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Abstract: Trunk recognition is a critical technology for Camellia oleifera fruit harvesting robots, as it
enables accurate and efficient detection and localization of vibration or picking points in unstructured
natural environments. Traditional trunk detection methods heavily rely on the visual judgment
of robot operators, resulting in significant errors and incorrect vibration point identification. In
this paper, we propose a new method based on an improved YOLOv7 network for Camellia oleifera
trunk detection. Firstly, we integrate an attention mechanism into the backbone and head layers of
YOLOv7, enhancing feature extraction for trunks and enabling the network to focus on relevant target
objects. Secondly, we design a weighted confidence loss function based on Facol-EIoU to replace
the original loss function in the improved YOLOv7 network. This modification aims to enhance the
detection performance specifically for Camellia oleifera trunks. Finally, trunk detection experiments
and comparative analyses were conducted with YOLOv3, YOLOv4, YOLOv5, YOLOv7 and improved
YOLOv7 models. The experimental results demonstrate that our proposed method achieves an mAP
of 89.2% , Recall Rate of 0.94, F1 score of 0.87 and Average Detection Speed of 0.018s/pic that surpass
those of YOLOv3, YOLOv4, YOLOv5 and YOLOv7 models. The improved YOLOv7 model exhibits
excellent trunk detection accuracy, enabling Camellia oleifera fruit harvesting robots to effectively
detect trunks in unstructured orchards.

Keywords: trunk detection; Camellia oleifera; attention mechanism; CBAM; Facol-EIoU; improved
YOLOv7

1. Introduction

Camellia oleifera an important oil-bearing crop, is cultivated extensively in the south
of China [1]. The morphology of Camellia oleifera is characterized by evergreen shrubs or
medium-sized trees and its leaves are elliptical, oblong, or inversely ovate in shape [2].
The harvesting of Camellia oleifera is the most expensive stage, demanding significant human
and financial resources. The harvesting of Camellia oleifera fruit is particularly challenging
and hazardous due to the complex growth environments, which are often found in hilly
and mountainous areas [3]. Consequently, there is a pressing need to develop a mechanized
and intelligent picking method that can reduce labor requirements and enhance harvesting
efficiency for Camellia oleifera. The development of the Camellia oleifera fruit harvesting
industry has witnessed the design and application of numerous mechanized fruit-picking
machines [4]. In our previous work, we demonstrated that vibration-based methods are
the most effective approach for mechanized harvesting of Camellia oleifera, leading us to
design a Camellia oleifera fruit harvesting robot that utilizes vibration to pick fruits, thereby
achieving mechanized harvesting [5]. However, the current robot still requires manual
intervention to select the vibration points on the trunk, which limits its level of intelligence.
Therefore, the rapid and accurate detection of Camellia oleifera trunks using computer vision
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methods has emerged as a crucial technology for harvesting robots and has become the
primary focus of research.

Exiting methods for trunk and crop detection mainly rely on imaging process tech-
nology [6–8]. Several methods have been proposed and improved for detecting various
crops, including pineapple [9], grape [10,11], apple [12–15], kiwifruit [16,17] and others. While
there has been some research on the detection of Camellia oleifera fruit and flowers [3,8],
there is limited study on the detection of Camellia oleifera trunks. In order to assist the
Camellia oleifera harvesting robot in locating the vibration point, trunk detection is the cru-
cial initial step. There are two main learning methods of crop detection, traditional machine
image processing and deep learning image processing, which aim to identify the class and
determine the position of targets in the image [18]. Traditional methods, such as support-
vector-machine-based (SVM) [19], histogram of oriented gradient (HOG) [20], deformable
parts model (DPM) [21] and others, have commonly been employed for image detection
and segmentation. These methods can mitigate the impact of illumination changes on
image detection. However, traditional detection methods suffer from the drawback of
being time-consuming.

Deep learning has gained widespread application in the field of computer vision,
particularly in target detection, where it has achieved remarkable success. Convolutional
neural networks (CNN) have been applied to detect various fruits in images. Models
such as AlexNet [22], VGGNet [23] and Inception [24] have been updated to enhance
recognition accuracy for harvesting robots in field experiments. With advancements in
learning algorithms, learning-based object detection methods can be categorized into two
types: the one-stage method and two-stage method. R-CNN, Fast R-CNN and Faster
R-CNN [25] use the two-stage method. While these methods improve recognition accuracy,
they suffer from slow detection speed, making them unsuitable for real-time applications.
SSD [26] and the YOLO series [27] are the typical one-stage object-detection methods,
which divide the image into regions and promptly determine the object boundaries and
classification probabilities of for each object. They offer faster detection speeds but may
sacrifice a slight decrease in recognition accuracy compared to two-stage methods.

In terms of balancing detection accuracy and recognition speed, one-stage object detec-
tion algorithms are more suitable for vision systems in harvesting robots. The YOLO serial
algorithms propose the use of an end-to-end neural network that simultaneously predicts
bounding boxes and class probabilities. Wu et al. [8] applied the YOLOv7 model to recog-
nize and locate the Camellia oleifera fruit and improve the detection accuracy. YOLOv7 [28]
is the latest detector of the YOLO series, designed with a trainable bag-of-freebies. This
design enables real-time detectors to significantly enhance accuracy without increasing
the inference cost. It incorporates extended compound scaling techniques to effectively
reduce the number of parameters and calculations in the target detector, thereby greatly
improving detection speed. Therefore, we have applied YOLOv7 to detect Camellia oleifera
trunks in our work.

The primary motivation of this study is to develop a robust and reliable approach to
detect Camellia oleifera trunks using an improved YOLOv7 model. This improvement aims
to enhance trunk detection performance in unstructured environments. The contributions
of this study are summarized as follows:

(1) The creation of a dataset comprising manually annotated visible images of Camellia oleifera
trunks and fruits captured in Camellia oleifera orchards.

(2) An algorithm for trunk detection was proposed based on the improved YOLOv7
model using monocular vision images. This method enables Camellia oleifera harvest-
ing robots to identify and detect trunks. An attention mechanism, specifically, a CBAM
(Convolutional block attention module) module, is incorporated in the backbone of
YOLOv7 to enhance the detection accuracy of Camellia oleifera trunks.

(3) The application of the Facol-EIoU loss function to replace the loss function in the
improved YOLOv7 network, further enhancing the detection of Camellia oleifera trunks.
A comparison is made between the Precision (P), Recall(R), F1 and Detection Speed of



Forests 2023, 14, 1453 3 of 17

the improved YOLOv7 and other algorithms, including YOLOv3, YOLOv4, YOLOv5
and YOLOv7.

2. Materials and Methods
2.1. Camellia oleifera Trunk Image Acquisition

The images of Camellia oleifera trunks used in this study were obtained from the Camellia
oleifera base located in Zhentou Village, Liuyang county, Changsha city, Hunan Province.
The Camellia oleifera in the base were planted at an approximate distance of three meters from
each other, which creates a suitable environment for the robot to perform harvesting tasks.
All pictures were captured using a monocular camera (Micovision Co., Ltd., Washington,
DC, USA) with a resolution of 4096 × 3072 pixels. The camera was mounted over the
Camellia oleifera trunks at a fixed distance of 130 cm and a height of 100 cm, as shown in
Figure 1, in order to capture clear trunk data. A total of 1500 pictures of Camellia oleifera
trunks were collected under different conditions, including single trunks with front-light,
single trunks with back-light, clusters of trunks with front-light and clusters of trunks
with back-light, as shown in Figure 2. The resolution of the trunk images was reduced to
640 × 640 pixels to meet the requirements of the YOLOv7 model.

2.2. Data Annotation

The Camellia oleifera trunks in the images were individually annotated as a single
class. Data labeling involves the process of adding tags or labels to raw data. In this study,
the datasets were labeled using LabelImage tool and followed the Pascal Visual Object
Classes format [29]. The annotation samples of labeled Camellia oleifera trunk images are
shown in Figure 3. For each image, the image name, object classification, and position of
the trunk were recorded in .xml file format. All the generated XML files were saved and
converted to TXT files.

Figure 1. View of the images acquistion.
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(a) (b)

(c) (d)

Figure 2. Images of Camellia oleifera trunk under different conditions. (a) Single trunk with front-
light. (b) Single trunk with back-light. (c) Cluster of trunks with front-light. (d) Cluster of trunks
with back-light.

(a) (b)

Figure 3. Annotation of Camellia oleifera trunks in images. (a) Single trunk. (b) Cluster of trunks.

2.3. Data Augmentation

Data augmentation plays a crucial role in deep-learning-based object detection ap-
proaches as it enhances data diversity and regularizes the mode [30]. To better extract trunk
features and ensure recognition accuracy while avoiding overfitting during training, vari-
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ous modification methods were employed for data augmentation. The data augmentation
tool and OpenCV were utilized to expand the dataset through operations such as image
brightness enhancement, image rotation, image mirror flipping, image random clipping,
image noise increases and mosaic. Table 1 provides an explanation of six augmentation
operations, and the resulting augmented images are shown in Figure 4. Following the data
augmentation process, the Camellia oleifera trunk dataset consisted of 9000 (5 × 1500 + 1500)
images. From this dataset, 6000 images were randomly selected for the training dataset,
2500 images for test dataset, and 500 images for verification set.

Table 1. Data Augmentation applied to the Camellia oleifera trunk original images.

Operation Value Description The Percentage of
Total Dataset(%)

Hue, Saturation and
Value Random

Enhance and reduce
image’s hue,

saturation and value
10

Mirror Random Horizontal and
vertical mirroring 10

Noise Random Add Gaussian noise 25
Mosaic Random Image Mosaic 10

Rotation 90°, 180°, and 270° Image Rotation 10
Scale Random Image Scale 20

(a) (b) (c)

(d) (e) (f)

Figure 4. Image augmentation results. (a) Original image. (b) Image noise. (c) Image flipping.
(d) Image mirror. (e) Image rotation. (f) Image mosaic.
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2.4. Camellia oleifera Trunk Detection Algorithm Based on the Improved YOLOv7
2.4.1. YOLOv7

The current state-of-the-art real-time one-stage object detectors primarily rely on the
YOLO series, which is capable of quickly and accurately detecting and classifying targets.
This makes it well-suited for meeting the requirements of real-time detection in harvesting
robots. In this study, a detection algorithm based on the latest YOLOv7 model is proposed
for object detection of Camellia oleifera trunks. The YOLOv7 model, proposed by Alexey
Bochkovskiy et al. [28], utilizes a re-parameterized approach to replace the original modules
and expands the aggregation network. This approach effectively reduces the computational
cost of real-time object detection.

The architecture of the YOLOv7 network consists of three main parts, the input
network, backbone network and head network, as illustrated in Figure 5. Comparing with
YOLOv5, the neck layer and head layer in YOLOv7 are referred to as the head network,
and the use of mosaic data augmentation in YOLOv7 is particularly suitable for small
object detection [31]. The backbone network is responsible for extracting features, while the
head network is used for prediction. Prior to entering the backbone layer, the resolution of
each image is preprocessed and resized to 640 × 640 × 3, which is the standard training
image size for YOLOv7). Then images are fed into the backbone network. In the backbone
layer, the Efficient Layer Aggregation Networks (ELAN) module is employed to replace
the CSPDarknet53 network. This module allows the model to learn more features and
enhances its robustness. DownC module is utilized for downsampling and the SPPCSP
module is redesigned based on CSP [32] to enable richer combinations of gradients and
reduce computation. The head network utilizes the outputs from the three layers of the
backbone network to generate three different-sized feature maps. Finally, RepVGG blocks
and convolutions are used to perform image detection and output the detection results [33].

Figure 5. The architecture of YOLOv7 network.

2.4.2. Improvement of the YOLOv7 Network

The complex and irregular environment of the Camellia oleifera orchard poses chal-
lenges for accurate trunk identification. To assist the harvesting robot in detecting and
locating the vibration point, it is imperative to improve the detection accuracy by optimiz-
ing the network based on YOLOv7.

In order to enhance feature extraction and focus on relevant target objects, attention
mechanisms were incorporated into both the backbone and head layers. Attention mecha-
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nisms are data processing methods commonly applied in deep learning tasks [34]. They
effectively highlight the important and relevant feature information, including channel atten-
tion mechanisms [35], spatial attention mechanisms [36], mixed attention mechanisms [37] and
so on. These attention mechanisms play a significant role in directing the model’s attention to
specific regions of interest and improving the overall detection performance.

The CBAM (Convolutional Block Attention Module) block integrates attention maps
along two separate channels and spatial dimensions in series for adaptive feature refine-
ment, which emphasizes useful channels as well as enhancing informative local regions [38],
as shown in Figure 6. In our study, we applied the CBAM attention model, which incor-
porates both channel attention model and spatial attention model attention operations.
The channel attention model pays more attention to the foreground objects and the mean-
ingful area within the input image, while the spatial attention model focuses on the position
information and contextual information across the entire image [39].

Figure 6. The main structure of CBAM attention module.

To preserve the original weights of the backbone network, the CBAM block was
added at the beginning of both the backbone and head layers of the YOLOv7 model.
The improved YOLOv7 network structure is shown in Figure 7. By incorporating the
CBAM model, the feature extraction capabilities of the backbone network are enhanced.
This method enables the network to pay more attention to detect key objects and mitigate
the impact of interfering elements in complex orchard environments.

Figure 7. The structure of improved YOLOv7.
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In the improved backbone network of YOLOv7, the pre-processed image with a size
of 640 × 640 × 3 is fed into the backbone. The input feature map undergoes global max
pooling (GMP) and global average pooling (GAP) operations, resulting in two feature maps.
These two feature maps are then passed through a two-layer multilayer perceptron and
activated using the ReLU activation function. The ReLU activation function generates the
channel attention feature which is multiplied with the original input feature map to obtain
the input feature of the spatial attention module [36]. Finally, the outputs of the channel
attention module and the spatial attention module are multiplied together to obtain the
output feature map of CBAM. The feature maps from the CBAM are fed into the CBS
module in the original backbone, and the final predictions are generated to implement
object detection by the model.

2.4.3. Loss Function

The loss function of the improved YOLOv7 in our method consists of confidence loss
and location loss. The confidence loss is used to gauge the probability that the predicted
bounding box contains the actual target and assess the model’s performance and identify
areas for improvement. Binary cross entropy was employed to calculate the confidence loss
in this study; as shown in Equation (1), IoU represents the value of the IoU loss, Ci denotes
the prediction confidence, and N refers to the total number of samples.

Lconf = −
∑i∈N(IoU× ln((C

′
i))) + (1− IoU)× ln(1− (C

′
i))

N
(1)

C
′
i = sigmoid(Ci) (2)

The location loss is responsible for evaluating the discrepancy between the predicted
bounding box and the ground-truth box. In this study, we replaced the original location
loss function of YOLOv7 with the Focal-EIoU loss [40]. Focal-EIoU loss is the combination
of focal loss and EIoU loss. The focal loss [41] dynamically scales the cross-entropy loss
to address the significant class imbalance between foreground and background classes
during training, thereby enabling high-accuracy detection in one-stage object detection
scenarios. The EIoU loss function directly measures the overlap area, central point and side
length of targets, and anchors to ensure convergence speed and localization accuracy [39].
The Focal-EIoU loss, as shown in Equation (3), incorporates both the focal loss and the
EIoU loss. Here b and bgt represent the central points of the predicted box and ground-truth
box, while w and h are the length and width of ground-truth box, and wgt and hgt represent
the length and width of the predicted bounding box. Furthermore, ρ is the Euclidean
distance between the predicted box and the ground-truth box, wc and hc donate the width
and height of the smallest enclosing box that covers the two boxes, and Wi is a parameter
that controls the degree of suppression of outliers. Facol-EIoU is designed to address the
limitations of CIoU by minimizing the difference between the width and height of the
target box and the anchor, resulting in faster convergence and better localization results.

LEIoU = 1− IoU +
ρ2(b, bgt)

(wc)2 + (hc)2 +
ρ2(w, wgt)

(wc)2 +
ρ2(h, hgt)

(hc)2 (3)

Lloc =
∑n

i=1 Wi × LEIoU

∑n
i=1 Wi

(4)

Combined with location loss and confidence loss, the loss function of the improved
YOLOv7 in this study is shown in Equation (5).

Loss = Lconf + Lloc (5)
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2.5. Model Training
2.5.1. Training Platforms and Parameter Settings

In this study, the target detection model was implemented using the PyTorch deep
learning framework. The experiments were conducted on a system equipped with an
Intel Core i7 CPU and an NVIDIA GeForce RTX2070 GPU with 12 GB of video memory,
running on the Windows 10 operating system. Python 3.8 served as the programming
language, and the training and testing of the model were carried out using CUDA 11.3,
CUDNN 8.2, OpenCV 3.4.5 and Pycharm2016. The training configuration consisted of using
the stochastic gradient descent (SGD) optimizer with an initial learning rate of 1 × 10−2,
a momentum of 0.937, and a weight decay of 0.0005.

The batch size was set to 16 and training was 600 epochs. The input size of images was
set to 640 × 640 pixels. The momentum decay and weight decay were both set to 0.937 and
0.0005. During training, the initial vector was set to 0.01 and the IOU threshold was set to 0.5.
Data augmentation was applied with the coefficient of hue (H), saturation (S) and lightness
(V) set to 0.2, 0.5 and 0.4. Throughout the training process, the training data, loss values
and model weights were saved at each epoch. The performance of the model was evaluated
using the test set. Six detection algorithms were trained and compared in this study:
YOLOv3, YOLOv4, YOLOv5, YOLOv7 and the improved YOLOv7. The training process
used the Adam optimizer with 600 training epochs. To prevent overfitting, the training
would automatically stop if there was no improvement in accuracy over the last 50 training
epochs. The training parameters used in the experiments are summarized in Table 2.

Table 2. Training Parameter.

Parameter Value Parameter Value

Ephochs 600 Batch Size 16
Learning Rate 0.01 Weight Decay 0.0005

Image Size 640 × 640 Momentum 0.937

2.5.2. Evaluation Indicators of the Model

In this paper, the performance of the detection model was evaluated using Precision (P),
Recall (R), Mean Average Precision (mAP) and F1 [41] score. A higher mAP score indicates
better performance. The mAP50 represents the mAP at an IoU threshold of 0.5, while
mAP75 refers to the mAP at an IoU threshold of 0.75. The overall mAP is calculated as the
average of mAP values across IoU thresholds ranging from 0.5 to 0.95, with an interval of
0.05. The evaluation metrics rely on the computation of true positives (TP), false positives
(FP), and false negatives (FN), as shown in Equation (6). Precision measures the ratio of
correctly detected targets to the total number of detected targets and serves as an intuitive
index for detection evaluation. The (mAP) Recall and F1 score were introduced to provide
a comprehensive evaluation.

P =
TP

TP + FP
(6)

R =
TP

TP + FN
(7)

AP =
∫ 1

0
P(R)dR (8)

mAP =
1
n

n

∑
i=1

APi (9)

F1 = 2× P× R
P + R

(10)
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In this study, the detection task focused on a single category, which is the Camellia oleifera
trunk. Therefore, the AP and mAP values are equal since there is only one category
involved in the detection process. TP is the number of Camellia oleifera trunks that are
detected correctly. FP is the number of negative objects that were detected as the Camellia
oleifera trunk, and FN is the number of positive samples incorrectly detected.

3. Results

In order to evaluate the performance of our model in Camellia oleifera trunk detection,
this section provides a detailed description of the experiments conducted, including the
training process, experimental results and ablation experimental results. A comparison is
made between different detection algorithms to assess the contributions of the methods pro-
posed in this paper. The test set consists of 2500 images, categorized as follows: 600 images
of single trunks with front-light, 600 images of single trunks with back-light, 600 images
of clusters of trunks with front-light, and 700 images of clusters of trunks with back-light.
Our model is compared with other networks such as YOLOv3, YOLOv4, YOLOv5 and the
original YOLOv7, using the images from the test set. The workflow of the proposed study
is shown in Figure 8.

Figure 8. Workflow of the proposed study.

3.1. Training Results

The loss curves of the training and validation during the training process are shown
in Figure 9. The curves demonstrate a rapid decrease in loss value during the initial
150 epochs, followed by a steady decline beyond 600 epochs. Notably, there was no
evidence of overfitting, and the results were satisfactory. Based on these observations,
the model trained for 600 epochs was deemed suitable for detecting Camellia oleifera trunks,
thus serving the purpose of the Camellia oleifera fruit harvesting robot.
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(a) (b)

Figure 9. Training Results. (a) mAP curve. (b) Loss curve.

3.2. Ablation Experiments

Ablation experiments were conducted to assess the impact of the CBAM and Focal-
EIoU loss modules on the detection performance. Table 3 presents the results of different
combinations and their respective detection metrics. Four models were compared: YOLOv7
without using CBAM and Focal-EIoU loss function, YOLOv7 improved with CBAM only,
YOLOv7 improved with Focal-EIoU loss function only, and YOLOv7 improved with CBAM
and Focal-EIoU loss function. The performance metrics of these models were evaluated
and compared.

Table 3. Results of ablation experiments.

CBAM Focal-EIoU Loss
Function mAP(%) Recall F1

84.2 0.89 0.84√
86 0.92 0.84√

85.6 0.9 0.84√ √
89.2 0.94 0.87

Results in Table 3 demonstrate that the accuracy of the models varies depending on
the combination of the CBAM and Focal-EIoU loss function. In terms of mAP metric, the in-
troduction of CBAM improves the YOLOv7 model by 2.1%. Additionally, the introduction
of the Focal-EIoU loss function improves the YOLOv7 model by 1.7% , which means the
CBAM enhances the model to focus on detection targets and the Focal-EIoU loss function
improves the accuracy of the detection. When both CBAM and Focal-EIoU loss function
are applied in YOLOv7, The mAP of model improves by 5.9% and the detection results
achieve the optimal detection performance.

3.3. Experiment Results

To verify the effectiveness of the improved detection network model for Camellia oleifera
trunks, test datasets consisting of trunk images were applied in the experiments. The de-
tection results for single trunks with front-light, single trunks with back-light, clusters of
trunks with front-light and clusters of trunks with back-light were analyzed. As shown
in Figure 10, the majority of trunks in the orchard were identified even in the presence of
occlusions and different light conditions. The detection results obtained from our model
were found to be excellent.
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(a) (b) (c) (d)

Figure 10. Experimental results of trunk detection under different conditions. (a) Single trunk with
front-light. (b) Single trunk with back-light. (c) Cluster of trunks with front-light. (d) Cluster of
trunks with back-light.

3.4. Comparison of Detection Algorithms

To demonstrate the recognition performance of the improved YOLOv7 network for
Camellia oleifera trunks, we compared models proposed in our study with the YOLOv3,
YOLOv4, YOLOv5 and YOLOv7 networks using the test dataset. The metrics used for
comparison were mAP, Recall, F1 and Average Detection Speed. All object detection
algorithms were trained using the same dataset as described in this study.

We compared the effectiveness of detecting Camellia oleifera trunks with different
models, and the results are presented in Table 4 and Figure 11. It can be observed that
our model achieves the highest mAP, which is 1.05 times higher than YOLOv3, 1.1 times
higher than YOLOv4, 1.06 times higher than YOLOv5 and 1.05 times higher than YOLOv7.
The Average Detection Speed of our model is 0.018 s/pic, which is 0.5 times, 0.4 times,
0.43 times and 0.72 times faster than those of the YOLOv3, YOLOv4, YOLOv5 and YOLOv7
networks. These results indicate our model performed better in detecting Camellia oleifera
trunks and could meet the requirements of Camellia oleifera fruit harvesting robots for
trunk recognition.

Table 4. Comparison of different models of Camellia oleifera trunks detection.

Object Detection Networks mAP (%) Recall F1 Average Detection Speed (s/pic)

YOLOv3 84.9 0.83 0.84 0.032
YOLOv4 80.9 0.82 0.81 0.045
YOLOv5 83.9 0.88 0.83 0.041
YOLOv7 84.2 0.89 0.84 0.025

Our model 89.2 0.94 0.87 0.018

The comparison results demonstrate that our model not only ensures high detec-
tion accuracy but also meets the detection speed requirements of the harvesting robot.
The improved YOLOv7 proposed in this study achieves excellent recognition results un-
der different light conditions. Our model exhibits faster detection speed compared to
YOLOv3, YOLOv4, YOLOv5 and YOLOv7. As shown in Figures 12 and 13, our model
is capable of recognizing more trunks that are out of focus in the camera, indicating its
robustness. Particularly, under back-light conditions, YOLOv3, YOLOv4 and YOLOv5
exhibit insensitivity in detecting small objects, resulting in the failure to detect small trunks
on the left side of the image (as shown in Figure 13b,d,f,h,j). This is likely due to the lack of
sufficient color features of Camellia oleifera trunks in back-light conditions. The improved
YOLOv7 and Focal-EIoU loss function generate better trunk features, effectively enhancing
the performance and detection speed of our model.
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(a) (b)

Figure 11. Comparison of different detection models. (a) mAP curve. (b) Loss curve.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 12. Comparison results of Camellia oleifera trunk detection with front-light by different models.
(a)YOLOv3 (Single trunk). (b) YOLOv4 (Single trunk). (c) YOLOv5 (Single trunk). (d) YOLOv7
(Single trunk). (e) Our model (Single trunk). (f) YOLOv3 (Cluster of trunks). (g) YOLOv4 (Cluster of
trunks). (h) YOLOv5 (Cluster of trunks). (i) YOLOv7 (Cluster of trunks). (j) Our model (Cluster of
trunks).
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 13. Comparison results of Camellia oleifera trunks detection with back-light by different models.
(a) YOLOv3 (Single trunk). (b)YOLOv4 (Single trunk). (c) YOLOv5 (Single trunk). (d) YOLOv7
(Single trunk). (e) Our model (Single trunk). (f) YOLOv3 (Cluster of trunks). (g) YOLOv4 (Cluster of
trunks). (h) YOLOv5 (Cluster of trunks). (i) YOLOv7 (Cluster of trunks). (j) Our model (Cluster of
trunks).

4. Discussion

In a forest crop harvesting application, trunk detection can help the harvesting robot
to locate the trunk. However, due to the complex environment of orchards, the accuracy of
tree trunk detection is affected by different lighting and shadows. Our research contributes
to trunk detection with a comparison of different detection methods. Su, F et al. [14]
proposed a tree trunk and obstacle detection method in a semi-structured apple orchard
environment based on improved YOLOv5s, without considering different light conditions.
Yang et al. [42] proposed a method of Y3TM to detect trunks, streetlight and telephone poles
in the forest. The presented research demonstrates that the deep-learning-based detection
algorithm has excellent performance in an unconstructed environment and provides the
basis for harvesting robots.

Compared with relevant studies, the Camellia oleifera trunk detection method based on
an improved YOLOv7 proposed in this paper has better recognition accuracy and faster
speed. The application of the attention mechanism CBAM in the YOLOv7 backbone and the
replacement of the original loss function with the Focal-EIoU loss function have significantly
contributed to enhancing the intelligence of the Camellia oleifera fruit harvesting robot,
enabling it to determine vibration points using the vision sensing system. The training
results demonstrate that the improved YOLOv7 model can effectively prevent overfitting
and achieve faster convergence during the training process. The ablation experiment
results indicate that our model outperforms the other recognition methods in terms of
both detection speed and accuracy for Camellia oleifera trunk recognition. The results
of comparison experiments show that our model can achieve the best detection results
over the mainstream detection algorithms under different light conditions. In future
research, the improved YOLOv7 model can also applied to detect Camellia oleifera fruit,
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Camellia oleifera flowers and other types of forest crops. Thus, the improved YOLOv7 model
presented in this paper has the potential to not only contribute to the fields of Camellia
oleifera trunks detection, but also advanced crop detection in smart forestry applications.

5. Conclusions

The detection and recognition of Camellia oleifera trunks in unstructured environments
is a crucial technology for the advancement of Camellia oleifera fruit harvesting robots.
In this paper, we propose a highly accurate and efficient method for detecting and recog-
nizingCamellia oleifera trunks. Our approach utilizes an improved YOLOv7 network as the
detection model. By integrating the CBAM attention mechanism into the YOLOv7 back-
bone, we enhance the model’s detection accuracy. Additionally, we adopt the Facol-EIoU
loss function, which replaces the original YOLOv7 location loss function, improving the
model’s robustness. Various well-known detection networks are compared and analyzed
for their performance in Camellia oleifera trunk detection. Experimental results demonstrate
that our proposed detection model outperforms other methods in terms of accuracy and
speed when applied to the Camellia oleifera trunk dataset. The development of intelligent
Camellia oleifera fruit harvesting robots holds profound significance for the Camellia oleifera
industry. This study offers an effective vision system solution for Camellia oleifera fruit
harvesting robots. In the future, we will continue to advance object detection technology in
harvesting robots and update the detection method to enable intelligent harvesting.
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