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Abstract: The swift and non-destructive classification of wood species holds crucial significance
for the utilization and trade of wood resources. Portable near-infrared (NIR) spectrometers have
the potential for rapid and non-destructive wood species identification, and while several studies
have explored related methodologies, further research on their practical application is needed. To
address this research gap, this study proposes a multi-scale convolutional neural network (CNN)
combined with a portable NIR spectrometer (wavelengths range: 908 to 1676 nm) for wood species
identification. To enhance the capability of directly extracting robust features from NIR spectral
data collected by a portable spectrometer, the Gramian angular field (GAF) method is introduced to
transform 1-dimensional (1D) NIR spectral data into 2-dimensional (2D) data matrices. Furthermore,
a multi-scale CNN model is utilized for direct feature extraction. The representation by 2D matrices,
instead of 1D NIR spectral data, aligns with 2D convolutional operations and enables a more robust
extraction of discriminative features. In the experimental phase, eight wood species were identified
using the proposed method, alongside commonly used multivariate data analysis and machine
learning (ML) methods. The StratifiedGroupKFold dataset partitioning approach and five-fold
cross-validation were used. Additionally, nine spectral preprocessing methods were compared, and
principal component analysis (PCA) was used for feature extraction in the ML method. Evaluation
metrics, such as accuracy, precision, and recall, were adopted to assess the performance of the
methods. The proposed multi-scale CNN model, in combination with 2D GAF matrices of the 1D
spectral data, yielded the most accurate results with a mean accuracy of 97.34% in the five-fold
validation. These findings present a new approach for the construction of a rapid, non-destructive,
and automatic wood species identification method using a portable NIR spectrometer.

Keywords: wood species identification; near-infrared spectroscopy; convolutional neural network;
machine learning; feature extraction

1. Introduction

Wood materials, recognized as crucial renewable resources, play a significant role in
various sectors such as construction, furniture, and packaging [1]. The increasing activities
related to the processing, utilization, and trading of wood raw materials and products have
heightened the technological demand for the on-site, swift, and non-destructive identi-
fication of wood species [2]. However, traditional wood species identification relies on
experienced professionals who assess samples based on their macroscopic and microscopic
characteristics. This approach demands a significant time investment from experienced
wood anatomists to prepare wood slices [3], and it frequently encounters challenges in
the identification of wood samples at the species level [4]. The rapidly evolving field of
computer-aided identification techniques has stimulated the exploration of non-destructive,
on-site methods for the rapid identification of wood species, aiming to address the limita-
tions of traditional identification method. The near-infrared (NIR) spectroscopy technique,
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characterized by minimal sample preparation, non-destructive detection, rapid operation,
cost-effectiveness, and on-site deployability [5], stands out as an auxiliary technology for
on-site wood species identification. However, the practical application of the portable NIR
spectrometer requires further investigation.

Compared to other wood species identification techniques, NIR spectroscopy identifi-
cation technology relies on modeling methods. The construction of an appropriate model is
one of the key factors for the successful identification of wood species. The current methods
for wood species identification based on NIR spectral data modeling can be classified into
two categories, the first of which comprises multivariate data analysis methods. Partial
least squares for discriminant analysis (PLS-DA) and principal component analysis (PCA)
are the two most commonly used multivariate data analysis methods in the identification
of wood species via NIR spectroscopy. NIR spectra modeled by PLS-DA have been re-
ported to distinguish true mahogany wood from wood species exhibiting similar features
under varying sample conditions [6–9]. This approach has also been used to successfully
classify seven Dalbergia species [10], identify six endangered species in Amazon tropical
forests [11], and differentiate the origin of wood samples [12]. NIR spectroscopy coupled
with PCA has been reported to classify softwood and hardwood samples from ancient
wooden statues [13] and identify five softwood species [14]. However, multivariate data
analysis methods comprise linear models. These methods, which are based on linear as-
sumptions, lack sufficient flexibility, making it difficult to adapt to complex data structures
or nonlinear relationships. For example, the anisotropy of wood and its intricate industrial
setting pose challenges to the effectiveness of these methods.

Methods belonging to the second category involve the utilization of machine learning
(ML) modeling. ML methods involve the introduction of a nonlinear model to fit the NIR
spectral data of different wood species, and include the support vector machine (SVM),
k-nearest neighbors (KNN), and random forest (RF) models. In a study of twelve types
of wood identified by NIR spectroscopy combined with three nonlinear and two linear
ML modeling methods, Luo et al. reported that the nonlinear models were more effective
than the linear models [15]. However, optimal feature engineering is necessary for ML
classifiers. The features extracted by the designed feature engineering may not be optimal
for the identification of unknown samples, possibly leading to constrained generalization
capabilities. Moreover, the separation of the classifier selection process from the feature
extraction process renders the classifier sensitive to specific features, potentially causing
instability in the identification accuracy during practical applications.

Deep learning (DL) is a branch of ML. The rapidly developing DL technique overcomes
certain disadvantages of ML classifiers and provides an advanced method for the direct
extraction of features from high-dimensional data [16]. Convolutional neural networks
(CNNs), which are excellent algorithms used in DL approaches, are renowned for their
capability to enhance performance in image (two-dimensional (2D) data) classification [17].
This method has also been introduced into NIR spectroscopy modeling [18]; to match NIR
spectral data (one-dimensional (1D) data), a 1D convolutional kernel is used in the model,
and the result is called the 1D CNN model. In the investigations of Yang et al. [1] and Pan
et al. [19], the integration of 1D CNN with NIR spectra resulted in the more successful
identification of wood species as compared to conventional NIR spectral modeling methods.
While encouraging results were reported, it is crucial to note that laboratory analytical
spectrometers were used in these studies.

The portable NIR spectrometer provides numerous benefits for on-site analysis, with
advantages including a compact size, affordability, ease of analysis, a user-friendly sam-
ple interface, and portability [20]. Some studies have investigated the feasibility of the
combination of the portable NIR spectrometer with multivariate data analysis methods
for wood species identification [8,9,21,22]. However, no study has reported the use of
a portable NIR spectrometer combined with DL methods for the same purpose. The
reason for this may be that, compared to laboratory analytical spectrometers, portable
instruments commonly have shorter wavelengths and lower resolution. Therefore, the
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1D convolution operation of the CNN model cannot directly extract robust features from
short-wavelength NIR spectral data with the same effectiveness as the data obtained by
laboratory analytical spectrometers.

Numerous studies have proven that the CNN method can achieve state-of-the-art
performance for the extraction of features from 2D data. Inspired by the high performance
of the CNN in 2D image data classification, the transformation of shorter 1D NIR spectral
data to 2D data may enhance the ability of the CNN model to extract robust features
from shorter-wavelength NIR spectral data. Therefore, this study introduces the Gramian
angular field (GAF) method [23] to encode 1D short-wavelength NIR spectral data as 2D
matrices, and these 2D matrices are then combined with a multi-scale CNN model for wood
species identification to bridge the existing research gap. Eight species from five genera of
Fabaceae were used in this study to evaluate the efficacy of the proposed method. Among
these species, Dalbergia balansae, Dalbergia obtusifolia, and Dalbergia szemaoeasis are identified
as excellent host tree species for lac insects, capable of producing shellac, thus holding
considerable economic value, leading to cultivation in southern China. Additionally, the
wood derived from these three species is of superior quality and is highly regarded for
furniture and handicraft production. However, unlike the other species, untreated wood
from Dalbergia balansae is prone to insect infestation and necessitates insecticide treatment
prior to utilization. Both Dalbergia balansae and Dalbergia szemaoeasis are categorized as
endangered species and are listed in the Endangered category of the International Union
for Conservation of Nature (IUCN) Red List. Maackia amurensis possesses beautiful grain
patterns, ease of processing, and exceptional resistance to decay, rendering it an excellent
material for architectural and fine furniture purposes, with export potential. Cladrastis
delavayi and Cladrastis sinensis, commonly cultivated as roadside trees, offer wood suitable
for construction. Erythrina stricta serves as an outstanding pioneering tree species, suitable
for furniture making, art carving, and similar applications. Derris robusta also presents
practical value. Consequently, these woods necessitate identification and classification in
trade and processing utilization.

This research makes two important contributions. First, a multi-scale CNN model is
created for combination with a portable NIR spectrometer for wood species identification.
Second, the GAF method is introduced to convert low-resolution and short-wavelength NIR
spectral data into 2D data. The aim is to improve the capability of the CNN model to extract
features directly from the NIR spectral data, thereby enhancing wood species identification.

2. Materials and Methods
2.1. Sample Preparation and NIR Spectra Collection

Eight wood species within the Fabaceae family were used in the experiment conducted
in this study. As listed in Table 1, all samples were assigned the species ID in the xylarium of
Southwest Forestry University. Furthermore, 30 samples from each species were randomly
selected, and it was ensured that they were without defects and from distinct trees. The
average thickness, width, and length (longitudinal) sizes of these samples were 15, 80, and
150 mm, respectively. The NIR spectral data were obtained from two transverse sections of
each sample, which were carefully sanded using grits 400, 800, and 1000, sequentially, to
avoid surface oxidation before spectral data collection. As shown in Figure 1, a transverse
section picture of the polished surface for Dalbergia szemaoeasis is presented.
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Table 1. The samples of wood species used in the study.

Number Scientific Name Genus Family Specimen ID

1 Cladrastis delavayi
Cladrastis

Fabaceae

SWFUW-H00968
2 Cladrastis sinensis SWFUW-H00973

3 Dalbergia balansae
Dalbergia

SWFUW-H00978
4 Dalbergia obtusifolia SWFUW-H00980
5 Dalbergia szemaoeasis SWFUW-H00983

6 Derris robusta Derris SWFUW-H00984
7 Erythrina stricta Erythrina SWFUW-H00985
8 Maackia amurensis Maackia SWFUW-H00987
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Figure 1. A transverse section picture of the polished surface for Dalbergia szemaoeasis.

The portable MicroNIR™ 1700 OnSite spectrometer (Viavi Solutions, Inc., Chandler,
AZ, USA) was used for NIR spectral scan. This device has a wavelength range between
908 and 1676 nm with a resolution of ~12.5 nm and an interval between wavelengths of
6.2 nm, which allows for the acquisition of 125 wavelength bands for absorbance values
in a spectrum. The spectrometer was held directly against the transverse section of the
wood sample for spectral scanning in the experiment. A standard polytetrafluoroethylene
whiteboard provided by the equipment manufacturer was used for instrument calibration.
The spectrometer was recalibrated with the whiteboard after 30 min. Before conducting
spectral measurements, consecutive numbers from 1 to 30 were assigned to each sample
representing individual species. Spectra obtained from the same sample were treated
as belonging to the same group, with the group number matching the assigned sample
number. Four spectra were scanned from different points on each transverse section, and
eight spectra were scanned for each wood specimen, resulting in a total of 240 spectra for
each species.

2.2. 1D NIR Spectral Data to 2D Data Transformation

In the proposed method, the GAF method is used to convert 1D NIR spectral data into
2D data by mapping the NIR spectral data onto an angular coordinate system. As shown in
Figure 2, given 1D NIR spectral data P =

{
p1,p2, . . . pk . . . pn

}
consisting of n wavelength

bands, P is first scaled to the range of −1 to 1, or 0 to 1, to obtain P. Consequently, the
normalized spectral data P are represented in an angular coordinate system by representing
the values as the angular cosine (φ) and the wavelength bands as the radius (r). The φ and
the r are calculated according to Equation (1):{

φ = arccos
(
Pk

)
,−1 ≤ Pk ≤ 1, Pk ∈ P

r = wk
C

, (1)

where wk is the spectral wavelength band value and C is a constant factor. Then, after
the rescaled 1D NIR spectral data are transformed into the polar coordinate system, the
NIR spectral correlation with the different wavelength bands can be identified by the
trigonometric sum/difference between each point. The sum/difference calculations result
in two different 2D NIR spectral Gramian matrices, respectively known as the Gramian
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summation angular field (GASF) and the Gramian difference angular field (GADF), which
are respectively defined by Equations (2) and (3):

NIRGASF =
[
cos

(
φi +φj

)]
= PT × P −

√
I − P2

T

×
√

I − P2, (2)

NIRGADF =
[
sin

(
φi −φj

)]
=

√
I − P2

T

× P − P ×
√

I − P2, (3)

where I represents the row vector. Finally, two 2D data matrices representing different
features of NIR spectral data in different modes are obtained by the transformation. The
NIR GASF and GADF matrices have dimensions of n × n, where n corresponds to the
number of wavelength bands in the provided NIR spectral data. Therefore, 1D NIR spectral
data with dimensions of 1 × 125 are transmitted into two 2D data matrices with dimensions
of 125 × 125 and one channel. To maximize the information in the data, the two 2D matrices
are concatenated along channels to obtain data with dimensions of 125 × 125 and two
channels (Figure 2). These data can be directly used as the inputs of the 2D CNN model
when the input layer of the CNN model is modified to receive the data with two channels.
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2.3. CNN Model Architectures

The convolutional operation of CNN methods involves the operation of the convolu-
tion kernel on a local region of the input data. Consequently, the 1D NIR spectra represented
by GAF matrices could enhance the data alignment with the convolution operation, thus
facilitating the extraction of more robust discriminative features. The extraction of features
of different scales from 2D data is crucial for the classification capability of the model due
to the consideration of the features expressed by the data matrix.

Therefore, to achieve better feature extraction and wood species identification, the two
CNN model frameworks shown in Figure 3 are proposed and are respectively referred to as
the NIR-Net and NIR-Inception models [24]. The Inception module can effectively capture
multi-scale features by simultaneously employing convolutional kernels of different sizes
(1 × 1, 3 × 3, 5 × 5) and pooling layers. Hence, the Inception block is introduced in
the designed multi-scale CNN model framework to achieve better feature extraction. As
illustrated in Figure 4, convolution kernels with sizes of 7 × 7, 9 × 9, and 11 × 11 are added
to the base Inception block to effectively capture multi-scale features from the data. In the
NIR-Net model, nine convolution layers are included. The first two layers have kernel
sizes of 11 × 11 and 9 × 9 with a stride of one, respectively, and the other six layers have
kernel sizes of 3 × 3 with a stride of one. A batch normalization layer is connected after the
ninth layer, and two max-pooling layers with a pooling size of 3 × 3 and a stride of two are



Forests 2024, 15, 556 6 of 15

connected to the second and ninth layers. The third, fifth, and seventh layers of NIR-Net
are replaced by the modified Inception module, resulting in the new NIR-Inception model.
In both models, 64 filters are used in the first eight layers, and 128 filters are used in the
ninth layer. A fully connected layer is employed in the model, the outputs of which are
used for classification.
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2.4. Dataset Partitioning and Model Evaluation

The StratifiedGroupKFold method was employed for the partitioning of the spectral
dataset in this study. In contrast to the direct utilization of the K-fold partitioning method,
the group number of samples (as described in Section 2.1) is also a parameter for the
StratifiedGroupKFold method. The method aims to divide the dataset with the constraint
of non-overlapping groups between divided parts and maintain the percentage of samples
for each class to the greatest possible extent. Consequently, spectra from the same sample
only appear in either the training or testing data in each training–testing process. This
ensures that spectra from the same sample do not simultaneously appear in both the
training and testing datasets. Five-fold cross-validation with the StratifiedGroupKFold
partitioning method was applied in this experiment, and the average was considered the
final result.

All modeling experiments were conducted using Python (version 3.9) with scikit-learn
(version 1.2.2), Keras (version 2.6.0), and TensorFlow (version 2.6.0). Accuracy, precision,
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and recall serve as identification metrics for the proposed model and are respectively
calculated using Equations (4)–(6):

Accuracy =
TP + TN

TP + TN + FP + FN
, (4)

Precision =
TP

TP + FP
, (5)

Recall =
TP

TP + FN
, (6)

where TP represents true positives, TN represents true negatives, FP represents false
positives, and FN represents false negatives.

3. Results and Discussion

The first segment of this section centers on assessing the effectiveness of NIR GAF
matrices in conjunction with the proposed CNN model for wood species identification. The
second segment involves the implementation of nine spectral preprocessing methods on the
spectral data to determine an optimal choice for NIR spectra from a portable spectrometer
within the proposed methodology. Finally, the comparative analysis of the proposed
approach and two nonlinear ML methods is reported.

3.1. Efficacy of NIR GAF Matrices Combined with the CNN for Wood Species Identification

The dimensions of the 1D NIR spectral data collected by the portable spectrometer
were 1 × 125. These 1D spectral data were converted into 2D GAF data matrixes with two
dimensions, namely 125 × 125 and 63 × 63, respectively, to determine suitable dimensions
for species identification. Subsequently, the concatenated data matrices with two chan-
nels served as the inputs of the NIR-Net and NIR-Inception models to demonstrate their
effectiveness. Furthermore, the performance of the NIR-Net and NIR-Inception models
was compared with that of the 1D NIR-Net and 1D NIR-Inception models in which 1D
convolution was used instead of 2D convolution, and 1D NIR spectral data were used
directly as inputs. For an effective comparison, the widely used PLS-DA multivariate data
analysis method was employed for testing the 1D portable NIR spectral data.

As depicted in Table 2, when 1D NIR spectral data were directly used, the PLS-
DA method achieved mean accuracy, precision, and recall values of 88.3%, 88.9%, and
87.9%, respectively, in the five-fold cross-validation; these are similar to the identification
results of the 1D NIR-Net model. Moreover, the numbers of components in the PLS-
DA method were compared, and the optimal number in each fold from 1 to 20 was
selected. Similarly, the parameters of the 1D NIR-Net and 1D NIR-Inception models were
also compared and selected in the training-validation process. For the 1D NIR-Inception
model, the mean accuracy, precision, and recall values of 92.0%, 92.5%, and 91.8% were
respectively obtained, thereby slightly surpassing the results of the PLS-DA and 1D NIR-
Net models. Regarding the identification results obtained by the 2D NIR GAF matrices in
conjunction with the proposed CNN model, the optimal result was achieved when using
GAF matrices with dimensions of 63 × 63 combined with the NIR-Inception model. This
resulted in a mean accuracy of 96.6%, a mean precision of 96.7%, and a mean recall of
96.6%. These results signify an approximately 4% enhancement in the performance of
the model as compared to the 1D NIR-Inception model, and about an 8% improvement
as compared to the PLS-DA method. Although the NIR-Net and NIR-Inception models
combined with the 125 × 125 NIR GAF data did not achieve the best results, they attained
mean accuracies of 95.6% and 94.6%, respectively. These values represent respective
improvements of approximately 8.6% and 2.6% in model performance as compared to the
corresponding 1D NIR spectral model. It should also be noted that, in the same model,
the use of 63 × 63 GAF data achieved a better result than the outcome obtained by the
use of 125 × 125 GAF data. This difference can be attributed to the use of the piecewise
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aggregation approximation method in the GAF method to modify the dimensions of the
NIR spectral data to obtain a designed data size [23]. The GAF data dimensions of 125 × 125
indicate that the NIR spectral data were not subjected to an aggregation process; however,
the dimensions of 63 × 63 indicate that the NIR spectra underwent 2-point piecewise
aggregation approximation. This demonstrates that 63 × 63 GAF data are more suitable
for wood species identification via the proposed method.

Table 2. The identification results of different models combined with NIR GAF matrices or 1D NIR
spectral data.

Data Dimensions Model Accuracy (%) Precision (%) Recall (%)

1D NIR 1 × 125
PLS-DA 88.3 88.9 87.9

1D NIR-Net 87.5 88.9 87.0
1D NIR-Inception 92.0 92.5 91.8

NIR GAF
125 × 125

NIR-Net 95.6 95.8 95.6
NIR-Inception 94.6 94.8 94.7

63 × 63
NIR-Net 96.0 96.1 96.0

NIR-Inception 96.6 96.7 96.6

Figure 5 presents the training and validation accuracies for the PLS-DA method
(Figure 5A) and the proposed NIR-Inception model combined with the 63 × 63 NIR GAF
data (Figure 5B) in each validation fold. In the figure, lines of the same color represent the
training and validation accuracies for the same fold, among which solid lines represent the
change in training accuracy, and dotted lines represent the change in validation accuracy.
For the PLS-DA method (Figure 5A), the x-axis represents the selected number of compo-
nents of PLS-DA, while for the NIR-Inception method (Figure 5B), the x-axis represents
the number of training epochs. After comparison, 18, 20, 15, 18, and 19 components were
selected for the PLS-DA method for the first to fifth folds, respectively. It is evident that
when the number of components was below six, the validation accuracy increased with the
training accuracy. However, when the number of components exceeded six, the validation
accuracy did not always increase with the training accuracy. Only when the number of com-
ponents exceeded 10 did the training accuracy exceed 90%. A small number of components
could hinder the model’s performance; however, even when a relatively high number of
components was selected, the model still could not fit the validation data, with a validation
accuracy below 90%, which was possibly due to a significant loss of spectral information.
In the training of the NIR-Inception model combined with 63 × 63 GAF data, stochastic
gradient descent (SGD) was used as the learning optimization algorithm, with the applica-
tion of a learning rate of 0.0009 and a learning rate decay of 0.0001. The number of training
epochs was set to 400, and the batch size was set to 32. From the training and validation
curves, it can be seen that the gap between training and validation was significantly lower
than that for the PLS-DA method for all five folds. Although the validation accuracy of
folds 1 and 2 was not stable during the training process, after 350 training iterations, the
stability increased, and the validation accuracy exceeded 94%. The results indicate that the
proposed NIR-Inception model can effectively extract features directly from NIR GAF data.
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Figure 6 exhibits the recall value of the proposed NIR-Net (Figure 6A) and NIR-
Inception (Figure 6B) models for each species in conjunction with 63 × 63 GAF data. Some
spectral data from the Dalbergia balansae, Dalbergia obtusifolia, and Dalbergia szemaoeasis
species were difficult to identify, resulting in a relatively lower recall value of 87.50% in
some folds.
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5: Dalbergia szemaoeasis, 6: Derris robusta, 7: Erythrina stricta, 8: Maackia amurensis).
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Figure 7 exhibits the transverse section images of eight wood species. Notably, Maackia
amurensis lacks an obvious vessel structure compared to the other seven species. This may
be the reason why Maackia amurensis is not confused with the other species.
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3.2. Influence of Spectral Preprocessing on the Performance of the Proposed Method

To compare the influences of various spectral preprocessing methods on the perfor-
mance of the two proposed CNN models and select a suitable method, the 1D spectral data
were preprocessed with nine preprocessing methods before transforming them into 2D
GAF data. Table 3 exhibits the comparative results of these nine preprocessing methods
along with the raw spectral data. The nine preprocessing methods and their parameters
were as follows: (1) mean center (MC); (2) first derivative (Savitzky–Golay derivative: poly-
nomial order = 2 and window length = 2) (SG1st); (3) second derivative (Savitzky–Golay
derivative: polynomial order = 2 and window length = 9) (SG2nd); (4) standard normal
variate (SNV); (5) multiplicative scatter correction (MSC); (6) combining MC and SG1st
(MC-SG1st); (7) combining MC and SG2nd (MC-SG2nd); (8) combining MC, DG1st, and
SNV (MC-SG1st-SNV); (9) combining MC, SG2nd, and SNV (MC-SG2nd-SNV).

Table 3. The classification results of the proposed CNN models adopting nine different spectral
preprocessing methods.

Preprocessing Method
NIR-Net NIR-Inception

Accuracy (%) Precision (%) Recall (%) Accuracy (%) Precision (%) Recall (%)

None 96.0 96.1 96.0 96. 6 96.7 96.6
MC 96.0 96.2 96.00 96.3 96.4 96.2

SG1st 93.1 93.4 93.1 97.1 97.3 97.1
SG2nd 92.2 92.5 92.2 92.8 93.3 92.9
SNV 95.2 95.4 95.2 96.8 96.9 96.8
MSC 95.1 95.2 95.1 96.4 96.6 96.4

MC-SG1st 96.7 96.8 96.7 97.3 97.4 97.3
MC-SG2nd 94.9 95.1 94.9 95.9 96.1 95.7

MC-SG1st-SNV 96.6 96.7 96.6 97.3 97.4 97.3
MC-SG2nd-SNV 95.3 95.4 95.3 95.6 95.8 95.6

From Table 3, it is evident that some preprocessing strategies substantially enhanced
the identification performance of the two proposed CNN models. For the NIR-Net model,
among the nine preprocessing methods, the best classification result was obtained by
the preprocessing strategy that combined MC and SG1st, which achieved mean accuracy,
precision, and recall values of 96.7%, 96.8%, and 96.7%, respectively. The preprocessing
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strategy of combining MC, SG1st, and SNV achieved the second-best result with mean
accuracy, precision, and recall values of 96.6%, 96.7%, and 96.6%, respectively. In contrast to
the NIR-Net model, the preprocessing strategy of combining MC, SG1st, and SNV yielded
the best result for the NIR-Inception model, which achieved mean accuracy, precision, and
recall values of 97.3%, 97.4%, and 97.3%, respectively. The method of combining MC and
SG1st yielded the second-best result for the NIR-Inception model, with mean accuracy,
precision, and recall values of 97.3%, 97.4%, and 97.3%, respectively.

However, some preprocessing strategies, such as SG2nd, combining MC and SG2nd,
and combining MC, SG2nd, and SNV, disappointingly introduced more interference as
compared to the use of the raw spectral data, resulting in significant decreases in the
identification effect of the model. The results indicate that the utilization of an appropri-
ate preprocessing approach to remove noise from 1D NIR spectral data can undoubtedly
further improve the identification of wood species via the proposed method. It should
also be noted that the same preprocessing approaches behaved differently in the NIR-Net
and NIR-Inception models, respectively. Overall, the NIR-Inception model outperformed
the NIR-Net model, suggesting that the Inception module can extract more robust fea-
tures with multi-scale convolution kernels from the NIR GAF data and achieve better
identification results.

Figure 8 illustrates the results of correctly classified and misidentified species during
five-fold validation using the NIR-Net model with MC-SG1st preprocessed spectral GAF
data (Figure 8A), and those of the NIR-Inception model with MC-SG1st-SNV preprocessed
spectral GAF data (Figure 8B). Diagonal values represent the percentages of accurately
identified species, while the off-diagonal values represent the percentages of misclassified
species. Notably, some spectral data in the NIR-Net model were misclassified into species
from different genera, such as the misclassification of Cladrastis sinensis. However, this
situation improved in the NIR-Inception model, although species from the same genus
were still more easily confused. For instance, spectral data from Dalbergia balansae and
Dalbergia obtusifolia were misclassified as Dalbergia szemaoeasis, and vice versa. Additionally,
spectral data from Cladrastis delavayi and Cladrastis sinensis were mutually misclassified.
Overall, the NIR-Inception model outperformed the NIR-Net model and is more suitable
for wood species identification. Notably, Dalbergia szemaoeasis was the most challenging
species to identify, for which a mean precision of only 91.70% was achieved.
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3.3. Comparison with Conventional Methods

To compare the identification effectiveness of the NIR-Inception model with traditional
ML methods, two nonlinear methods, namely the SVM and KNN models, were employed
for the identification of the eight species. The MC-SG1st-SNV preprocessing method
performed well in both CNN models, and both raw and MC-SG1st-SNV preprocessed
spectral data were used in the comparative experiment. In the two ML methods, PCA was
employed for dimensionality reduction to eliminate redundant information from the NIR
spectral data. The grid search method combined with three-fold cross-validation was used
to optimize the parameters of the SVM and KNN methods at different PCA components
ranging from one to fourteen.

In Figure 7, the x-axis represents different PCA components, and the y-axis represents
the corresponding accuracy of the optimal KNN (Figure 9A) and SVM (Figure 9B) model
parameters for each fold. From the figure, it is evident that the number of PCA components
significantly influenced the identification performance of the KNN and SVM models.
A small number of PCA components led to a substantial loss of feature information,
consequently decreasing the identification accuracy of the models. Both the KNN and SVM
models demonstrated good performance on the MC-SG1st-SNV preprocessed spectral data
as compared to the raw spectral data. Additionally, a notable difference was observed in the
optimal number of PCA components for different methods and datasets. Overall, the SVM
model outperformed the KNN model on both the raw and MC-SG1st-SNV preprocessed
spectral data.
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Table 4 presents the mean accuracy, precision, and recall of two nonlinear ML meth-
ods and the proposed NIR-Inception model using raw and MC-SG1st-SNV preprocessed
spectral data. In the case of raw spectral data, the KNN model achieved mean accuracy,
precision, and recall values of 88.8%, 89.3%, and 88.7%, respectively, indicating insufficient
accuracy for precise species identification. In contrast, the NIR-Inception model signifi-
cantly outperformed the two ML methods. For the MC-SG1st-SNV preprocessed spectral
data, the identification results of all three models exhibited further improvements as com-
pared to the raw spectral data, with the NIR-Inception model achieving the best result
among the three models. Notably, the SVM combined with MC-SG1st-SNV preprocessed
spectral data achieved mean accuracy, precision, and recall values of 97.0%, 97.1%, and
97.0%, respectively. However, these results were slightly below those of the NIR-Inception
model, which may suggest that the NIR-Inception model can directly extract more robust
feature information from the NIR GAF data. In comparison, the PCA dimensional reduction
of spectral data in the two ML methods could lead to the loss of some feature information,
thus potentially bottlenecking their identification performance.

Table 4. The identification results of two nonlinear ML methods compared with the proposed method.

Method Preprocessing Method Accuracy (%) Precision (%) Recall (%)

PCA-KNN
None 88.8 89.3 88.7

MC-SG1st-SNV 94.9 95.0 94.9

PCA-SVM
None 93.9 94.1 93.9

MC-SG1st-SNV 97.0 97.1 97.0

NIR-Inception None 96. 6 96.7 96.6
MC-SG1st-SNV 97.3 97.4 97.3

4. Conclusions

This study proposed a multi-scale CNN model designed to extract feature information
from shorter-wavelength NIR spectral data, the goal of which was to construct a wood
species identification methodology suitable for on-site application using a portable NIR
spectrometer. In the proposed model, the GAF method is used to convert 1D NIR spectral
data into 2D data matrices, thereby enhancing the ability of the multi-scale CNN model
to extract more robust discriminative features from spectral data. The effectiveness of the
proposed method was evaluated based on the identification of eight wood species within
the Fabaceae family. The experimental results clearly demonstrate enhanced identification
performance as compared to conventional multivariate data analysis methods (PLS-DA)
and two nonlinear ML methods in terms of mean accuracy, precision, and recall in five-fold
cross-validation. The study suggests that employing the GAF method for shorter 1D NIR
spectral data, in combination with a multi-scale CNN model, offers a useful approach
for conducting rapid, non-destructive, and automatic wood species identification using a
portable NIR spectrometer. Further research should expand the capabilities of the proposed
method by applying it to larger datasets with increased spectral feature diversity and
refining a more robust multi-scale CNN method for wood species identification.
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