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Abstract: The growing awareness of the health advantages offered by forests has underscored
the significance of forest exposure as an upstream preventive measure against disease. While
numerous studies have confirmed the physical and mental health benefits associated with forests,
there is still a lack of quantitative understanding regarding the relationship between forest exposure
and physiological health benefits (PHB). Particularly, there is insufficient knowledge about the
threshold effects derived from short-term forest exposure. In this study, we propose a PHB threshold
model for assessing forest exposure that introduces the concepts of efficiency threshold and benefits
threshold. A pilot study was conducted in three typical natural forest sites to validate the proposed
model. Electroencephalogram (EEG) was continuously measured as the physiological indicator,
while meteorological, environmental, and demographic factors were simultaneously collected. The
results show that: (1) the proposed PHB threshold model is applicable in a natural forest environment;
(2) despite the longer time required to reach the PHB thresholds, forest exposure yielded more
significant and prolonged health benefits compared to urban green spaces; (3) meteorological factors,
such as temperature and relative humidity, play a crucial role in impacting the PHB threshold model;
and (4) exposure to forests is better for deep thinking and relaxation than urban green spaces. These
findings emphasize the potential of forests to offer a respite from the stresses of modern life and
promote holistic well-being.

Keywords: human health; forest bathing; ecosystem service; threshold model; forest healthcare

1. Introduction

Exposure to natural environments, particularly forests, has been extensively researched
and shown to offer numerous health benefits [1–4]. Research suggests that being in forest
settings can effectively prevent the occurrence of stress and stress-related diseases [4–7],
which is crucial considering the adverse impact of chronic stress on physical and mental
well-being. In addition to stress reduction, forest exposure has been associated with a
reduced risk of various diseases and overall mortality in the population [8]. Spending
time in forests has been found to regulate blood pressure and alleviate psychological
disorders like anxiety and depression [1]. Immersion in forests has also been associated
with improved immunity, enhanced sleep quality, and better memory [9]. Some scholars
have conducted research on the impact of forest environments on the health of forest
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visitors, identifying the qualitative and quantitative chemical components of various types
of forest air, and finding that the structure of terpenes may be responsible for the positive
health effects of forests [10,11]. As a result, forest exposure is gaining recognition as an
important way to promote social and human health, providing more effective preventive
measures than dealing with the “downstream” health consequences of disease [12].

Several theoretical frameworks support the physiological health benefits (PHB) of
forests. Attention Recovery Theory [13], Stress Recovery Theory [14], and Biophilia Hy-
pothesis have all confirmed the positive effects of forests on human physiological health.
These healing effects of forest environments have been applied to promote public health
and address health inequalities [4,15]. To further explore the underlying mechanisms and
potential interventions to maximize the health benefits of forest exposure, an increasing
amount of research has begun to focus on quantifying the relationship between forest
exposure and PHB. Dose-response assessment quantitatively reflects the probability and
extent of human health effects based on specific levels and conditions of natural expo-
sure [3,10,14,15]. Research has indicated that the dose-response curve for the health benefits
of forest exposure may not follow a linear pattern [16]. Threshold effects and diminishing
marginal returns have also been observed [3,17].

Despite the potential advantages of the dose-response framework, it is less explicitly
used in the context of the nature-PHB linkages [4,16]. Limited studies have focused on
investigating the relationship between urban green space exposure and its effects on human
health, and these studies have shown that nature exposure can enhance both physical and
mental well-being within a short timeframe [17,18]. For instance, Kondo et al. [19] found
that emotional changes in response to urban green space were more significant within
10 min compared to within 30 min, indicating that the relationship between exposure to
green spaces and emotional changes may be temporary. Another study by Yao et al. [12]
proposed a PHB threshold model and found that the desired thresholds for urban green
space exposure can be attained within a short period of time. However, it remained unclear
whether exposure to forests can achieve the same threshold of effects as compared to
artificial green infrastructure. In today’s fast-paced modern lifestyle, people have limited
opportunities and time to connect with forests, which further emphasizes the importance
of gaining a deeper understanding of this issue to fully comprehend and harness the
therapeutic benefits of forests.

To effectively track the short-term effects of forest exposure on physical health, it is
crucial to select appropriate PHB indicators for real-time monitoring. Several studies [20,21]
have suggested that indicators such as brainwaves, heart rate, blood pressure, and salivary
gland secretion can provide valuable insights into the immediate physiological responses
related to nature exposure. Moreover, it is important to consider factors that may influence
the dose-response relationship and thresholds. Population-level studies indicate that de-
mographic factors including age, gender, and frequency of nature exposure play significant
roles in determining the PHB associated with nature exposure [12,17,22]. Furthermore, field
studies have highlighted the significance of meteorological factors such as temperature, hu-
midity, and wind speed in influencing the physiological responses to nature exposure [16].
Therefore, it is crucial to consider these demographic and meteorological factors when
analyzing the effects of forest exposure on physical health.

In this study, we drew upon the PHB threshold model proposed by Yao et al. [12]
and utilized a combination of “efficiency threshold” and “benefit threshold” along with
calculations of AUCg (the area under the curve of the ground) and AUCi (area under the
curve of increase), to construct a physiological health threshold model for forest exposure.
We selected participants as subjects and monitored their electroencephalogram (EEG) data
and simultaneously recorded various external factors in forests to investigate the health
effects on individuals or groups exposed to real natural forest environments [23]. Through
the pilot study conducted in three representative forest sites, we hope to explore the
following scientific questions: (1) Is the constructed PHB model for forest exposure feasible?
Are there thresholds for forest exposure? (2) Will the threshold model be influenced by
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demographic, environmental, and/or meteorological factors? (3) Are there any differences
between the thresholds observed in forests and those in urban green spaces? By conducting
this study, we can not only enhance and expand the theoretical knowledge regarding
nature exposure and its associated health benefits but also develop more specific and
comprehensive approaches for planning and maintaining forests.

2. Materials and Methods
2.1. Physiological Health Benefit Threshold Model

The threshold model for quantifiable PHB of forest exposure was constructed, tak-
ing inspiration from the urban green space threshold model proposed by Yao et al. [12]
(Figure 1). The structural framework of the model is as follows: (1) First, the exposure
time in the forests is plotted on the X-axis, while physiological index data such as EEG,
heart rate, blood pressure, skin temperature, and heart rate variability are plotted on the
Y-axis to construct a dose-response curve. (2) To capture the various shapes of the curves,
functional models such as growth/decline stable, U-shaped, or inverted U-shaped are
utilized for curve fitting. (3) The efficiency threshold and benefit threshold are determined
using the law of diminishing marginal interest. These thresholds help identify the point at
which maximum efficiency and benefits are achieved. (4) AUCg and AUCi are calculated
based on the trapezoid rule. These AUC metrics have been applied in studies investigating
the relationship between nature exposure and health [10,19]. It is important to note that
our study focused primarily on short-term PHB of forest exposure. Studies that require
long-term testing were not considered.
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2.2. Definitions and Calculations of Thresholds and AUC

In the proposed PHB threshold model, the concepts of efficiency threshold and benefit
threshold have been employed to determine how forest exposure can lead to the fastest
and greatest health benefits, taking into account diminishing marginal benefits. Assuming
a continuously differentiable function y = f (x) represents that the relationship between
exposure time and PHB (Figure 1), as x increases, the y value initially either increases or
decreases. However, at a certain point, the slope of the curve gradually decreases. This
point is defined as the efficiency threshold, where the benefit growth is maximized. As
x continues to increase beyond the efficiency threshold, it eventually reaches a specific
point where the slope of the curve gradually decreases to zero. This point is known as the
benefit threshold, indicating that the PHB has reached its maximum (or minimum) value or
has stabilized (Figure 1). After reaching the benefit threshold point, the benefit will either
stabilize or decrease with long-term exposure.

The concepts of AUCg and AUCi were introduced by Pruessner et al. They are based
on the commonly used concept of AUC, which is a method to evaluate dose-response
relationships. In recent years, AUCg and AUCi have been applied in studies investigating
the relationship between nature exposure and health benefits [12,21]. To calculate AUCg
and AUCi, the integration method based on the trapezoidal rule can be used (Figure 1). For
a continuously differentiable function f (x) on the interval [a, b], the calculation of AUCg
can be expressed using the following formula:

AUCg =
∫ b

a
f (x)dx

Similarly, AUCi can be calculated using the following formula:

AUCi =
∫ b

a
f (x)dx − min( f (a), f (b)) ∗ (b − a)

where, f (x) represents the value of the physiological indicator of the fitted curve at x, and
dx is a smaller horizontal length. It is important to note that the overall trend of the curve
after forest exposure may increase or decrease. Therefore, when calculating AUCi, it is
necessary to determine the values of f (a) and f (b) accordingly.

2.3. Case Studies

To validate the proposed PHB model for forests, a pilot study was conducted in Jingn-
ing County (longitude 119◦41′45′′ E, latitude 27◦53′53′′ N) in China. Three representative
forest sites were selected: Caoyutang, Daji, and Meiqi. Given the high proportion of
forested land and diversity of tree species found at the three proposed test sites, these sites
exhibit significant ecological diversity. They provide the ideal habitat for firs, cypress trees
and a variety of other plants to grow, creating a lush, healthy forest environment. Therefore,
these sites were chosen for the experiment (Table S1). The selection of these sites ensures
that they have typical characteristics of natural forests and demonstrate effective restoration
results. To evaluate this, several measures were taken, including the perception recovery
scale (PRS), green vision rate (GVI), and sky proportion (Text S1, Table S2). The experiment
was carried out over four days, specifically during late autumn, from 13 November to
16 November 2023. The time frame for conducting the experiment was set from 8:30 a.m.
to 5:30 p.m.

The experimental design aimed to investigate the difference between open-eye (OE)
and closed-eye (BF) conditions to verify whether the established PHB threshold model is
applicable to forest exposure. The experiment consisted of multiple trials, with each trial
involving two participants—one from the OE group and one from the BF group. During
the entire experiment, a total of 52 individuals completed the test, providing a diverse
sample for analysis. Demographic information, such as age, gender, and other relevant
factors, was collected for each participant.
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2.3.1. Experimental Procedure

When developing the experimental procedure, we considered previous studies that
have demonstrated that physiological health indicators can be measured within 5–10 min of
exposure to green spaces [3,19]. To obtain a more accurate assessment of the physiological
health threshold benefit, we set the experiment time to 20 min, with 16 min dedicated to
forest exposure. The overall process involved the following steps (Figure 2): (1) participants
filled in relevant personal information and questionnaires; (2) participants were provided
Emotiv EPOC X EEG earphones (EMOTIV Inc., San Francisco, CA, USA); (3) participants
were asked to complete a pressure test lasting 4 min; and (4) participants were exposed to
the natural forest in a seated position for 16 min. The pressure tests required participants
to perform complex mathematic calculations while loud music played. In the OE group,
participants viewed the green space through a 1.2 m viewfinder to control variables and
ensure consistent visual exposure. In the BF group, participants wore an eye mask (Figure 2).
The whole process lasted approximately 40 min.
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Figure 2. Research area and experimental locations (a), and experimental procedure (b). And experi-
mental procedure: (1) fill out personal information questions; (2) wear EEG headphones; (3) pressure
test; and (4) two participants were exposed in the natural forest with eyes open or blindfolded.

2.3.2. Participants’ Basic Information and Meteorological Data Collection

A total of 52 participants, including 20 women and 32 men, took part in the experiment.
The age of the participants ranged from 18–56 years. The participants included tourists,
forestry staff, and volunteers recruited in advance within the university. All participants
confirmed that they had no history of physical or mental disorders. Prior to the experiment,
the details and purpose of the experiment were thoroughly explained to the participants,
and their informed consent was obtained. This ensured that they were fully aware of the
experimental procedures, potential risks, and their rights as participants. Throughout the
course of the experiment, we strictly adhered to the ethical standards set by the China
Science Ethics Committee, as well as the relevant guidelines outlined in the 1964 Declaration
of Helsinki and its subsequent amendments. These ethical standards ensure the protection
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of participants’ rights, privacy, and well-being during any scientific research involving
human subjects.

The information questionnaire for the participants was mainly divided into four parts
(Text S2): (1) data collection of perceptual recovery scale (Table S2); (2) World Health Organi-
zation Well-being Index data collection (WHO-5 questionnaire) (Table S3); (3) demographic
data collection (including gender, age, BMI, occupation and other personal information)
(Table S4); and personal data surveys (frequency of exposure to forests, alcohol or tobacco
use, etc.) (Table S4).

The meteorological data were collected using DJ-509 automatic microclimate measure-
ment system (Dianjiang Tech. Co., Ltd., Shanghai, China). The recorded meteorological
factors include air temperature (Ta), relative humidity (RH), wind speed (Ws), atmospheric
pressure (AP), and light intensity (L) (see Text S3 and Table S5 for details). Measurements
were taken at a height of 1.2 m from ground level and recorded at one-minute intervals.
This approach ensures that the collected data reflects the microclimate in which human
exposure occurs.

2.3.3. EEG Data Collection and Pre-Processing

In this study, EEG was used as the physiological index to evaluate individuals’ short-
term response to forest exposure. The EEG data was measured using a non-invasive Emotiv
EPOC X EEG headset (EMOTIV Inc., San Francisco, CA, USA). With 14 channels aligned
with the international 10–20 position system, the device is able to accurately record brain
response data at a sampling frequency of 128 Hz. The recorded data are transmitted
wirelessly to the associated computer. The reliability and accuracy of the headset have been
demonstrated in previous studies [20,24]. To minimize potential external factors that could
influence brain waves during EEG measurement, participants were instructed to maintain
stillness and remain quiet throughout the experiment.

We used the EEGLAB toolbox in MATLAB R2022b to process the original EEG data.
The entire process includes electrode positioning, removal of unwanted electrodes, re-
reference, filtering, independent component analysis (ICA) artifact removal. The processed
data are converted into a spectrum for subsequent analysis using discrete Fourier Transform.
Based on frequency band information, spontaneous EEG activity can be divided into
different frequency bands.

In this study, several representative EEG indexes were selected as physiological health
indicators (Text S4): (1) relative α, β and θ index, (2) β/α index, and (3) relative (α + θ)
index. Higher relative α index indicates relaxation, while elevated relative β indices are
associated with stressful situations, anxiety, or the need for concentration. Participants
with a higher β/α index experienced greater levels of stress, whereas those with a lower
β/α index tended to be more relaxed and calmer [25]. θ waves with higher amplitude are
linked to physical recovery, repair, and emotional stability. Values of relative (α + θ) index
are associated with rumination.

2.3.4. Data Analysis

Using MATLAB R2022b, the pretreated EEG data was divided into two stages: the
pressure test stage (0–4 min) and the forest exposure stage (4–20 min). To improve accuracy,
the data was further processed by fitting curves, with calculations performed every 30 s.
Subsequently, a line chart was generated to analyze the preliminary change trends of each
EEG index (Text S5).

A Generalized Logistic Function was utilized to fit the curves. The fitting process was
achieved using the minimize function from the optimize module of Python’s scipy package
(Python-3.11). This involved iterative optimization to minimize the difference between the
values predicted by the fitting function and the actual data (Table S6). The fitting process
was controlled by setting tolerance levels and the maximum number of iterations, resulting
in improved curve fitting and facilitating the quantification of dose-response relationships.
Moreover, multivariate analysis of variance (MANOVA) was employed to explore the
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significant correlation between AUCg and AUCi in different groups. Additionally, the
Spearman correlation method was utilized to investigate the factors influencing the PHB
threshold model of forest exposure (Text S6).

In the process of multiple linear regression analysis, estimation models were con-
structed considering environmental factors such as temperature and wind speed, as well as
demographic factors such as gender and age, multiple regression. To prevent the model
from becoming too complex and potentially overfitting, variable screening was performed
before establishing the regression estimation model. Variable screening involved several
steps. Firstly, a random forest regression was conducted on all variables, aiming to identify
the top 8 variables with the highest importance. Subsequently, a collinearity test was
performed on these variables to eliminate any variables with variance inflation factor (VIF)
values greater than 5. Finally, the initially screened variables were included in the full subset
regression for final screening [26]. To assess the contribution of each selected variable and
obtain the adjusted estimation model R2 (to account for the influence of the variable count
on R2), variance decomposition was carried out. For this purpose, the “randomForest” and
“MuMin” packages of R-4.1.3 software were utilized for random forest regression and full
subset regression, respectively. Additionally, the “rdacca. hp” package of R-4.1.3 software
was employed for conducting the variance decomposition [27].

3. Results
3.1. Thresholds and AUC of PHB of Different Indices

In both the OE (open-eyed) group and the BF (blindfolded) group, nearly all of the
selected EEG indexes showed a positive effect when participants were exposed to a natural
forest environment. This finding suggests that being in a forest setting helped improve
participants’ overall psychological and physiological well-being, leading to a state of
relaxation and deep thinking. However, it is worth noting that the relative α index and
relative (α + θ) index of the BF group showed a negative effect (Figure 3b,h). The negative
effects can be attributed to the fear and anxiety experienced by blindfolded participants in
the natural forest [28]. The heightened state of alertness and apprehension experienced by
blindfolded participants in the BF group may have hindered their ability to fully relax and
benefit from the calming and restorative qualities of the forest. This could have impeded
their capacity to achieve a state of deep thinking and fully immerse themselves in the
experience. This is in contrast to the participants in the OE group who had visual access to
the forest surroundings and did not experience the same level of fear and anxiety.

The results of the curve-fitting analysis showed that in the OE group, the efficiency
threshold was observed around the 3rd minute, while the benefit threshold appeared
between the 8th and 9th minute. In contrast, in the BF group, the efficiency threshold
occurred within the first 1–3 min, and the benefit threshold was observed between the 6th
and 8th minutes (Figure 3). Additionally, we conducted a comparison of AUCg and AUCi,
and examined the disparities between the OE group and the BF group regarding forest
exposure. The findings provide compelling evidence revealing a substantial difference:
the AUCg of the OE group was 61% higher than that of the BF group, while the AUCi
value for the OE group was found to be an impressive 6.7 times greater than that of the
BF group. This significant difference indicates that visual perception plays a vital role in
delivering health benefits through forests. Interestingly, during the exposure experiment,
the relative α index and relative (α + θ) index of the OE group showed a positive effect,
while no thresholds were observed (Figure 3a,g). This result suggests that in cold seasons,
entering a state of relaxation, deep thinking, or meditation may require a longer exposure
time to reach optimal efficiency and maximize the associated benefits.
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3.2. Factors Affecting the Threshold Model of PHB

Overall, meteorological factors have a significant impact on the PHB threshold model
of natural forest exposure (refer to Figure 4 and Table S7 for details). It can be observed that
temperature (Ta), wind speed (Ws), and light intensity (L) are generally positively corre-
lated with multiple indicators of relative β index, while they are negatively correlated with
multiple indicators of relative α index and the β/α index, showing significant correlations.
On the other hand, relative humidity (RH) and air pressure (AP) are mainly negatively cor-
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related with multiple indicators of relative β index and positively correlated with multiple
indicators of relative α index, the β/α index, and the correlation are also significant.
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Figure 4. Heat map of Spearman correlation analysis of factors influencing the physiological health
effect threshold model. Physiological indicators: A: relative α index; B: relative β index; BA: β/α
index; AT: relative (α + θ) index; 1: AUCg; 2: AUCi; 3: efficiency threshold (x); 4: efficiency threshold
(y); 5: benefit threshold (x); 6: benefit threshold (y). Participants’ basic information: Pl: age; P2: BMI;
P3: major; P4: green space exposure frequency; P5: WHO-5 scores; P6: whether they smoke or not;
P7: whether they drink. Meteorological data: M1: Ta; M2: RH; M3: Ws; M4: AP; M5: L; M6: oxygen
concentration; M7: carbon dioxide index.

4. Discussion
4.1. Significance of PHB Threshold Model in Forest Exposure

Nature exposure is a multidisciplinary field that combines ecology and population
health. Threshold models, such as the PHB threshold model, have been widely recog-
nized and utilized to address various issues related to urban ecology, healthcare, and
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climate change [29,30]. In the context of forest exposure, it is important and meaningful
to introduce the PHB threshold model to quantify short-term health benefits. Previous
studies conducted in urban green spaces have confirmed the presence of efficiency and
benefit thresholds for obtaining physiological health benefits through exposure to these
spaces [12]. Building upon existing models, this experiment specifically investigates forests
as the target environment. Notably, for the first time, this study provides empirical evi-
dence that confirms the applicability of the PHB threshold model in investigating forest
exposure. The results obtained from this study provide valuable insights and guidance to
enable individuals to make better use of forests and maximize the health benefits derived
from such exposure. This research contributes significantly to the field by expanding our
understanding of the relationship between forest exposure and human health, particularly
in terms of physiological effects.

The PHB threshold model serves as a valuable tool for quantifying the intricate
relationship between forest exposure and human health, providing a solid foundation
for future research endeavors to delve deeper into this topic and broaden our theoretical
understanding. Furthermore, studying the health benefits associated with forest exposure
establishes a strong theoretical basis for exploring the practical implications of nature
exposure on human health. Broadening the implementation of the PHB threshold model
to encompass different types of forests characterized by diverse tree species composition,
structural features, and aesthetic landscape values will prove invaluable in deepening our
understanding of the benefits derived from forest exposure. This approach will provide
significant insights into optimizing the effects of forest environments on human health
and well-being.

4.2. Significance of Meteorological Factors in Impacting the PHB Threshold Model

The β/α index refers to the ratio between β wave activity (associated with active
cognitive processing) and α wave activity (associated with relaxation and calmness) in
the brain. It is considered the most appropriate measure among all EEG indicators for
assessing a participant’s relaxed and calm state. Therefore, the β/α index was chosen
as a proxy for PHB to further examine the contributions of various impacting factors
to the threshold model of PHB. After conducting random forest regression analysis, a
multiple linear regression analysis was performed on the top 8 variables obtained from
the measured forest exposure data. These variables included meteorological factors such
as Ta, RH, Ws, environmental factors such as CO2 concentration, as well as demographic
factors like age and BMI. The results indicate that Ta, RH, Ws, AP, and CO2 concentration
exhibit higher rates of explanation for both the efficiency and benefit thresholds. As for
AUCg and AUCi, Ta, RH, AP, L, and CO2 concentrations show higher interpretation rates.
This suggests that in forests, lower RH and AP, as well as higher Ta, Ws, and L, may
lead to higher PHB of participants. However, it may also result in slower achievement
of benefit and efficiency thresholds. In terms of demographic factors, age is inversely
correlated with several physiological indicators, although the correlation is not significant.
Occupation may be a factor influencing the PHB threshold model. Participants working in
environmental protection-related professions and landscape architecture may require more
time to reach the thresholds of the relative α index and the relative (α + θ) index, while the
thresholds for efficiency and benefit may be relatively low. Overall, the findings suggest
that meteorological factors play a dominant role in explaining the observed patterns, while
environmental and demographic factors also contribute to some extent.

It is important to highlight that the selected variables in this study accounted for
only 57.9%, 60.3%, 55.7%, and 65.3% of the total variance in the efficiency threshold,
benefit threshold, AUCg, and AUCi, respectively (Figure 5). The remaining unexplained
variance, approximately 40%, suggests the existence of other factors that could potentially
impact the PHB model. These factors, such as landscape aesthetics, atmospheric volatile
organic compounds (VOCs) concentration, and air pollution, were not measured in this
research but should be taken into account in future studies [31–33]. By considering these
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additional variables, a more comprehensive understanding of PHB of forest exposure
can be achieved. Studying the impact of meteorological factors on the PHB threshold
model can provide valuable insights for forest managers and policy makers, enabling
them to adapt their approaches to forest management accordingly. This knowledge can
guide the implementation of appropriate measures, such as reforestation efforts, adjusting
harvesting practices, or implementing conservation strategies that account for the specific
meteorological conditions of a region. Consequently, this will lead to more effective
decision-making processes aimed at maintaining and improving the health and resilience
of forests.
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4.3. Comparison of PHB between Exposure to Forests and Green Spaces

This study found that there are efficiency and benefit thresholds for PHB model asso-
ciated with forest exposure, similar to what has been observed in urban green spaces [10].
In the BF group, the PHB model used in forests allows for faster attainment of both the
efficiency and benefit thresholds compared to urban green spaces. This discrepancy can be
attributed to the fact that the BF group relied solely on auditory information and was unable
to visually perceive the benefits of forests and urban green spaces. The noise levels in urban
environments are generally higher than in forests, which may hinder the closed-eye group
from reaching the efficiency and benefit thresholds within the required time and depth.
However, in the natural forest environment, natural sounds such as the wind, flowing
water, and birds chirping can facilitate faster achievement of health thresholds [34].

Conversely, in the OE group, it took longer to reach the efficiency and benefit thresh-
olds for forest exposure compared to urban green space exposure (Table 1). This can be
explained by the fact that the OE group experienced a broader and more consistent forest
landscape in forests, while the urban green space was smaller in size and stood out amidst
the gray cityscape, potentially stimulating the participants to reach the thresholds at a faster
pace [35].
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Table 1. Comparison of efficiency threshold and benefit threshold between natural forest and urban
green space.

Group EEG Index

Natural Forest Urban Green Space *

Efficiency
Threshold Benefit Threshold Efficiency

Threshold Benefit Threshold

x (min) y x (min) y x (min) y x (min) y

OE Relative α index / / / / 1 0.10 6 0.11
Relative β index 3 0.29 9 −0.30 1 0.19 4 0.16
β/α index 3 −0.68 8 −1.13 1 2.11 8 1.63
Relative (α + θ) index / / / / / / / /

BF Relative α index 1 0.13 6 0.08 4 0.12 12 0.20
Relative β index 3 0.07 8 0.06 4 0.15 6 0.14
β/α index 1 3.60 6 2.17 4 1.61 10 0.98
Relative (α + θ) index 3 0.05 8 0.01 4 0.32 12 0.40

Notes: “OE” refers to the open-eye group, and “BF” corresponds to the blindfolded group. * Data of urban green
space were sourced from Yao et al. [10].

Despite the longer time required to reach the thresholds, the OE group’s experience
in the natural forest yielded more significant and prolonged health benefits (Figure 3).
The AUCg and AUCi values of the OE group exposed to the natural forest were higher
than those exposed to urban green spaces [36]. This suggests that the slower pace of
reaching the thresholds for forest exposure was compensated by the enhanced quality of
the health benefits received. The extended duration and superior health effects can be
attributed to the participants experiencing a wider and more consistent forest landscape
compared to the urban green spaces. The natural forest setting allowed for a deeper and
more profound engagement with nature, ultimately leading to greater physiological well-
being [37]. Furthermore, during the experiment, the relative (α + θ) index of the OE group
increased in the natural forest while it decreased in the urban green space. This opposing
effect indicates that the noisy and cluttered environment of urban green spaces is not
conducive to people concentrating and entering a state of deep contemplation, such as
meditation [34].

Overall, we can conclude that individuals can obtain more PHB in natural forest
environments compared to urban green spaces. This finding serves as a valuable reference
for future construction and management of urban green spaces with the aim of enhancing
their health benefits. When developing urban green spaces, it is important to prioritize
nature-based solutions to create landscapes that resemble forests. Maintaining a large area,
providing a wider green field of view, and ensuring effective noise reduction are crucial
factors to enhance the physiological health benefits of urban green spaces.

4.4. Limitations

This study has certain limitations that should be addressed: (1) The experiment’s
test duration was limited, resulting in irregular curve shapes in the collected EEG data
during fitting. Consequently, it becomes challenging to determine the threshold point of
certain individual EEG indicators using the established PHB threshold model. To overcome
this limitation, it is essential to extend the duration of future tests for a more accurate
determination of the threshold point. Additionally, increasing the diversity of physiological
indicators considered will enhance the reliability and applicability of the findings. (2) This
study did not account for the impact of different seasons on meteorological factors. To
better understand the relationship between forest exposure and health benefits, long-term
monitoring should be conducted, taking into account seasonal variations. This would
provide valuable insights into the effect of changing weather conditions on individuals’
well-being. (3) The pilot study involved a small number of participants, consisting of 52 in-
dividuals from various backgrounds, including landscape architects, university faculty,
students, and forest rangers. While the sample size is sufficient to support the experiment,
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future studies should aim to increase the sample size. Doing so will enhance the accuracy
and generalizability of the model, allowing for more robust conclusions about the impact
of green space exposure on health benefits. (4) The experiment would benefit from consid-
ering additional factors that may influence the health benefits of forests. By incorporating a
broader range of variables, such as landscape aesthetics, air quality, environmental biodi-
versity, allergenic plant pollen and noise levels, researchers can gain a more comprehensive
understanding of the multifaceted factors associated with the health benefits derived from
natural environments [38,39].

5. Conclusions

We propose a physiological health benefits (PHB) threshold model for forest exposure.
Through this pilot study, we utilized EEG data to confirm the applicability of the PHB
model. The results demonstrate the crucial role meteorological factors play in affecting the
PHB threshold model. Despite the longer time required to reach the PHB thresholds, forest
exposure yields more significant and prolonged health benefits compared to urban green
spaces. Overall, we can conclude that individuals can obtain more PHB in natural forest
environments compared to urban green spaces.

This study provides valuable insights into quantifiable relationships between exposure
to forests and physical health benefits. However, the PHB model of forest exposure is
still in the preliminary stage and requires further consideration of impacting factors and
additional physiological health indicators. The proposal of this model can enrich and
improve the theoretical knowledge of nature exposure and related health effects. The
conclusions of this model can provide practical suggestions for the public to conduct more
targeted forest rehabilitation activities, and for policymakers to design more efficient forest
management strategies.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/f15030555/s1, Text S1. The present situation of the experimental site
is the site element. Text S2. Participant information collection. Text S3. Environmental meteorological
factors information collection. Text S4. More representative EEG evaluation indexes were selected.
Text S5. The preprocessing of original EEG data. Text S6. The process of fitting a curve. Table S1. Main
tree species at the study site. Table S2. Descriptive statistics of Perceptual Recovery Scale (PRS) scores.
Table S3. World Health Organization Five Physical and Mental Health Indicators (WHO-5). Table S4.
Participant information collection. Table S5. Environmental meteorological factors information
collection. Table S6. Parameters and residual standard error of the fitted fourth-order logistic function.
Table S7. Spearman’s correlation analysis of the effect of covariates on changes in health indicators.
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