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Abstract: Forest above-ground biomass (AGB) is the basis of terrestrial carbon storage estimation, and
making full use of the seasonal characteristics of remote sensing imagery can improve the estimation
accuracy. In this study, we used multi-source time series and sample plots with the Random Forest
(RF) model to estimate the AGB. The sources included Sentinel-1 (S-1), Sentinel-2 (S-2), and the S-1 and
S-2 combination (S-1S-2). Time series included single season, annual, and multi-season. This study
aims to (1) explore the optimal image acquisition season to estimate AGB; (2) determine whether the
ability to estimate the AGB of multi-seasonal imagery exceeded that of annual and single-season
imagery; (3) discover the sensitivity of different data to AGB according to phenological conditions.
The results showed that: (1) images acquired in autumn were more useful for AGB estimation than
spring, summer, and winter; (2) the S-1 multi-seasonal AGB model had higher accuracy than the
annual or single-season one; (3) in autumn and spring, S-1 had higher estimation accuracy than S-2,
and in autumn and spring, estimation accuracy from S-1S-2 was higher than that from S-1 and S-2;
(4) in 16 AGB estimation models, the best estimation accuracy was achieved by the autumn AGB
model from S-1S-2 (R2 = 0.90, RMSE = 16.26 t/ha, p = 0.82, and rRMSE = 18.97). This study could
be useful to identify the optimal image acquisition season for AGB estimation, thus reducing the
economic cost of image acquisition and improving the estimation accuracy.

Keywords: above-ground biomass (AGB); Pinus densata; Sentinel-1 and -2; seasonal effects; time series

1. Introduction

Forest ecosystems are essential carbon reservoirs, accounting for about 80% of terres-
trial biosphere carbon stocks, and play a key role in mitigating climate change [1]. Assessing
forest biomass is the foundation of evaluating the carbon sequestration capacity of forests.
Some studies have shown that forest above-ground biomass (AGB) accounts for about
70%–90% of forest biomass and is a crucial indicator for vegetation growth assessment [2,3].
Thus, estimating forest AGB with high accuracy is of great significance.

Combining sample plots and remote sensing data has been regarded as an efficient
means in large-scale observations and forest AGB estimation [4]. However, the estimation
accuracy is subject to the model, data, and methods [5,6]. Optical sensors play a vital role in
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parameter retrievals [7,8], but are susceptible to clouds, rain, snow, etc. Synthetic Aperture
Radar (SAR) can collect data in all weather, during day and night, providing details on veg-
etation structure [9]. However, water content, forest spatial structure, and surface geometry
(terrain slope) may cause errors and saturation problems [10]. For optical sensors and SAR,
no single data type can meet all requirements [11]. Many studies estimated AGB using
optical sensors, SAR, and the combination of optical sensors and SAR; the results showed
that the ability to estimate AGB could be ranked in descending order: the combination
of SAR and optical sensors, SAR, optical sensors [12–15]. Some studies concluded that
the ability of optical data to estimate AGB exceeded that of SAR [16–18]. However, few
studies have examined the ability of SAR, optical sensors, and the combination of optical
sensors and SAR to estimate AGB according to phenological conditions. The high temporal
frequency of satellite data can increase the ability to observe the phenological variation
of vegetation, which provides additional seasonal information for AGB estimation [19,20].
Sentinel-1 (S-1) and Sentinel-2 (S-2) are relatively superior, openly available, and have
superior space and spectrum, as well as the same data format and time resolution, and are
incomparable with other free-access datasets [21,22].

Estimating AGB from a time series perspective enables monitoring changes in forest
AGB in both temporal and spatial dimensions, ensuring consistency in time and integrity in
space [23]. Weather conditions may affect optical image imaging and cause saturation of the
SAR [22]. Thus, exploring the seasonal characteristics of remote sensing imagery can reduce
data variability and improve AGB estimation accuracy [19,24,25]. Time series are divided
into annual, quarterly, and monthly. In terms of annual data, images with good data quality
were acquired each year and then used to estimate the AGB and monitor the dynamics of
the AGB [26–30]. In many studies that employed annual time series, images were selected
based on weather conditions, and not examined deeply. In terms of seasonal time series,
the main aim is to use multi-seasonal data for AGB retrieval or to explore the relationship
between the images and AGB under different phenological conditions [19,31–33]. Most
researchers considered that the multi-seasonal imagery was better for AGB estimation than
the single imagery; however, they only compared it with the single imagery from one of
the seasons and not individually with the single imagery from each of the seasons [19,31].
Periasamy [33] investigated the suitability of S-1 C-band frequency (5.36 GHz) products
for estimating terrestrial biomass in the dry (May) and wet seasons (September); the entire
dry or rainy season was represented using a single data point in the study. The essence
of research on monthly time series is also to explore the seasonal characteristics of the
data. The image from the optimal month for AGB estimation was determined by analyzing
the correlation between each month’s data and the AGB or establishing a non-parametric
model [17,34]. Forkuor et al. [17] explored the optimal image acquisition period for AGB
mapping and mapped AGB in the Sudanian savanna using monthly time series of S-1 and
S-2. Theofanous et al. [34] analyzed optimal modeling dates using monthly S-1 and S-2
data in northern Greece. In addition, a few researchers also compared the correlations
between monthly and annual data and AGB [24]. The ability of images from the optimal
month or single season to retrieve AGB information has not been fully compared with that
of multi-season images.

In general, seasonal information from multi-source data has been utilized, to some
extent. However, these studies mainly used images from the single season for parameter
retrievals [35]. The ability of images to estimate AGB at different time scales has not been
fully explored and compared. In addition, few studies have compared the sensitivity of
different images to estimate AGB according to phenological conditions. In this study, we
used multi-source time series to map AGB. Our goals were to (1) explore the optimal image
acquisition season for AGB estimation; (2) determine whether the ability of multi-seasonal
images to measure AGB exceeds that of annual and single-season images; (3) discover the
sensitivity of different imagery to estimate AGB according to phenological conditions. Our
result will help to find the optimal image for AGB estimation, which improves the efficiency
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of estimating AGB and reduces the economic cost. In addition, it can also contribute to a
better estimation of forest carbon storage.

2. Materials and Methods
2.1. Study Area and Materials
2.1.1. Study Area

Shangri-La is located in the area of 99◦20′~100◦19′ E, 26◦52′~28◦52′ N, the “Three
parallel rivers” area of northwestern Yunnan Province, the southwest of China (Figure 1a,b).
The southeastern terrain is lower than the northwestern part. The highest point stands
at 5545 m above sea level. The lowest point stands at 1503 m above sea level (Figure 1c).
Shangri-La has a remarkable monsoon climate, with rainfall concentrated in the months
of June to October each year [36]. The average annual precipitation is 268~945 mm, and
the annual sunshine is 1742.9~2186.6 h [37]. It is one of only three remaining natural
forest areas and a key area for the implementation of the “Tianbao Project” in China. It
is also one of the world’s top ten species gene pools and an important part of global
biodiversity. It is characterized by cool coniferous forests, temperate coniferous forests, and
oak forests [38]. The dominant tree species are Quercus semicarpifolia, Pinus yunnanensis,
Pinus densata, Picea asperata, Abies fabri, etc. (Figure 1b). The Pinus densata is endemic to the
mountainous regions of the western plateau of China, covering 1848.18 km2, accounting
for 16.18% area of Shangri-La [39]. The Pinus densata is an important species in the upper
reaches of the Yangtze River region. Therefore, estimating the AGB of Pinus densata holds
significant importance in assessing and developing forestry carbon storage in the area.
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Figure 1. (a) Shangri-La and its location in China; (b) spatial distributions of tree species and sample
plots; (c) elevation.

2.1.2. Sampling Design

A total of 60 sample plots of size 10 m × 10 m were surveyed, with 20 of these
plots surveyed in December 2019, and the other 40 surveyed in May 2021. Plot sizes of
10 m × 10 m were considered in this study to ensure correspondence between the field
measurement and pixel size in the imagery [13].The mean annual growth rates of tree height
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and diameter at breast height (DBH) per Pinus densata were 1.71 m and 0.01 cm, respectively;
the mean annual growth rate of AGB in this area is 0.0001 t/ha [40,41]. Since the estimated
annual growth in this area is so small, we did not adjust our field measurements for
potential changes that might have occurred between 2019 and 2021. Sample points were
randomly distributed in pure Pinus densata forest areas (Figure 1b). The coordinates of plots
was recorded in the field with real-time kinematics (RTK). To estimate AGB, we measured
the DBH and tree height of per tree with DBH ≥ 5 cm and tree height ≥ 1.3 m. Tree height
was measured from the base to the highest tip of the tree to the nearest 0.1 m using a laser
rangefinder. The AGB of the individual trees was calculated using the allometric growth
equation [42]. The allometric growth equation is as follows:

W= 0.073 × D1.739 × H0.880 (1)

where W is the AGB in kg per tree; H = height (m); D = diameter at breast height (cm). The
AGB of each sample plot was the sum of the individual trees in the sample plot. Figure 2
presents the summary statistics of observed AGB. Total AGB values ranged from a low of
11.10 t/ha to a high of 237.07 t/ha, with a mean of 84.09 t/ha.
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2.1.3. Image Acquisition and Pre-Processing

S-1 and S-2 satellite images were obtained from the Copernicus Open Access Hub
(COAH, https://scihub.copernicus.eu/ (accessed on 16 May 2023)). The Google Earth
Engine (GEE, https://earthengine.google.com/ (accessed on 16 May 2023)) was used to
obtain and pre-process images.

S-1 images used in the study were Ground Range Detected (GRD) products from
the Wide Swath (IW) with a resolution of 10 m. The orbit property was descending.
We used three orbits, and the numbers of relative orbits were 33, 99, and 135. We first
acquired images from S-1 during five time periods: spring, summer, autumn, winter,
and annual. The S-1 images were processed using Sentinel-1Toolbox (S1TBX) on the GEE
platform, which included radiometric calibration, thermal noise reduction, and topographic
correction [13]. The backscatter values of the pre-processed image elements were converted
into decibels [17]. The equation is as follows:

∂0(dB)= 10 × log10
∂0 (2)

where ∂0(dB) is the normalized radar cross section and ∂0 is the backscatter for a specific
polarization. The Refined Lee filter of SNAP was used to reduce image noise and upscale
data quality [43]. Finally, a median reducer was applied to image collection [44].

https://scihub.copernicus.eu/
https://earthengine.google.com/
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We acquired images from S-2 for four time periods: spring, autumn, winter, and
annual. Excessive cloud cover in the study area during the summer rendered the images
unavailable. Images with less than 10% cloudiness were selected. Images were further
pre-processed with an automatic cloud masking procedure using QA bands provided for
the S-2 L2A product, masking both opaque and cirrus cloud cover. A median reduction
process was performed on the remaining image collection. Finally, the nearest neighbor
method was applied to resample the images in the 20 m bands to 10 m [44,45]. Table 1
presents the profile of S-1 and S-2.

Table 1. Profile of S-1 and S-2.

Sensors Bands Acquisition
Periods

Number of
Images

Processing
Levels

S-1 VV, VH

Spring (2021/03–2021/06) 31

GRD
(Level-1)

Summer (2021/06–2021/09) 32
Autumn (2021/09–2021/12) 30
Winter (2020/12–2021/03) 30
Annual (2020/12–2021/12) 123

S-2

B1, B2, B3, B4,
B5, B6, B7, B8,
B9, B10, B8A,

B11, B12

Spring (2021/03–2021/06) 39

Level-2A
Summer (2021/06–2021/09) 0
Autumn (2021/09–2021/12) 41
Winter (2020/12–2021/03) 73
Annual (2020/12–2021/12) 153

Where B1 is the coastal band, B2 is the blue band, B3 is the green band, B4 is the red band, B5 is the vegetation red
edge 1 (RE1) band, B6 is the vegetation red edge 2 (RE2) band, B7 is the vegetation red edge 3 (RE2) band, B8 is
the near infrared (NIR) band, B8A is the narrow near infrared, B9 is water vapor band, B10 is the cirrus band, B11
is the short-wave infrared 1 (SWIR1) band, and B12 is the short-wave infrared 2 (SWIR2) band.

2.2. Methodology

In the study, we used S-1 and S-2 time series and sample plots to estimate the AGB of
Pinus densata in Shangri-La. Image acquisition, pre-processing, and variable obtainment
were based on the GEE. Random Forest (RF) was used to model the AGB. The overall
workflow is shown in Figure 3. Five main steps were followed to derive the AGB map:
(1) acquisition of muti-source time series images; (2) obtainment of remote sensing variables;
(3) modeling; (4) accuracy assessment; (5) AGB mapping.

2.2.1. Multi-Source Time Series Images

In line with the study’s objective, we designed 16 experiments on three time scales:
annual, single season, and multi-season (Figure 4).

• Annual: Annual data were medially synthesized from images during 1 December
2020 and 1 December 2021. There were 3 experiments.

• Single season: Single seasons included spring, summer, autumn, and winter. The
images used for each season were a composite of the median of all images from that
season. There were 10 experiments.

• Multi-season: Multi-seasons were a combination of images from four seasons used in
a single season. There were 3 experiments.

2.2.2. Obtainment of Relevant Variables

Numerous studies revealed that backscatter coefficients of SAR were crucial for AGB
retrieval [13,17]. Difference (VH − VV), sum (VH + VV), and radar texture information
are also significant in AGB retrieval [17,46–48]. Hence, we obtained radar backscatter
coefficients, differences (VH − VV), sums (VH + VV), and radar texture information from
S-1. According to the specific characteristics of the study area, as well as the results of related
studies [24,46,49,50], key variables such as the red edge bands, vegetation indices, and
the first three principal components were selected from the pre-processed S-2 images. We
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utilized 10 bands from S-2 for principal component analysis (PCA), excluding atmospheric
bands B1, B9, and B10 [51]. Variables selected from S-1 and S-2 are shown in Table 2.
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Table 2. Variables obtained from S-1 or S-2 for AGB modeling.

Sensor Variable Type Variable Name Definition

S-1 (Spring; Summer;
Autumn; Winter;

Annual)

Polarization
VV Vertical transmit-vertical channel
VH Vertical transmit-horizontal channel

Difference VH − VV Quotient
Sum VH + VV Product

Textural information
CON, DIS, SAVG,
IDM, ASM, ENT,

VAR, COR

Contrast (CON), Sum average (SAVG),
Dissimilarity (DIS), Inverse different moment (IDM),

Angular second moment (ASM), Entropy (ENT),
Variance (VAR), Correlation (COR)

S-2
(Spring; Autumn;
Winter; Annual)

Multispectral bands
B5 Red edge1, 705 nm
B6 Red edge2, 749 nm
B7 Red edge3, 783 nm

Vegetation indices

RVI NIR/RED
DVI NIR/RED

NDVI (NIR – RED/NIR + RED)
NDI45 (RE1 – RED)/(RE1 + RED)
GNDVI (RE3 – GREEN)/(RE3 + GREEN)
IRECI (RE3 − RED)/(RE1/RE2)
SAVI 1.5 × (NIR − RED)/8 × (NIR + RED + 0.5)

MCARI ((RE1 − RED) − 0.2 × (RE1 − Green)) × (RE1 − RED)
EVI 2.5 × ((NIR − RED)/(NIR + 6 × RED − 7.5 × BLUE + 1))

Transform indices PC1, PC2, PC3 PC means the principal component

NIR is near infrared; RE is the red edge; BX is a certain single band of the image.

2.2.3. Modeling
Importance Assessment of Remote Sensing Variables

Variable significance can assess the sensitivity of the argument to the dependent
variable. We analyzed the significance of variables at different time periods (spring, summer,
autumn, winter, and annual) from S-1 and S-2 using RF. This result will be used to initially
determine the sensitivity of the data to AGB for each period.

Selection of Variables Used in AGB Modeling

Experiments involving S-1S-2 and multi-season data had a large number of remote
sensing variables with covariance and redundancy. Some variables have a low correlation
with AGB, or these variables may be co-dependent. To overcome the challenge of selecting
the fewest predictors with the best predictive power and to help in the interpretation
of the final model, backward feature elimination (BFE) was used to select appropriate
variables [47,52]. Variables used in 16 AGB models are shown in Table 3.

Modeling Method

The Random Forest model is widely used for forest AGB estimation due to its robust-
ness, ability to handle high-dimensional features, and ability to handle complex relation-
ships between independent variables in AGB estimation models [53,54]. The “Random
Forest Regressor” algorithm from the Python (3.2) language “sklearn” package was used
to conduct this study. The four main parameters in RF are maximum iteration of weak
machine learning, maximum depth of the decision tree, minimum number of samples at
a leaf node, and minimum number of samples required to split. The maximum iteration
of weak machine learning was tested from 20 to 200, and the optimal tuning result was
selected based on the stability of the RMSE [55]. When the maximum depth of the decision
tree was tuned, the result did not change; so, it was set to 10. We had a small number of
sample plots in this study; so, the minimum number of samples at a leaf node was set to 1.
The minimum number of samples required to split was set to 2 [56].
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Table 3. Variables used in 16 AGB models.

Experiment Number of Variables Variables Used in Each Experiment

1: S-1 annual 20 Polarization, difference, sum, and textural information for annual
2: S-2 annual 15 Multispectral bands, vegetation indices, and transform indices for annual

3: S-1S-2 annual 9 VH_DIS, B5, NDVI, DVI, PC2, VH_ASM, VH_COR, PC3, VH − VV for annual
4: S-1 spring 20 Polarization, difference, sum, textural information for spring
5: S-2 spring 15 Multispectral bands, vegetation indices, and transform indices for spring

6: S-1S-2 Spring 11 NDI45, DVI, PC1, PC3, VV_COR, VH_COR, VV_SAVG, VH_SAVG, VV_ASM,
VH − VV, VV for spring

7: S-1 summer 20 Polarization, difference, sum, textural information for summer
8: S-1 autumn 20 Polarization, difference, sum, textural information for autumn
9: S-2 autumn 15 Multispectral bands, vegetation indices, transform indices for autumn

10: S-1S-2 autumn 10 IRECI, NDI45, GNDVI, NDVI, PC2, VH − VV, VV_COR, VH_COR, VH_CON,
VV_CON for autumn

11: S-1 winter 20 Polarization, difference, sum, textural information for winter
12: S-2 winter 15 Multispectral bands, vegetation indices, and transform indices for winter

13: S-1S-2 winter 9 B5, VV + VH, PC3, PC1, VH, VH_DIS, IRECI, VV − VH, VH_COR for winter

14: S-1 multi-season 22

VH_ASM, VV + VH, VV_DIS for spring, VH_CON, VH − VV, VH_COR,
VV_COR for summer, VH − VV, VV, VH, VH_ENT, VH_COR, VV_CON for
autumn and VV_DIS, VV_COR, VH_DIS, VH_SAVG, VV + VH, VH − VV,

VH_COR, VH_IDM, VH_ASM for winter

15: S-2 multi-season 12 RVI, NDVI, DVI, NDI45, PC2, B6 for spring, EVI, DVI, PC3, NDI45 for autumn
and EVI, NDVI for winter

16: S-1S-2 multi-season 17
VH_COR, PC2, VV_SAVG, PC3, VV + VH for spring, B7, VV_COR, GNDVI,

VH_ENT, VV, VH_COR, VH − VV for autumn and VH_SAVG, VH_COR, PC1,
NDVI, VH_VAR for winter

The expression of the texture features is VV_TTT and VH_TTT, and TTT is the abbreviation of a certain
texture feature.

2.2.4. Accuracy Assessment

Sixty sample plots were used in this study; eighty percent (48 groups) of the data were
randomly selected for model fitting, the remaining 20% (12 groups) were used for validation,
and cross-validation was performed during model fitting. We used the coefficient of
determination (R2) and root mean square error (RMSE (t/ha)) to assess the model fitting
performance on the training dataset. Twenty percent (12 groups) of the data were set apart
separately (this portion of data was not involved in model training) for model validation;
the accuracy evaluation indicators employed were the relative root mean square error
(rRMSE) and the prediction accuracy (p) [57]. To ensure that the model results were as
objective as possible, each model was fitted 20 times in this study to allow the mean values
of evaluation indicators to be used for comparison [37]. The formulas are as follows:

R2 =
∑n

i=1(ŷi − y)2

∑n
i=1(yi − y)2 (3)

RMSE =

√
∑n

i=1(yi − ŷi)

n
(4)

rRMSE =
RMSE

y
× 100% (5)

p =
1
n

n

∑
i=1

(
1−
∣∣∣∣yi − ŷi

ŷi

∣∣∣∣)×100% (6)

where n is the number of sample plots, yi is the observed value, ŷi is the predicted value,
and y is the mean of the observed values.
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3. Results
3.1. Significance of Variables

The significance of variables at different time periods is shown in Figure 5. The
variables from autumn in S-1 were the most important; the importance of summer, winter,
and annual variables was at a medium level; the importance of variables from spring was
the lowest. The variables from autumn in S-2 also were the most significant; contrary to S-1,
the variables from spring in S-2 were more significant than those from winter and annual.
These results showed that the autumn data from S-1 and S-2 had the highest sensitivity to
AGB among the single-seasonal and annual data.
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Figure 6 shows the importance of the variables of spring, autumn, winter, and annual
AGB models from S-1S-2. In four AGB models, the most important variables came from S-1.
The most important variable of the spring and winter AGB model was VH_COR; the most
important variable of the autumn AGB model was VV_CON; the most important variable
of the annual AGB model was VH − VV. In the spring and autumn AGB models, most of
the variables from S-1 were more important than those from S-2. In the spring, autumn,
and winter AGB models, the sum of the significance of variables from S-1 was higher than
that of S-2.
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VV_COR, VH_COR, VH_CON, VV_CON, VH_DIS, VH_ASM, VV_SAVG, VH_SAVG, VV_ASM,
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Figure 7 shows the importance of variables of multi-season AGB models. The most
important variables came from the autumn in these three multi-seasonal models. In the S-1
AGB model, the importance of variables from different periods was ranked in descending
order: autumn, winter, summer, and spring (Figure 7a). In the S-2 AGB model, the
importance of the variables at different periods was ranked in descending order: spring,
autumn, and winter (Figure 7b). In the S-1S-2 AGB model, the importance of the variables at
different periods was ranked in descending order: autumn, spring, and winter (Figure 7c).
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3.2. AGB Models of Periods from S-1, S-2, and S-1S-2

The accuracy assessment results of 16 AGB models are shown in Figure 8. In the
16 models, we found that the AGB model based on autumn images from S-1S-2 was the
best (Figure 8l), with R2 = 0.90, RMSE = 16.26 t/ha, p = 0.82, and rRMSE = 18.97.

The estimation accuracy of AGB models from S-1 was ranked in descending or-
der: multi-season, autumn, annual, summer, winter, and spring (Table 4). The estima-
tion accuracies for spring, summer, winter, and annual were relatively close, with R2 of
0.85 and p of 0.78 to 0.80. (Figure 8d, g, m, n). The confidence interval for the multi-
season was significantly narrower than those for the single-season or annual at the same
confidence level (95%). The multi-season AGB model was best in S-1, with R2 = 0.88,
RMSE = 17.61 t/ha, p = 0.82, and rRMSE = 19.02 (Figure 8a). Overall, the quality of images
from S-1 was relatively consistent. The estimation accuracy of AGB models from S-2 was
ranked in descending order: autumn, multi-season, spring, annual, and winter (Table 4).
The AGB model established with autumn data had the best performance, with R2 = 0.87,
RMSE = 18.23 t/ha p = 0.80, and rRMSE = 19.78 (Figure 8k). The multi-season had higher
estimation accuracy than annual, spring, and winter (Figure 8b, e, h, o). The estimation
accuracies of multi-season and spring were similar in S-2 (Figure 8b, o). The estimation ac-
curacy of AGB models from S-1S-2 was ranked in descending order: autumn, multi-season,
spring, annual, and winter (Table 4). The AGB model of autumn data was the best, with
R2 = 0.90, RMSE = 16.26 t/ha, p = 0.82, and rRMSE = 18.97 (Figure 8l). The multi-season
and spring AGB models in S-1S-2 had relatively similar estimation accuracy, R2 = 0.86,
p = 0.81; however, the RMSE and rRMSE of the multi-season were smaller than the spring
(Figure 8c, p).
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Figure 8. (a,d,g,j,m,n) Scatterplots of the observed AGB and predicted AGB produced from S-1
each period; (b,e,h,k,o) scatterplots of the observed AGB and predicted AGB produced from S-2
each period; (c,f,i,l,p) scatterplots of the observed AGB and predicted AGB produced from S-1S-2
each period. R2, RMSE, p, and rRMSE are the coefficient of determination, root mean square error,
prediction accuracy, and relative root mean square error, respectively. The red-shaded area is the
confidence interval (95%).

The ability of S-1 to estimate AGB was better than that of S-2 in winter, summer, annual,
and multi-season (Figure 8a, b, d, e, g, h, m). However, in autumn and spring, the estimation
accuracy of S-2 differed less than that of S-1, and the estimation accuracy exceeded S-1
(Figure 8j, k, n, o). Compared with S-1, S-1S-2 improved the estimation accuracy in spring
and autumn (Figure 8j, l, n, p); in winter, annual, and multi-season, S-1S-2 did not improve
the estimation accuracy (Figure 8a, c, d, f, g, i). Compared to S-2, S-1S-2 somewhat improved
estimation accuracy in all periods (Figure 8b, c, e, f, h, i, k, l, o, p).
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Table 4. Estimation accuracies ranking of AGB models.

Data Source The Rank of Estimation Accuracies of the AGB Model
in Descending Order

S-1 Multi-season, Autumn, Annual, Summer, Winter, Spring.
S-2 Autumn, Multi-season, Spring, Annual, Winter

S-1S-2 Autumn, Multi-season, Spring, Annual, Winter

3.3. Spatial Distribution of Pinus Densata AGB

Based on estimation accuracy, the AGB model with the highest accuracy from S-1S-2
was used to estimate the AGB of Pinus densata. Figure 9a depicts the spatial distribution
of AGB of Pinus densata. Figure 9b depicts the percentage of plots and pixels occurring in
different AGB classes. The range of AGB was from 17.59 t/ha to 190.10 t/ha, with a mean
of 82.71 t/ha. The total AGB was 17.21 million tons. Thirty point seven nine percent of the
area was characterized by AGB values between 80 and 100 t/ha. Overall, ninety-six point
nine one percent of the area had AGB values of 40–140 t/ha.
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The topography of the area is complex. We analyzed the spatial distribution charac-
teristics of the AGB of Pinus densata in terms of elevation, slope, and aspect perspectives.
The slope was classified into six classes (Figure 10a) according to the method of grading
slopes in forestry [30]. Based on the topographic characteristics of the area [30], we divided
the elevation into seven classes (Figure 10b). The aspect was classified into nine classes
(Figure 10c) according to the method of grading slopes in forestry [42].
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Regarding slope, most AGB was found on slopes ranging from 6◦ to 45◦, i.e., gentle,
moderate, steep, and very steep slopes. Of these, thirty point six three percent of AGB was
found on moderate slope; and thirty-two point five eight percent of AGB was found on
steep slopes. It was not easy to find AGB on flat and extremely steep slopes; the sum of
flat and extremely steep slopes was 5%. Overall, there was a normal distribution pattern.
Across gentle, moderate, and steep slopes, the percentage of AGB was higher than the
percentage of the area, indicating a denser distribution of Pinus densata in these regions. In
terms of elevation, the AGB of Pinus densata was mainly concentrated between 2400–4000 m,
accounting for 99.69% of the total AGB. Over half of the AGB could be found between
3200–3600 m, accounting for 56.54% of the total AGB. Secondly, the AGB was mainly found
at 2800–3200 m altitudes, accounting for 28.46% of the total AGB. At 2800–3600 m, the
percentage of AGB greatly exceeded the percentage of the area, showing that the density of
Pinus densata was high and that it was the dominant tree species in the area. The area above
an elevation of 4000 m accounted for 23.67% of the total area; however, the percentage of
AGB was only 0.28%. As far as the aspect was concerned, AGB was more evenly distributed
across aspects. The area was dominated by mountainous terrain; fewer areas were flat.
Except for the flat area, the northwestern aspect contained the least, accounting for 5.42%
of the total AGB, while the AGB of the eastern was the most, accounting for 21.67% of
the total AGB. The percentage of AGB for each aspect didn’t differ significantly from the
percentage of the area.

4. Discussion
4.1. Effect of Seasonality on Data Selection

All experiments involving S-1 have shown that autumn data had greater potential for
AGB estimation than spring, summer, autumn, and winter. Despite the strong penetration
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and all-weather imaging capability of SAR, seasonal changes could cause changes in
vegetation canopy thickness, vegetation water content, soil moisture content, and other
factors affecting the sensitivity of SAR to AGB [22,58]. Most of the C-band’s backscatter
coefficient comes from the top of the forest canopy [59]. Pinus densata, an evergreen needle-
leaved forest, is less affected by seasonal defoliation [24] and is mainly influenced by the
water content of vegetation, soil, etc. The rainy season in Shangri-La is primarily during
the summer, which coincides with the peak season of vegetation, but the water content
is also very high during this season. Most of the Pinus densata are found at middle and
high altitudes covered by snow for long periods in winter, with low temperatures and
low evaporation. This area’s vegetation and soil water content is relatively high. Thus,
the winter and summer images were less valid for AGB estimation than the autumn. Our
findings agree with previous studies [17,60], which also suggested limitations in using
SAR data for AGB estimation during the rainy season. For the optical data, images from
autumn are less affected by the weather. Autumn is the end of the growing season of Pinus
densata. Therefore, the autumn AGB model from S-2 was the best. Maselli et al. [61] and
Wallner et al. [62] also identified that using optical data from the beginning or the end of the
growing season improved prediction ability. During the wet season, summer, optical data
are affected by clouds and rain, making it difficult to obtain complete images. In winter, as
Shangri-La is a high-altitude area, snow will affect image quality.

Whether S-1, S-2, or S-1S-2, the accuracy of the annual AGB model was lower than
that of multi-season and autumn models. This finding agrees with a previous study [24].
The annual data was the median of the total yearly images. The quality of the median
composite image depends on the quality of the input image. The quality of some of the
total yearly images was poor, which decreased the quality of the composition image. In
addition, it is difficult for annual data to capture seasonal information. As a result, the
ability of the annual images to estimate AGB was weaker than that of optimal seasonal and
multi-seasonal images.

In S-1, the multi-season AGB model had the highest estimation accuracy.
Castillo et al. [63] considered this an effective approach to improve accuracy using multi-
temporal (acquired in January, October, and November) data from S-1. In S-2, the accuracy
of the multi-seasonal model was higher than that of spring, winter, and annual. Further-
more, when combining S-1 and S-2, the result was consistent with those obtained using S-2
only. Our findings are similar to previous studies [19,64]. Zhu and Liu [32] also concluded
that multi-temporal data could improve the estimation accuracy of AGB. The reason the
accuracy of the autumn models from S-2 and S-1S-2 was higher than that of the multi-
season could be that the multi-seasonal model was influenced by poor quality data from
S-2, namely winter and summer. In contrast, the quality of SAR images is more stable and
less affected.

According to Figures 6–8, SAR outperformed optical sensors. However, in spring and
autumn, when images were relatively less affected by clouds, rain, and snow, the difference
between the sensitivity of S-1 and S-2 to AGB was decreased, and the estimation accuracy
of S-2 even exceeded that of S-1. Zhang et al. [14] used S-1 and S-2 to assess the AGB
of arid ecosystems in the Sahel. They found that S-1 demonstrated better performance
than S-2; however, it also led to an overestimation of AGB in the region. Zhao et al. [18]
and Vafaei et al. [16] obtained the opposite results, demonstrating that optical sensing was
superior to SAR. Therefore, the sensitivity of SAR and optical remote sensing to AGB
may be affected by climatic and geographical conditions, leading to diverse outcomes.
Numerous studies found that integrating SAR with optical sensing could enhance AGB
estimation accuracy to a certain degree [13,17,65]. In this study, the combination of S-1
and S-2 improved the estimation accuracy compared to S-2; compared to S-1, only the
combination of S-1 and S-2 in spring or autumn could improve the estimation accuracy.

In this study, the variables obtained from the four seasons were directly used to
establish the multi-season AGB model without data fusion. Therefore, the accuracy of the
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multi-season AGB model might be limited for data with less stable data quality, such as S-2.
Next, we will further explore the effective fusion of multi-seasonal data.

4.2. Comparison with Existing Results

In this study, S-1S-2 was used for the first time to estimate the AGB of Pinus densata
in Shangri-La. The mean estimated AGB was 82.71 t/ha, which differed from the mean
observed AGB by only 1.38 t/ha. The elevation, slope, and direction distribution patterns
were roughly the same as in previous studies [30,38,42]. The AGB of this study reached
17.21 million tons.

Total AGB varied among researchers due to differences in remote sensing data,
sample plots, and estimation methods. Figure 11 summarizes the estimation results
of the Pinus densata from different researchers. Some studies have shown that AGB
accounted for about 70%–90% of forest biomass, and under-ground biomass accounted
for about 4%–8% [2,66]. So, it could be inferred that the AGB of Pinus densata in
the study of Wang et al. [30] was 14~18 million tons. Yue [38] combined Landsat
imagery with 50 sample plots to estimate the AGB of Pinus densata in Shangri-La; the
AGB was 13.02~13.41 million tons in 2008. Xie [67] combined Landsat imagery with
50 sample plots and utilized the K-NN algorithm to estimate the AGB of the area;
the AGB of Pinus densata was 15.75–20.25 million tons in 2015. Sun [42] combined
Landsat data with 56 sample plots and utilized the RF model to estimate the AGB.
The results indicated that in 2014, the AGB was 11.72 million tons. We calculated the
AGB of Pinus densata in Shangri-La using the forest management investigation data
(category II of forest inventory); in 2016, the AGB was 14.9 million tons. In addition,
several researchers [26,27,68] studied the AGB dynamics of Pinus densata in the region
using Landsat time series imagery. Their study showed that the AGB ranged from
7–10 million tons from 1985 to 2017. They used ground survey data from the National
Forestry Inventory of China. The distance between the sample plots consisted of
regular distributions of 6 km × 8 km. The sample plots were established in a grid
pattern at fixed distances (6 km × 8 km), without taking into account forest density
and forest type. Some of the sample plots might be established in areas with lower
forest density or within mixed forests. However, they only investigated information
from Pinus densata, excluding other tree species within plots. Hence, the AGB was
smaller than other studies. In this study, we randomly placed the sample plots in
pure Pinus densata forest areas based on the subcompartment data from the forest
management investigation. However, due to the complex terrain in Shangri-La, the
location of certain sample plots was situated in areas with steep topography, which
posed challenges for data measurement. The location of these specific sample plots
was determined artificially. These sample plots artificially selected might tend to be
distributed in areas of higher forest density. Thus, the value of the AGB was relatively
high. In addition, the “returning farmland to forest” policy was implemented in
Shangri-La in 2000 [26]. After 21 years of forest cultivation, young forests gradually
grew into middle-aged and mature woodland, leading to an increase in AGB.

4.3. Sensitive Analyses of the Model

Observed AGB measurements are relatively labor intensive to produce. Therefore, the
number of sample plots used in the AGB estimation studies is often small. Fassnacht et al. [69]
compiled the number of sample plots from 113 relevant studies. Out of these 113 studies,
66 studies had fewer than 100 sample plots, and the number of samples of 51 studies was
between 20 and 60. Furthermore, due to the size and characteristics of the study area, many
studies focusing on AGB conducted in that region had a relatively small number of sample
plots [39,67,70,71].
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Figure 11. Different researchers’ results of AGB estimation of Pinus densata in Shangri-La.

To further validate the results, we conducted the sensitivity analysis of the RF model
using the bootstrap approach. Bootstrapping entails resampling from the original sample
data and mimicking the original sampling, which helps evaluate the original sample [72,73].
We selected 100 bootstrap samples by repeatedly resampling. The number of bootstrap
sample plots was 80% (48 groups) of that of the original samples. Each bootstrap sample
was utilized to establish the AGB model. The variables used in the modeling were consistent
with that of the optimal AGB model. Eighty percent (38 groups) of the data were randomly
selected for model fitting and the remaining 20% (10 groups) were used for validation.
We used R2 and RMSE to assess the model-fitting performance on the training dataset,
p and rRMSE to assess the model-fitting performance on the test dataset. The result of
100 bootstrap sample AGB models is presented in Figure 12. The mean values of evaluation
indicators of the bootstrap sample AGB models were R2 = 0.88, RMSE = 17.55 t/ha, p = 0.81,
and rRMSE = 20.46. Compared to the optimal AGB model, R2 decreased by 0.02, RMSE
increased by 1.29 t/ha, p decreased by 0.01, and rRMSE increased by 1.49. However, the
accuracy was still higher than that of other original sample AGB models. In addition, the
distribution of evaluation indicators in the boxplots was relatively concentrated, which
indicates that the model was relatively stable and our study results were reliable. However,
the evaluation indicators of the model still have some fluctuations. In the future, researchers
may consider further exploring ways to improve the stability of the model and the accuracy
of AGB estimation.
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5. Conclusions

Overall, the estimation accuracy of the autumn AGB model from S-1S-2 was the highest.
The estimation accuracy of the multi-seasonal AGB model from S-1 exceeded that of the
single seasonal and annual; the estimation accuracy of the autumn AGB model, whether
from S-2 or S-1S-2, was the highest. Future researchers could use multi-seasonal SAR
data and optical data from the best season to improve the AGB estimation accuracy. The
ability of S-1, S-2, and S-1S-2 to estimate AGB was ranked in descending order: S-1, S-1S-2,
S-2 with winter, summer, annual, and multi-seasonal images; in spring and autumn, the
order was: S-1S-2, S-1, S-2. Therefore, we should use seasonal characteristics to determine
whether to use single-source or multi-source data in different time scales.

Ninety-six point nine one percent of the area was characterized by the AGB of
40–140 t/ha; the AGB was greater than 140 t/ha or less than 40 t/ha in a few areas. The
value ranges indicated that Shangri-La was generally characterized by high AGB values.
Proper planning, management, and use of the area’s forest resources are conducive to
achieving carbon peak and carbon neutrality.

Clouds, rain, and snow are the key factors limiting the estimation of AGB using remote
sensing imagery. Considering seasonal effects is essential to conquer the limitations. We
found the optimal time scales of S-1, S-2, and S-1S-2 images for AGB estimation and the
ability of different data to estimate AGB in different phenological conditions. This result
will help improve forest resource monitoring and management in subtropical forest areas
with monsoon climate characteristics. At the same time, it also can provide a scientific basis
and decision-making support for ecological protection and economic development.
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