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Abstract: The estimation of forest above-ground biomass (AGB) can be significantly improved by
leveraging remote sensing (RS) and deep learning (DL) techniques. In this process, it is crucial to
obtain appropriate RS features and develop a suitable model. However, traditional methods such
as random forest (RF) feature selection often fail to adequately consider the complex relationships
within high-dimensional RS feature spaces. Moreover, challenges related to parameter selection and
overfitting inherent in DL models may compromise the accuracy of AGB estimation. Therefore, this
study proposes a novel framework based on freely available Sentinel-1 synthetic aperture radar (SAR)
and Sentinel-2 optical data. Firstly, we designed new indices through the formula analogous with
vegetation index calculation to integrate multidimensional spectral and structural information. Then,
leveraging the simplicity of computational principles, a pigeon-inspired optimization algorithm
(PIO) was introduced into a bi-directional long short-term memory neural network (PIO-BiLSTM),
which achieved the set objective function through repeated iteration and validation to obtain the
optimal model parameters. Finally, to verify the framework’s effect, we conducted experiments
in two different tree species and compared another seven classical optimization algorithms and
machine learning models. The results indicated that the new indices significantly improved the
inversion accuracy of all models in both categories, and the PIO-BiLSTM model achieved the highest
accuracy (Category-1: R2 = 0.8055, MAE = 8.8475 Mg·ha−1, RMSE = 12.2876 Mg·ha−1, relative
RMSE = 18.1715%; Category-2: R2 = 0.7956, MAE = 1.7103 Mg·ha−1, RMSE = 2.2887 Mg·ha−1,
relative RMSE = 9.3000%). Compared with existing methods, the proposed framework greatly
reduced the labor costs in parameter selection, and its potential uncertainty also decreased by up
to 9.0%. Furthermore, the proposed method has a strong generalization ability and is independent
of tree species, indicating its great potential for future forest AGB inversion in wider regions with
diverse forest types.

Keywords: forest above-ground biomass; sentinel; feature combination; BiLSTM neural network;
pigeon-inspired optimization

1. Introduction

The forest biomass is intricately interconnected with the global carbon cycle and
climate variability, and about 70%–90% of biomass is above-ground biomass (AGB) [1–3].
The conventional field measurements of AGB impose limitations on regional coverage and
may pose a potentially destructive harvest for forests [4,5]. In contrast, remote sensing (RS)
techniques allow for efficient and cost-effective coverage of vast areas, facilitating access to
remote regions, and consequently, much research has utilized RS techniques to assist forest
AGB inversion [6].

In AGB inversion, RS data selection, RS feature acquisition, and inversion model devel-
opment are the three most critical steps. Up to now, optical RS data and Synthetic Aperture
Radar (SAR) have been widely used in many research studies. Spectral information in
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the red and near-infrared bands of optical data is highly sensitive to AGB, which has led
numerous studies to utilize vegetation and biophysical parameters for AGB estimation [7,8].
Additionally, SAR can offer valuable insights into dielectric properties and vertical structure
by employing appropriate polarization [9–11]. Recently, multi-source data have become
a trend in AGB inversion, and previous studies have integrated optical data with SAR
data to achieve precise results [12–14]. Within the array of data types, the Sentinel-1 and
Sentinel-2 satellites stand out as optimal choices for large-scale and cost-effective AGB
mapping, owing to their extensive global coverage and unrestricted accessibility [7].

The acquisition of suitable RS features is a fundamental step in AGB inversion and
serves as a prerequisite for modelling. As input data, the availability of Sentinel-1 and
Sentinel-2 images makes it possible to produce a large number of RS features; leveraging
these features enables the construction of feature sets saturated with multidimensional RS
information [7,14,15]. However, excessive features imply information redundancy, which
may result in significant disparities between the construction and prediction of models [16].
Consequently, when integrating diverse data sources, it is crucial to acquire the appropriate
feature set for AGB inversion. Previous research efforts have primarily focused on selecting
those features that are remarkably associated with AGB from the multidimensional RS
feature space [17,18]. Jiang et al. [19] analyzed the correlation and calculated the importance
degree of each feature using the random forest (RF) algorithm, which consists of numerous
decision trees. According to the order of importance from highest to lowest, the features
were added sequentially to the feature group for AGB estimation, and the feature group
with the highest accuracy was the optimal feature set. Lu et al. [17] argued that the RF
algorithm can be employed when the number of sample plots is smaller than independent
variables. However, for large and much higher dimensional space, the results are not
reliable due to the complex relations in high-dimensional RS feature space and unstable
implementation from each decision tree [17,18,20]. Recently, the feature combination
in multi-source RS data has become another option for obtaining suitable feature sets.
Li et al. [21] constructed a multiplicative model to combine light detection and ranging
(LiDAR) with optical data, and thus improved the estimation accuracy of maize crops.
Based on the form of the vegetation index formula, Zhang et al. [22] proposed a new feature
index that combined optical and LiDAR, which positively impacted AGB estimation.
Although this method enables the integration of spectral and structural information to
improve the accuracy of AGB inversion, it is mainly applied in optical and LiDAR data
sources [21–24]. In addition, the application of large-scale LiDAR data is costly and
logistically prohibitive [7]. These limitations have the potential to restrict the application of
feature combination, and it is thus necessary to develop an alternative solution for other
data sources, such as the freely available and widely archived Sentinel data, which also
contain spectral and structural information.

Developing appropriate inversion models is also a crucial step in estimating AGB.
Parametric and non-parametric models are the two most commonly used models in AGB
inversion [16,25]. The former often includes a limited number of parameters, such as
multivariate linear regression (MLR) and generalized linear models (GLM), which re-
quire the addition of restrictive hypothesis functions between features and AGB [25,26].
However, due to the inherent complexity in the relationship between AGB and RS data,
parametric models often exhibit limited accuracy [27]. Contrary to the parametric models,
non-parametric machine learning models process multidimension complex data by adopt-
ing more flexible mappings, such as the classical RF and support vector regression (SVR)
models [28]. However, for data beyond the boundary of the training samples, RF models
usually fail to make accurate predictions, and the performance of SVR models also depends
heavily on the choice of kernel function [28,29]. These limitations may lead to a loss of
accuracy in AGB estimation. Recently, as a branch of machine learning, deep learning (DL)
techniques have become prevalent [30–32]. As an emerging DL model, the bi-directional
long short-term memory (BiLSTM) neural network can effectively capture the contextual
information in the input feature sequence, which enables it to better understand the pat-
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terns and trends of datasets [33–37]. However, due to the complexity of BiLSTM models,
human selection relying on experience often fails to result in accurate parameters, which
leads to a huge deviation between the accuracy of the training samples and the validation
samples, i.e., the occurrence of overfitting phenomenon [38]. Given the specificity of the
sample data, all machine learning models have the tendency to overfit during the training
process. To tackle these challenges, numerous studies have integrated swarm intelligence
algorithms into models [39–41]. In DL modeling, swarm intelligence algorithms are aimed
at the optimal solution of parameters and quantify it as the fitness function of population;
these algorithms utilize the population’s fitness as an indicator for evaluating the results of
the optimization process and ultimately obtain the best model parameters by repeatedly
and iteratively simulating natural behaviors in populations [42–44]. Compared to classical
algorithms such as genetic algorithms (GA), particle swarm optimization (PSO), and whale
optimization algorithms (WOA), the pigeon-inspired optimization (PIO) algorithm, as a
simulation of pigeon flocks’ homing behavior, has a simple computational principle and
only requires minimal parameter tuning, which greatly reduces computational expenditure
and time cost [45,46].

Based on the aforementioned analysis, this study proposes a novel approach, namely
the combined indices optimized inversion framework based on the PIO algorithm and
the BiLSTM neural network (CIOPB). Firstly, a novel composite index called combined
optical and SAR indices (COSI) has been developed to compensate for the weaknesses in
the existing methods. The index is further divided into five groups, along with the original
image features to determine the optimal feature group for AGB inversion. Subsequently, to
avoid the phenomenon of inaccuracy and overfitting caused by artificial parameter tuning,
we perform PIO iterative optimization for the three parameters in the BiLSTM neural
network. Specifically, after setting the initial population and the number of iterations, the
half mean square error of the predicted response is used as the fitness function, which
eventually achieves a high accuracy for both the training data and the testing data by
repeated simulation and validation. Finally, the CIOPB framework is utilized to perform
AGB estimation in two distinct tree species scenarios and is subsequently compared against
other models. Additionally, it is worth noting that, from the AGB calculation of sample
plots to the proposed COSI index and inversion model, systematic deviations are inevitably
produced throughout the whole workflow, which leads to the uncertainty of results [47,48].
Therefore, this study analyzes these potential challenges and adds the uncertainty of inver-
sion results. In the CIOPB framework, the proposed new indices utilize the global coverage
and free accessibility of Sentinel data, which in principle allows for AGB estimation in wider
regions. Furthermore, the transferability in DL model enables a promising application of
research across different regional environments [49,50].

The structure of this paper is as follows: Section 2 presents the study materials,
while Section 3 describes the methodology for AGB inversion. Finally, Sections 4–6 show
experimental results, provide discussion, and present conclusions.

2. Materials
2.1. Test Site

The test site is located in the southeastern part of Yueyang City, Hunan Province,
China (113◦51′52′′–113◦58′24′′ E, 28◦31′7′′–28◦38′ N, Figure 1), covering a total area of
4762 hectares (ha). The study area is demarcated by higher elevations, and the topography
of this area exhibits a gradual elevation gradient, with higher elevations in the southern
region gradually descending to lower elevations in the north. The study area falls within
the transitional zone from central subtropical to northern subtropical regions and exhibits a
humid continental climate with abundant sunshine and precipitation throughout the year.
The test site primarily consists of evergreen broad-leaved forests with rich and diverse
vegetation species, and there are widespread and structurally complete Castanopsis eyrei
communities in the area, accompanied by Cunninghamia lanceolata and hard broadleaf
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species such as Cyclobalanopsis glauca, Quercus serrata, Zelkova serrata, and other species.
Consequently, the study area offers favorable site conditions for research purposes.
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Figure 1. Geographical location and RS image of the study area.

2.2. Field-Based AGB Calculation

The ground data of this study was obtained from the 2020 Forest Resources Planning
and Design Survey of Hunan Province, China, which was sourced from the experimental
timberland (Lutou timberland) and stored as vector data. The unit of the ground dataset
was small class, which consisted of diverse types of information, including the geographical
coordinates of the sample plots, dominant tree species, tree diameter at breast height
(DBH), and tree height. According to the sampling design methodology described in
the Committee for Earth Observing Satellites (CEOS) AGB validation protocol, a total of
300 forested plots were randomly set up within the timberland boundary, and one plot
was taken from each small class [19,27,48]. Based on the available data, the experiment
was conducted using two distinct tree species. Simultaneously, trees exceeding a height of
1.3 m and with a DBH greater than 5 cm were carefully selected, and their heights, DBHs,
and species were meticulously recorded. By employing the anisotropic growth equations
from Table 1 for different groups of tree species [51,52], the AGB for each category was
calculated individually to determine the biomass for all sample plots (Table 2).

Table 1. The biomass calculation formula for various tree species and groups.

Type Tree Species and Group Biomass Calculation Formula

Category-1 Chinese fir wood and other firs WS = 0.0422
(

D2H
)0.8623; WB = 0.0206

(
D2H

)0.7367

WL = 0.0664
(

D2H
)0.5589; WT = WS + WB + WL

Category-2 Hard broadleaf WS = 0.0545
(

D2H
)0.8630; WS = 0.0155

(
D2H

)0.8737

WS = 0.0145
(

D2H
)0.7444; WT = WS + WB + WL

Note: WT, WS, WB, and WL denote the total AGB value, stem biomass, branch biomass, and leaf biomass,
respectively. D is denoted as the DBH (cm), H is denoted as the tree height (m).

Table 2. Details for 300 plots.

Type Tree Species and Group Number AGB
(Mg·ha−1)

Mean
(Mg·ha−1)

Standard
(Mg·ha−1)

Category-1 Chinese fir wood and
other firs 170 20.57~141.56 66.29 26.15

Category-2 Hard broadleaf 130 10.08~40.74 24.80 4.44
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2.3. Remote Sensing Data and Preprocessing
2.3.1. Optical Data Acquisitions and Preprocessing

The optical image utilized in this study was obtained from Copernicus Open Access
Hub (copernicus.eu) of European Space Agency (ESA). The acquisition of the Sentinel-2
L1C-class product occurred on 19 May 2020, which closely aligned with the timeframe of
the Forest Resources Planning and Design Survey. Furthermore, the acquired Sentinel-2
images exhibited minimal cloud cover. It is worth noting that Sentinel-2 consists of two
satellites, namely 2A and 2B. In this study, we utilized data from the Sentinel-2A satellite,
which encompasses 13 operational bands and offers a revisit time of 10 days per individual
satellite. Each image covers a swath width of approximately 290 km [53]. Considering
that the Sentinel-2 L1C-class product had undergone prior ortho-correction and geomet-
ric correction, the subsequent crucial step involved atmospheric correction, which was
accomplished using Sen2cor 2.8.0 within the SNAP version 9.0 software. To standardize
the resolution of all bands for subsequent analysis, the generated L2A class products were
resampled using the bilinear interpolation with a spatial resolution of 10 m [54].

2.3.2. SAR Data Acquisitions and Preprocessing

The SAR images derived from Sentinel-1 data were acquired via the ESA’s Copernicus
Open Access Hub (copernicus.eu). The specific dates for acquiring the Sentinel-1 images
used in this study are 30 August 2020 and 11 September 2020. Equipped with a C-band
dual-polarized SAR sensor, the Sentinel-1 satellite is capable of transmitting and receiving
signals in both vertical transmit–vertical receive (VV) and vertical transmit–horizontal
receive (VH) polarizations [55]. The primary mode of data acquisition utilized in forest
AGB studies was the interferometric wide (IW) mode. This method involved employing
progressive scan topography observations to cover three sub-regions: IW1, IW2, and IW3.
By adopting this approach, consistent image quality was maintained across the entire
acquired area [56]. The preprocessing procedure for Sentinel-1 data encompassed handling
both single-look complex (SLC) products and multi-look ground range detected (GRD)
products. The processing steps for SLC products included orbit correction, radiometric
calibration, multi-looking with a Range Looks count of 4 and an Azimuth Looks count
of 1, speckle filtering using the Refined Lee filter technique, topography correction, and
geocoding. The preprocessing of GRD products also involved thermal noise processing
and conversion to decibel scale based on the previous ones. Subsequently, this study
employed polarization decomposition to derive the polarization parameters of Sentinel-1
and acquired interferometric parameters using the interferometric synthetic aperture radar
(InSAR) technique. These operations were performed utilizing SNAP version 9.0 software.

2.4. Feature Extraction from Optical and SAR Images

Table S1 presents all the extracted optical features, including ten vegetation indices
and five biophysical parameters. The rationale for selecting these specific vegetation indices
is that a wide use of them has been applied in forest AGB estimation, and these indices
have a good performance in the process of the fusion of multi-source RS data [22,57].
Additionally, previous studies have demonstrated that these five specific biophysical
parameters are effective in reflecting vegetation canopy structure, light energy utilization
efficiency, nutrient status of the plants, and overall growth environment, which is also
beneficial in AGB inversion [7,58]. In this study, the Biophysical Processor S2 toolbox in
SNAP version 9.0 software was utilized to extract five biophysical parameters.

Table S2 presents all the extracted SAR features. Previous studies have demonstrated
the potential of backscattering coefficients and polarization decomposition features for AGB
inversion [7,57,59]. In this study, we employed the H-Alpha Dual Pol method to conduct
polarization decomposition of SLC products, resulting in three polarization parameters:
Entropy, Anisotropy, and Alpha angle. Simultaneously, we extracted the incidence angle
from the ellipsoid along with two backscatter coefficients, σvh and σvv, from GRD products.
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Additionally, the interferometric parameters in Sentinel-1 images have also demon-
strated a positive impact on AGB inversion [60]. Six major steps were undertaken to acquire
the interferometric parameters:

(1) Careful selection and co-registration of images were conducted in this study. The
primary image chosen was the Sentinel-1 image acquired on 30 August 2020, while
the secondary image selected was obtained on 11 September. Additionally, regis-
tration was performed to mitigate errors and rectify pixel-level offsets between the
two images.

(2) Phase flattening was conducted in this study. The presence of the flat earth effect can
significantly complicate subsequent processing, and thus we required removal of it.

(3) Coherence coefficient calculation and filtering were conducted in this study. A window
size of 3 × 3 was utilized for the calculation of coherence coefficients, employing the
maximum likelihood method. The Goldstein Phase Filtering technique was applied
for the purpose of filtering.

(4) The process of phase unwrapping involves the addition of the wrapped phase to the
principal values in order to obtain the true phase.

(5) To mitigate the recurrence of the flat earth effect, refinement and recalibration of
orbital parameters were necessary.

(6) The obtained phases measurements were subsequently converted to elevation values,
and then geocoded to transform the slant-range coordinate system into a geographic
coordinate system. In this study, we obtained phase data, coherence coefficients, and
the digital elevation model (DEM).

3. Methodology

In order to address the limitation of existing methods, this study proposes a CIOPB
framework to estimate AGB. Figure 2 illustrates the process and structure of the
CIOPB framework.
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3.1. Construction of Feature Set
3.1.1. Definition of COSI Feature Indices

To acquire multi-source features suitable for AGB estimation, Zhang et al. [22] drew
inspiration from the principles of vegetation index calculation and devised a novel com-
posite index to effectively integrate LiDAR structural information with Landsat 8 spectral
information. Based on the same principle, we present a pioneering index named COSI
using freely available Sentinel 1 and Sentinel 2 data, which extends prior investigations
on merging optical and LiDAR indices [21–24]. The proposed COSI indices include two
distinct types of indices (COSI1 and COSI2), and the formulations are outlined as follows:

COSI1 = Opticali × SARi (1)
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COSI2 = SARi_Opticali =
SARi −Opticali
SARi + Opticali

(2)

where the SAR variables, represented by SARi, that exhibit the highest sensitivity to
AGB were considered, while Opticali represents the vegetation indices and biophysical
variables. It is important to note that both SARi and Opticali were normalized prior to
calculating COSI2 in order to enable a direct comparison of these metrics on a consistent
scale and range.

In this study, the sensitivity of RS feature variables to the measured AGB was deter-
mined through correlation analysis. Spearman correlation coefficients were calculated for
a total of fifteen optical variables and nine SAR variables, which were divided into two
categories (Figures S1 and S2). Within Category-1, σvh and σvv emerged as the two SAR
variables exhibiting the highest correlation with AGB. Regarding the optical variables, ten
vegetation indices were found to meet the requirement perfectly. Additionally, considering
their physical significance in the biophysical variables and their relatively high sensitivity
to AGB (absolute value of correlation coefficient greater than 0.1), leaf area index (LAI) and
fraction of vegetation cover (FVC) were also considered eligible variables. Equations (1)
and (2) were utilized to combine σvh and σvv with each of the eligible optical variables.

Similarly, in Category-2, the variables Alpha and Anisotropy in SAR demonstrated the
highest correlation with AGB, while only ten vegetation indices exhibited high correlation
among the optical variables. Consequently, Alpha and Anisotropy were combined with
each of these ten vegetation indices. The results from both categories comprised a total of
88 new indices, as presented in Table S3. The Spearman correlation coefficients of these
new indices are displayed in Figure S3.

3.1.2. Setting of Feature Combination Scenarios

To obtain an appropriate feature set, the newly acquired COSI indices were integrated
with the original RS image variables to generate five distinct feature combination scenarios
(Table 3). The rationale for creating these five feature groups is as follows:

(1) Group I comprised all initial variables extracted from Sentinel data (SV) as an un-
transformed comparison group to verify that other groups were able to improve the
accuracy of AGB inversion.

(2) Group II encompassed the COSI1 generated using Equation (1) (COSI1), which aimed
to validate the performance of the designed COSI1 metric in the AGB inversion.

(3) Group III included the COSI2 generated using Equation (2) (COSI2), whose purpose
was to verify the effectiveness of the designed COSI2 indicator in AGB inversion.

(4) Group IV consisted of both COSI1 and COSI2 (ACOSI) to explore whether the mutual
complementarity of COSI1 and COSI2 can improve the precision of results.

(5) Group V encompassed all initial variables and the designed indices (AVI), exploring
the enhancement effect of the combination of these feature variables.

Subsequently, these five feature groups were sequentially incorporated into the inver-
sion model, whose purpose was to analyze the adaptability of each feature group based
on the model’s performance. This approach aimed to compensate for the shortcomings of
existing methods and provide a reliable outcome for effectively estimating AGB.



Forests 2024, 15, 456 8 of 21

Table 3. Variables/indices in each feature group.

Type Groups Variables/Indices Brief Details

Category-1
(Chinese fir wood and

other firs)

Group I (SV) 24 Sentinel variables All initial Sentinel
variables (24)

Group II (COSI1) 24 COSI1 indices All COSI1 indices (24)
Group III (COSI2) 24 COSI2 indices All COSI2 indices (24)

Group IV (ACOSI) 24 COSI1 indices and
24 COSI2 indices

All COSI1 and
COSI2 indices (48)

Group V (AVI) 24 Sentinel variables, 24 COSI1
indices, and 24 COSI2 indices

All variables and
indices (72)

Category-2
(Hard broadleaf)

Group I (SV) 24 Sentinel variables All initial Sentinel
variables (24)

Group II (COSI1) 20 COSI1 indices All COSI1 indices (20)
Group III (COSI2) 20 COSI2 indices All COSI2 indices (20)

Group IV (ACOSI) 20 COSI1 indices and
20 COSI2 indices

All COSI1 and
COSI2 indices (40)

Group V (AVI) 24 Sentinel variables, 20COSI1
indices, and 20 COSI2 indices

All variables and
indices (64)

3.2. Development of AGB Model
3.2.1. Bi-Directional Long Short-Term Memory Neural Network

The BiLSTM model and the PIO algorithm are essential components of the inversion
model. Previous research has demonstrated the generalizability of the BiLSTM model
in prediction tasks, which enables it to extrapolate predictions for new data beyond the
training samples [61–63]. As an extended version of long short-term memory (LSTM),
BiLSTM consists of both forward and backward LSTM layers. Each LSTM layer is composed
of numerous LSTM memory cells, which are utilized to learn the mapping relationship
between input RS features and AGBs [33–36]. Figure S4 illustrates the three gates (input,
forget, and output gates) in a single LSTM memory cell that collectively determine the state
of the LSTM block at runtime. These can be expressed as follows.

it = g(Wixxt + Wihht−1 + bi)

ft = g
(

W f xxt + W f hht−1 + b f

)
ot = g(Woxxt + Wohht−1 + bo)

(3)

ct = ft
◦ct−1 + it

◦c∗t (4)

ht = ot
◦tanh(c t) (5)

where xt, ht, c∗t , and ct represent the input sequence, output sequence, cell activations, and
the memory state at time t, respectively. The input, forget, and output gates are denoted
as i, f , and o, respectively. The symbols g, W, and b represent the activation function,
weight, and bias in each gate, respectively.

The training process of the LSTM is illustrated in Figure S5. The network structure of
the BiLSTM hidden layer can be obtained by combining the forward-passing and backward-
passing LSTM layers (Figure 3); it can be represented as follows.

→
h t = LSTM(xt,

→
h t−1) (6)

←
h t = LSTM(xt,

←
h t+1) (7)

yt = W→
h y

→
h t + W←

h y

←
h t+by (8)
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where
→
h t,
←
h t, and yt represent the implicit state of the forward-passing LSTM layers, the im-

plicit state of the backward-passing LSTM layers, and the final output
sequence, respectively.
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3.2.2. Pigeon-Inspired Optimization Iteration Process

The network’s structure is primarily determined by the number of LSTM memory cells,
making these hidden layer units crucial in the model’s performance. However, relying
solely on subjective judgment and potential bias from individuals poses challenges in
determining the optimal parameters for a model. Moreover, optimal parameters often vary
depending on different input feature sets, resulting in significant time costs associated with
tuning the model.

This study introduces a PIO iterative process for the automatic parameter computation
of BiLSTM (PIO-BiLSTM), aiming to mitigate subjective effects. Compared to other classical
optimization algorithms, the PIO algorithm, inspired by the homing behavior of pigeon
flocks in nature, has a fast and simple computation with minimal parameter tuning, which
greatly reduces the operational cost [45,46]. In Figure 4a, the rightmost grey pigeon
represents the optimal flight direction, while thin arrows and thick arrows respectively
indicate the previous flight direction and adjusted flight direction.
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landmark operator model.

The position and velocity of the pigeon, denoted as Posi and Vi, respectively, are
update-based on the D-dimensional search space. The state of the ith pigeon at the tth itera-
tion can be expressed as follows.

Vi(t) = Vi(t− 1)·e−Rt + rand·(Best_pos− posi(t− 1)) (9)

Posi(t) = Posi(t− 1) + Vi(t) (10)
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where Best_pos, R, and rand represent the current optimal position within the global search
space, the influence of map and compass, and a random number, respectively.

The blue circle positioned at the center in Figure 4b signifies the iterative destina-
tion of the pigeon flock, indicating that the pigeons within will promptly reach their
intended destination.

Np(t) =
Np(t− 1)

2
(11)

Posc(t) =
∑ Posi(t)· f itness(Posi(t))

Np∑ f itness(Posi(t))
(12)

Posi(t) = Posi(t− 1) + rand·(Posc(t)− Posi(t− 1)) (13)

where Np, Posc(t), and f itness represent the number of flocks reduced per iteration, the
center position at the tth iteration, and the quality of the flock, respectively.

The search space in this study was defined as a three-dimensional optimization aimed
at determining the optimal values of the three parameters, namely Initial Learn Rate, L2
Regularization, and Hidden Layer Units.

Best_pos =
[

Best_pos(1), Best_pos(2), Best_pos(3)
]

(14)

The three parameters, meanwhile, were subjected to the physical limitations of the
neural network structure and thus required a constraint on their value range.

1× 10−10≪ Best_pos(1) ≪ 1× 10−2

1× 10−4≪ Best_pos(2) ≪ 2× 10−3

10≪ Best_pos(3) ≪ 100
(15)

The loss function of the model was employed as the objective function for PIO iterative
optimization, and the f itness(·) in Equation (12) was also computed based on this loss
function, which can be expressed as follows.

L =
1
2

N

∑
i=1

(
yobser

i − ypred
i

)2
(16)

where yobser
i , ypred

i , and N represent the observed AGB values without back-normalization,
the predicted AGB values without back-normalization, and the sample size, respectively.

After iterative updates of the pigeon flock, optimal solutions for these three parameters
were obtained in this study. The Hidden Layer Units represented the number of LSTM
memory cells, which ultimately determined the network structure of the BiLSTM layer.
Subsequently, after passing through multiple network layers of BiLSTM, the input variables
were connected to the regression layer to derive predicted values for AGB.

3.3. AGB Model Validation

This study employed plots data (N = 74, total in both categories) that were not involved
in model construction as independent test samples, and these were randomly selected
from the 300 sample plots data in the study area, with the ratio of training data and testing
data close to 3:1. The two datasets delineated were not close spatially. To assess the
performance of the proposed CIOPB framework, the results of the regression model were
quantitatively analyzed using the coefficient of determination (R2), mean absolute error
(MAE in Mg·ha−1), root mean square error (RMSE in Mg·ha−1), and relative RMSE (RMSEr
in %) to assess both accuracy and applicability.

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (17)
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MAE =
∑n

i=1|yi − ŷi|
n

(18)

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
(19)

RMSEr =

√
n−1∑n

i=1(yi − ŷi)
2

y
(20)

where yi, ŷi, y, and n represent the observed AGB value, predicted AGB value, mean value
of observed AGB, and number of samples, respectively.

3.4. Uncertainty Analysis

The systematic deviations inherent in the AGB inversion framework contribute to
the uncertainty in the results. These deviations consist primarily of differences in the
measurement of individual wood parameters, biases present in the anisotropic growth
model, and errors arising from plot sampling and model predictions [47,64,65]. In this
study, the total uncertainty of the AGB estimation consisted of three error sources (these
error sources were assumed to be random and independent), which were propagated
through the following equations:

εtotal =
(

ε2
measurement + ε2

anisotropic growth + ε2
sampling and prediction

)1/2

(21)

σ(s) = CV(s) ∗ µAGB (22)

εmeasurement represents measurement errors for tree-level parameters averaged at sam-
ple plot scale, which were assumed to be 10% based on Chave et al. [66] and Mitchard
et al. [67]. εanisotropic growth represents the bias in calculating the AGB of sample plots using
the anisotropic growth model. According to Zhou et al. [51] and Chave et al. [66], this paper
set the value of εanisotropic growth at 11%. The sampling and model prediction error was
denoted by εsampling and prediction. This study adopted the results from the Guangzhou site of
Réjou-Méchain et al. [68], which divided subplots at spatial resolution size in plot data and
quantified the local variability using the coefficient of variation (CV) of the subplot AGBs
to estimate the sampling error. This site was similar to our study area in terms of climate,
topography, and forest types. Subsequently, the standard deviation (SD) of the AGB (σ(s))
for subplots of spatial resolution size was obtained by multiplying the CV of the subplot
(CV(s)) by the mean AGB in the plot (µAGB) through Equation (22). Due to the random-
ness of the testing set division possibly making the training data spatially close to the testing
data [64,69,70], this paper adopted the Monte Carlo method of Li et al. [64] to simulate

new residual values, εβ, which were assumed to obey a normal distribution, ε
∼
N
(
0, σ2(s)

)
.

Until the results tended to be stable, the RMSEr after m simulations was used as a metric to
quantify the εsampling and prediction.

4. Results
4.1. Performance of the CIOPB Framework in AGB Inversion

Five feature groups were incorporated into the inversion model within the CIOPB
framework (Table 4), and the corresponding optimal model parameters are presented in
Table S4. Remarkable enhancements in AGB estimation were observed across all cate-
gories for the COSI groups (COSI1, COSI2, ACOSI, and AVI) when compared to the initial
SV. In Category-1, a significant improvement was noted in ACOSI’s R2 value, which in-
creased from 0.6079 to 0.8055 when compared to SV. The MAE decreased by 36.1% (from
13.8437 Mg·ha−1 to 8.8475 Mg·ha−1), RMSE decreased by 29.4% (from 17.4063 Mg·ha−1

to 12.2876 Mg·ha−1), RMSEr decreased by 7.6% (from 25.7413% to 18.1715%), and the
uncertainty, εtotal , decreased by 6.2% (from 29.7257% to 23.4777%). Additionally, it is worth
noting that COSI2 exhibited inferior performance compared to ACOSI, with an R2 value of
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0.8042, MAE of 8.7933 Mg·ha−1, RMSE of 12.3277 Mg·ha−1, RMSEr of 18.2308%, and εtotal of
23.5236%. The R2 value for AVI in Category-2 exhibited a remarkable improvement from
0.5293 to 0.7956 when compared to SV. Moreover, the MAE decreased by 36.6% (from
2.6972 Mg·ha−1 to 1.7103 Mg·ha−1), RMSE decreased by 34.1% (from 3.4727 Mg·ha−1 to
2.2887 Mg·ha−1), RMSEr decreased by 4.8% (from 14.1109% to 9.3000%), and the εtotal de-
creased by 3.0% (from 20.4968% to 17.5354%). Notably, ACOSI and AVI were identified as
the best feature groups in Category-1 and Category-2, respectively, while COSI1 and COSI2
also demonstrated commendable performance levels. These results validate the significant
enhancement of AGB inversion accuracy achieved by the proposed COSI indices, thereby
confirming its potential application.

Table 4. Performance in five feature groups of the proposed CIOPB framework.

Method Type Feature Group R2 MAE
(Mg·ha−1)

RMSE
(Mg·ha−1)

RMSEr
(%)

Uncertainty
(εtotal, %)

CIOPB

Category-1

SV 0.6097 13.8437 17.4063 25.7413 29.7257
COSI1 0.7275 9.8412 14.5438 21.5081 26.1457
COSI2 0.8042 8.7933 12.3277 18.2308 23.5236
ACOSI 0.8055 8.8475 12.2876 18.1715 23.4777

AVI 0.7714 9.3391 13.3197 19.6979 24.6781

Category-2

SV 0.5293 2.6972 3.4727 14.1109 20.4968
COSI1 0.7426 1.7872 2.5680 10.4348 18.1627
COSI2 0.7081 1.9121 2.7345 11.1113 18.5597
ACOSI 0.7091 2.0317 2.7300 11.0930 18.5487

AVI 0.7956 1.7103 2.2887 9.3000 17.5354

Note: The best values of each type of evaluation metric were put in bold.

As illustrated in Table 2, the two categories of tree species in plot data with different
AGB distributions and forest age classes. Specifically, Category-1 demonstrates a wider
range of AGB distribution (ranging from 20.57 Mg·ha−1 to 141.56 Mg·ha−1), with a more in-
tricate structure and composition of age classes within forests, whereas Category-2 displays
a narrower span of AGB (ranging from 10.57 Mg·ha−1 to 40.47 Mg·ha−1), indicating a more
homogeneous structure and age class composition. These differences between the tree
species resulted in divergent performances on the testing data, with Category-1 possessing
broader AGB predictions and larger values for the evaluation metrics, while Category-2
showed more aggregated results. For the COSI application, it is worth noting that there
was no significant difference in the enhancement between the two tree species, thereby
highlighting the applicability of the proposed framework for AGB inversion.

To enhance the visualization of the CIOPB framework’s performance in AGB inver-
sion, this study generated scatter plots illustrating the correlation between predicted and
observed AGB values (Figure 5). The 1:1 line depicts the congruity between forest AGB
predictions and actual measurements. The fitting effect of the four COSI groups was sig-
nificantly more pronounced compared to SV. Among these groups, ACOSI exhibited the
most effective fitting for Category-1, while AVI demonstrated the best fitting for Category-2.
The trend lines of these two groups exhibited minimal deviation from the 1:1 line in their
respective scatter plots. Moreover, commendable fitting outcomes were also observed
in the COSI2 of Category-1 and COSI1 of Category-2. However, it was evident that SV
yielded the poorest fitting results in both categories, with predicted values significantly
deviating from the observed values at most data points, showing the limitations associated
with employing the initial image features from SV as input variables for the inversion
model. The above experimental results highlight that the amalgamation of optical and SAR
features in COSI resulted in a noticeable reduction in errors between AGB predictions and
observations, further substantiating the superior efficacy of COSI in AGB inversion.
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sample in the testing set; the black line indicates the 1:1 fit line between the observed and predicted
values; and the red line indicates the fit trend.

4.2. Forest AGB Inversion Mapping

The inversion was conducted for the entire study area based on two categories of
experimental tree species, and the spatial distribution reference map of AGB obtained
through the CIOPB framework is presented in Figure 6. The total AGB in the study
area was estimated to be 5.25 × 105 Mg, with a mean value of 110.35 Mg·ha−1. In or-
der to account for non-forested areas, a few AGB values below 0 Mg·ha−1 were consid-
ered as underestimations of biomass and were standardized to 0 Mg·ha−1 during the
mapping process.
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In addition, for the CIOPB framework’s predictions across the region, there are still
uncertainties in the results due to the series of errors analyzed in Section 3.4. Therefore,
this study added an uncertainty layer to the map after integrating the impact of systematic
deviations and random errors on the model’s predictions. As shown in Figure 6, the
uncertainty in the model’s predictions for most of the region was located in the 0%–20%
and 20%–40% ranges, which roughly matched the results on testing data. For the highest
uncertainty ranges, this was mainly due to non-forested areas or other minimal vegetation
cover mixed with non-forested cover.

5. Discussion
5.1. Performance of COSI Indices in Different Models

Within the proposed CIOPB framework, the application of COSI significantly im-
proved the accuracy of the PIO-BiLSTM models. However, it has not been demonstrated
whether the application of COSI achieves similar effects in other models. Therefore, to
further explore the effect of COSI, all feature groups were also employed to estimate AGB
in BiLSTM, LSTM, RF, and SVR models. These four models were selected because the
proposed CIOPB framework was constructed on the principles of the BiLSTM and LSTM,
while RF and SVR were used as the classical AGB inversion model for comparison. The
outcomes were aggregated for comparative purposes (Table S5 and Figure S6).

Results demonstrated that all methods exhibited superior performance in the four
COSI groups compared to the initial image features in SV. In both categories, the four
COSI groups demonstrated a significant improvement in R2, ranging from 0.106 to 0.266
compared to SV, accompanied by a notable reduction in MAE by 8.8% to 36.6%, a decrease
in RMSE by 10.4% to 34.1%, and a decrease in RMSEr by 2.3% to 7.6%. For all methodolo-
gies considered, ACOSI and AVI remained as the optimal feature group for Category-1
and Category-2, respectively. Additionally, COSI was also effective in reducing model
uncertainty. These observations demonstrated that the COSI indices significantly improved
the accuracy of inversion in each model, regardless of the specific inversion model used.
Furthermore, there was no significant difference in performance improvements between
the two categories of tree species, thus further validating its potential for AGB inversion.
The findings are consistent with previous research on optical and LiDAR data, where the
incorporation of combined indices has consistently led to improved accuracy in estimating
AGB [21–24]. However, the integration of optical and SAR data has been rarely explored in
these studies, presenting an opportunity for our research.
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5.2. Accuracy Comparison Using Different Models in AGB Prediction

To validate the proposed PIO-BiLSTM model, the optimal feature group was incor-
porated into the other models to conduct comparative experiments (refer to Table 5 and
Figure 7). Specifically, the BiLSTM models based on GA, PSO, and WOA algorithms
(GA-BiLSTM, PSO-BiLSTM, WOA-BiLSTM) were used to validate the performance of
the selected PIO iterative process; BiLSTM was introduced as the base model to explore
whether the optimization algorithms have the effect of improving the model’s accuracy, and
LSTM, RF, and SVR were used as the classical machine learning models for comparison.
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Figure 7. Scatterplots of the observed AGB and model-predicted AGB using the eight methods in
two categories. Note: figures depict the different inversion models from the best feature group in two
categories, including (a,i) PIO-BiLSTM, (b,j) GA-BiLSTM, (c,k) PSO-BiLSTM, (d,l) WOA-BiLSTM,
(e,m) BiLSTM, (f,n) LSTM, (g,o) RF, and (h,p) SVR. The blue dots indicate the observed and predicted
values for each sample in the testing set; the black line indicates the 1:1 fit line between the observed
and predicted values; and the red line indicates the fit trend.
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Table 5. Performance of the eight models from the best feature group in two categories.

Type Methods R2 MAE
(Mg·ha−1)

RMSE
(Mg·ha−1)

RMSEr
(%)

Uncertainty
(εtotal, %)

Category-1

PIO-BiLSTM 0.8055 8.8475 12.2876 18.1715 23.4777
GA-BiLSTM 0.7650 10.8897 13.5051 19.9720 24.8974
PSO-BiLSTM 0.6381 10.4832 16.7606 24.7864 28.9027

WOA-BiLSTM 0.6475 10.7770 16.5418 24.4628 28.6257
BiLSTM 0.6407 11.4658 16.6998 24.6965 28.8256
LSTM 0.6194 13.0287 17.1868 25.4166 29.4449

RF 0.5551 13.1109 18.5823 27.4805 31.2438
SVR 0.5228 15.6670 19.2453 28.4610 32.1096

Category-2

PIO-BiLSTM 0.7956 1.7103 2.2887 9.3000 17.5354
GA-BiLSTM 0.7801 2.0185 2.3737 9.6454 17.7210
PSO-BiLSTM 0.6912 1.7760 2.8129 11.4301 18.7523

WOA-BiLSTM 0.6893 2.1223 2.8212 11.4638 18.7728
BiLSTM 0.6154 2.2621 3.1392 12.7558 19.5885
LSTM 0.5955 2.1561 3.2193 13.0813 19.8020

RF 0.5099 2.4915 3.5434 14.3982 20.6956
SVR 0.4632 2.6754 4.0584 16.4909 22.2025

Note: The best values of each type of evaluation metric were put in bold.

Compared to other models, the proposed PIO-BiLSTM model achieved significantly
higher accuracy in AGB inversion (Category-1: R2 = 0.8055, MAE = 8.8475 Mg·ha−1,
RMSE = 12.2876 Mg·ha−1, RMSEr = 18.1715%; Category-2: R2 = 0.7956, MAE = 1.7103 Mg·ha−1,
RMSE = 2.2887 Mg·ha−1, RMSEr = 9.3000%), indicating a greater level of consistency be-
tween predicted and observed AGB. In these results, there was an improvement ranging
from 0.0280 to 0.3076 in the average R2 values for two tree species, while the average MAEs
for two tree species decreased by 17.0% to 39.8%, the average RMSEs decreased by 6.3%
to 39.9%, the average RMSErs decreased by 1.1% to 8.7%, and the average uncertainty for
two tree species decreased by 0.8% to 9.0% compared to other models. For the other three
classical optimization algorithms, the GA-BiLSTM model showed the smallest gap com-
pared with PIO-BiLSTM, but the GA optimization process has paid a huge computational
expenditure in AGB inversion. Notably, the accuracy of PSO-BiLSTM and WOA-BiLSTM
did not deviate much from the BiLSTM and LSTM models, which fitted well to the middle
range of AGB values but generated some underestimates at both high and low values. The
BiLSTM and LSTM models faced challenges in parameter selection and overfitting during
training. Only by utilizing the parameters obtained from the CIOPB framework (Table S4)
and fine-tuning them could a relatively good inversion accuracy be obtained. These results
demonstrate that the optimization process can significantly reduce the cost and uncertainty
in model parameter selection. Moreover, it was obvious that both the RF and SVR mod-
els demonstrated the worst model performance, which presented extremely significant
deviations in scatterplot analysis. The superiority of DL models over machine learning
models in this study can be attributed to their multi-layer neural network structure, which
facilitates the systematic learning of features and patterns within data [16,71]. Furthermore,
because the base units in BiLSTM and LSTM vary with each time step, there are distinct
strengths of both models in dealing with time series [33–36]. Ge et al. [33] demonstrated
the feasibility of LSTM models for forest height time-series monitoring, which enables a
promising prospect in biomass monitoring changes.

Moreover, both machine learning and DL models have a good potential for tasks
in other areas [49]. However, for the transferability of AGB models, there have been
fewer studies on it [50]. In future research, we aim to consider employing more DL
models with swarm intelligence algorithms and validate the transferability of these models
with additional study areas and tree species to compensate for the limitations of our
current work.
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5.3. Uncertainty of AGB Inversion Using the CIOPB Framework

The proposed CIOPB framework has achieved significant enhancements in terms
of both features and models. However, the systematic deviations inherent in the AGB
inversion workflow enable the framework to still leave room for further improvement. In
the CIOPB framework, uncalibrated measurement tools and human error allow tree-level
measurement errors to propagate into the anisotropic growth model [47]; furthermore, the
randomness in plot sampling and testing set delineation is also an important error source,
which may generate potential uncertainty in prediction results. Based on the methods and
results of previous studies [47,64–68,72,73], this paper analyzed the uncertainty generated
in the CIOPB framework (Section 3.4) and added the uncertainty layer of the output AGB
map (Figure 6) in a relatively ideal state [74]. The results revealed that the uncertainty of the
CIOPB framework on the testing set samples ranged from 17.5354% to 29.7257% (Category-
1: 23.4777% to 29.7257%; Category-2: 17.5354% to 20.4968%), with lower uncertainty using
the optimal feature group than other groups. Compared to other models, the PIO-BiLSTM
model in this framework showed the lowest uncertainty, and the average uncertainty for
two tree species decreased by 0.8% to 9.0%. Furthermore, the AGB spatial distribution
reference map produced by the CIOPB framework is also subject to uncertainty due to
the above-mentioned errors. Our result showed that the uncertainty in most regions
lies in the 0%–20% and 20%–40% intervals, which was approximately in line with the
performance on the testing set; the majority of the regions with extremely low AGB have
the highest uncertainties, which was consistent with Rodríguez-Veiga et al. [65]. Their
research utilized the maximum entropy (MaxEnt) algorithm to estimate AGB, uncertainty,
and forest probability, which provided a more accurate spatial distribution compared to
existing AGB map products [65]. For the uncertainty of results, most of these originate
from the systematic deviation of plot-level data, which are hard to quantify intuitively due
to the complexity of their sources. Moreover, in machine learning, there is always only a
single testing dataset to evaluate the accuracy of AGB estimation results, while ignoring the
residual variability produced by the model. The analysis of these errors is precisely lacking
in most of the current AGB estimation studies, leading to potentially unreliable modeling
results. In order to minimize the impact of uncertainty on the results, a comprehensive
analysis of the errors in the AGB inversion workflow is a necessity for future research to
improve the inversion accuracy.

6. Conclusions

The significance of forest AGB in the global carbon cycle and its contribution to
mitigating climate change cannot be overstated. RS and DL technologies play a pivotal role
in achieving precise and efficient inversion of forest AGB. However, there are unresolved
issues with the current methodology, such as limitations on the acquisition of suitable
feature sets, challenges associated with selecting model parameters, and susceptibility to
overfitting. Therefore, a CIOPB framework integrating Sentinel-1 and Sentinel-2 images
was proposed to address the existing challenges in the construction of feature sets and
models for AGB estimation.

The proposed methodology encompasses the acquisition of feature sets and the con-
struction of an inversion model within a unified framework. Specifically, we established
an innovative index that combines optical and SAR data to identify the most effective
feature group. Additionally, we incorporated a PIO iterative process into the BiLSTM
neural network to determine optimal parameters, effectively addressing challenges related
to parameter selection and overfitting. To evaluate the performance of this framework, we
conducted comparative analyses using other classical optimization algorithms and machine
learning models and discussed the systematic deviations with uncertainty generated in
the workflow. All methods were employed for estimating AGBs in two tree species with
different compositions and structures. The following conclusions were drawn:

(1) The incorporation of the designed COSI indices significantly enhanced the accuracy
of forest AGB inversion by constructing suitable feature sets. When considering the
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influence of different tree species and inversion models on features, COSI indices
consistently outperformed the initial image-extracted features. The combination of
ACOSI demonstrated an appropriate feature group in Category-1, while utilizing AVI
proved to be the most effective feature group in Category-2.

(2) The PIO-BiLSTM model demonstrated superior performance in two categories
(Category-1: R2 = 0.8055, MAE = 8.8475 Mg·ha−1, RMSE = 12.2876 Mg·ha−1,
RMSEr = 18.1715%; Category-2: R2 = 0.7956, MAE = 1.7103 Mg·ha−1,
RMSE = 2.2887 Mg·ha−1, RMSEr = 9.3000%) when compared to the GA-BiLSTM,
PSO-BiLSTM, WOA-BiLSTM, BiLSTM, LSTM, RF, and SVR models. The average
MAEs decreased by 17.0% to 39.8% and the average RMSEs decreased by 6.3% to
39.9%, while the average RMSErs decreased by 1.1% to 8.7%. Additionally, the aver-
age uncertainty for two tree species decreased by up to 9.0% compared to the other
models. It is worth noting that there was no significant difference in the enhancement
effect of the PIO-BiLSTM model between these two categories of trees.

Compared to existing methods, the CIOPB framework has demonstrated commend-
able results in achieving cost-effective and precise AGB inversion for subtropical forests,
and it also has great potential for application in different environmental regions and AGB
change monitoring. Moving forward, we aim to fully leverage the proposed methodology
by validating it on a larger scale encompassing diverse tree species and forest types, while
also integrating cutting-edge algorithms to optimize computational efficiency.
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