p = 0.896 p = 0.000 p = 0.000 p = 1.000 p = 1.000

Position
(latewood)

0.000 −0.238 ** 0.251 ** −0.295 ** 0.408 ** −0.500 ** −0.500 ** 1 0.000 0.000
p = 1.000 p = 0.009 p = 0.006 p = 0.001 p = 0.000 p = 0.000 p = 0.000 p = 1.000 p = 1.000

Augmentation
(yes)

0.000 −0.023 0.068 0.165 −0.209 * 0.000 0.000 0.000 1 −1.000 **
p = 1.000 p = 0.799 p = 0.463 p = 0.071 p = 0.022 p = 1.000 p = 1.000 p = 1.000 p = 0.000

Augmentation
(no)

0.000 0.023 −0.068 −0.165 0.209 * 0.000 0.000 0.000 −1.000 ** 1
p = 1.000 p = 0.799 p = 0.463 p = 0.071 p = 0.022 p = 1.000 p = 1.000 p = 1.000 p = 0.000

** The correlation is significant at the 0.01 level (two-tailed). * The correlation is significant at the 0.05 level
(two-tailed).

4. Discussion

In this study, we analyzed the classification performance and its influencing factors on
the classification of softwood species in four architectures: VGG16, ResNet50, GoogLeNet,
and basic CNN. The four architectures based on neural networks showed excellent classifica-
tion performance of over 90% for wood species classification, showing similar performance
as in previous studies [22–25]. In the architectures, the accuracy increased and the loss
decreased with increasing epochs. This is due to the weight updates resulting from the
epoch increment, because training in deep learning is the process of finding weights to
minimize the loss function [26] and updating the internal parameters such as weights
through training [27]. In the initial stages of training, the weights were assigned random
values, resulting in low accuracy and a high loss; however, as the training progressed,
the weights were adjusted toward the correct output [28], leading to a decrease in loss.
Sufficient training repetition resulted in the derivation of weight values that minimized the
loss of function [29]. Therefore, the results of the present study can be explained by the fact
that the weights of the dataset consisted of micrographs that were appropriately adjusted
with increasing neural network training.

The gradients of accuracy and loss curves observed during the training and testing
processes were influenced by the size of the convolutional filters. Camgozlu and Kutlu [30]
investigated the influence of the size of image and convolutional filter on deep learning
and reported that smaller convolutional filters lead to improved accuracy and reduced
training time. Ahmed and Karim [31] also analyzed the impact of convolutional filter size
and quantity of convolutional filter on classification accuracy and reported that smaller
filter sizes result in superior performance. In the present study, the four architectures used
for classifying softwood species, VGG16, ResNet50, GoogLeNet, and basic CNN, can be
divided into two types based on the size of the convolutional filters. Three architectures
utilized 3 × 3 convolutional filters, VGG16, ResNet50, and basic CNN, exhibiting rapid
stabilizations in the accuracy and loss curves during the early stages of training. In contrast,
GoogLeNet consisted of three different sizes of convolutional filters (1 × 1, 3 × 3, and
5 × 5) within each inception module, resulting in a more gradual slope compared to other
convolutional neural network architectures.

The analysis of factors influencing the performance of neural networks revealed that
the collected parts of the micrographs used in the dataset had a significant impact on the
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improvement in accuracy and reduction in loss. In particular, the performance of the neural
networks tended to improve slightly during training with the cross-sectional micrographs
of latewood. This phenomenon could be attributed to the anatomical characteristics of the
latewood cross-section in the dataset. Clear differences in cell structure were observed be-
tween the latewood samples from the 10 species in the dataset. The latewood cross-section
exhibited more advantageous characteristics for feature selection and extraction from a
feature engineering perspective [32], such as cell wall thickness, appearance of the growth
ring boundary, transition from earlywood to latewood, and epithelial cells. In contrast, the
diameter and lumen area of the tracheids, presence of axial parenchyma, and width and
frequency of the ray tissue in the earlywood cross-section were less helpful anatomical
features for wood classification. Therefore, the latewood part enabled a relatively clear
classification compared to the earlywood, resulting in improved accuracy and reduced loss.

The augmented dataset in the training process showed a more stable tendency in terms
of accuracy and loss fluctuation with increasing epochs compared with the non-augmented
dataset. Dataset augmentation prevents overfitting and improves accuracy [33–35]. In the
present study, it can be concluded that the augmented dataset, which was generated by
rotating, vertically and horizontally shifting, zooming in and out, and flipping the micro-
graphs composing the dataset vertically and horizontally, contributed to the performance
improvement of the four architectures.

5. Conclusions

The results of this study confirmed that the four convolutional neural network ar-
chitectures could classify 10 sample species with an accuracy of over 90%. Factors such
as epochs, total and latewood datasets, and dataset augmentation affect the accuracy of
species classification. Epochs, latewood datasets, and augmented datasets improved the
classification accuracy. In comparison of the average accuracy in the final five epochs, the
latewood dataset exhibited a 5.8% and a 12.1% higher accuracy than the earlywood dataset
and the total part dataset, respectively. In addition, the augmented dataset showed an 8.0%,
2.7%, and 2.3% higher accuracy in the total, earlywood, and latewood datasets compared
to the non-augmented dataset, respectively.

The learning process in the augmented dataset for training was faster and more stable
than that in the non-augmented dataset. To achieve more stable performance for wood
species classification using CNNs, it is necessary to use augmented latewood datasets. The
factors for performance improvement were verified with Pearson correlation coefficients of
0.289 ** in the latewood dataset and 0.172 ** in the augmented dataset.

During dataset construction, the variability of the classification accuracy and loss
decreased with an increase in the number of microscope images, leading to more stable
results. It is possible to classify more wood species by expanding the size of the dataset.

In the present study, epochs, latewood datasets, and augmented datasets for improving
species classification accuracy using artificial neural networks are suggested to be helpful
in developing a more accessible automated species identification system in the future.
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