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Abstract: Near-surface soil hydraulic properties (SHPs) are fundamental for describing and predicting
water and energy exchange processes, particularly at the soil–atmosphere interface, and regulating
evapotranspiration, infiltration, and runoff in different ecosystems. In this study, a new method was
proposed to estimate near-surface SHPs by combining sensor-based soil infiltrability measurements
with inverse modeling using HYDRUS-2D. The infiltration rate (IR) was estimated by combining
the linear source inflow method with image processing, and Ks was estimated from the near-surface
steady-state IR (NSIRM). The SWRC parameters described by the van Genuchten model were
estimated using the inverse modeling method of HYDRUS-2D for the fitting of sensor-measured
infiltration data. Subsequently, the parameters of the van Genuchten model, including α, n, and l,
were inversely estimated. Three undisturbed soils, including two stand humus samples from cork
oak (Quercus suber L.) and oleander (Pinus tabuliformis L.) stands and one sandy loam from a farmland,
were sampled near the soil surface to validate the proposed method. The estimated Ks was evaluated
by the constant head method (CHM). The estimated parameters of the SWRC were validated by those
determined through the simultaneous measurement of the soil moisture content and water potential
using sensor techniques. The results showed that the Ks estimated from the NSIRM for each soil
sample were 23.40 ± 1.21, 23.86 ± 1.83, and 22.99 ± 2.26 mm h−1, respectively. In comparison, the
Ks determined by the CHM were 24.41 ± 1.53, 24.26 ± 0.37, and 23.81 ± 0.10 mm/h, respectively.
The relative errors of the proposed method were 4.14%, 1.64%, and 3.42%, respectively. For the
SWRC estimation, the normalized root mean square errors (NRMSEs) between the measurements
and the estimates for each soil sample were 0.1724, 0.1454, and 0.0606, respectively. Based on this, the
AWC was obtained, and Ku was deduced from the estimated Ks and SWRC parameters for each soil
sample. In general, the proposed method successfully estimates near-surface SHPs, simplifies the
measurement device, and provides a new perspective for the in situ determination of near-surface
SHPs under field conditions in the near future.

Keywords: soil hydraulic properties; near soil surface; linear source inflow; infiltrability measurement;
inverse modeling

1. Introduction

Knowledge of soil hydraulic properties (SHPs) is essential to assess the water cycle
in ecosystems [1]. This includes knowledge regarding the infiltration rate (IR), soil water
retention curve (SWRC), available water capacity (AWC), and hydraulic conductivity (K),
which are all important parameters for determining the quality of the soil environment
and the capability of the soil to serve the ecosystem. In contrast to other land uses, studies
reveal that forest soils usually show higher hydraulic conductivity [1–3]. Moreover, the
infiltration capacity and soil water retention in forested soils control the formation of
surface runoff, acting as a natural flood regulator [3,4]. Compared to deeper soil layers,
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the SHPs near the soil surface are subject to rapid changes in response to changes in soil
properties, interactions with water (rainfall, infiltration, evaporation), and biopores created
by the decomposition of the root. Thus, near-surface SHPs are fundamental for describing
and predicting water and energy exchange processes, particularly at the soil–atmosphere
interface, regulating evapotranspiration, infiltration, and runoff.

In recent years, studies have witnessed remarkable progress in determining the sat-
urated hydraulic conductivity (Ks), unsaturated hydraulic conductivity (Ku), soil water
retention curve (SWRC), and available water capacity (AWC) of SHPs; however, the infiltra-
tion rate (IR) has rarely been investigated. In other words, it is difficult to obtain all SHPs
from a single method based on existing studies.

Diverse commercial sensors, devices, and methods have been developed and applied
under both laboratory and field conditions to determine Ku directly or indirectly. For
instance, previous studies have applied a method to determine Ku by measuring soil
water potential (ψ) at two soil depths using the Buckingham–Darcy equation during an
evaporation process [5–9]. However, this method requires the simultaneous application of
multiple sensors, which not only increases the cost, but also decreases the measurement
accuracy, owing to sensor-to-sensor uncertainties [10,11]. Consequently, the indirect method
has been applied to determine Ku using the measured Ks [12–17], and the fitted parameters
of SWRC based on hydraulic models [14,18].

Ks can be determined using a single-ring permeameter [19], a Guelph permeame-
ter [20], or a dual-ring permeameter in the field, whereas the falling method or the CHM is
employed in the laboratory [21–24]. The SWRC can be measured using the ceramic pressure
plate extractor [25]. However, due to the difference in contact area between the soil and the
plate, the measurements of the pressure plate lack reliability in the dry range [26]. Other
existing methods for SWRC estimation include fractal geometry, pedo-transfer functions
(PTFs) [27], soil morphology, and empirical models.

Mathematical modeling plays a crucial role in estimating SHPs, thus providing valu-
able insights into water movement in the subsurface. Various methods and tools have
been developed to capture the complex relationships between soil properties and hydraulic
behavior. Here, we delve into different approaches employed in mathematical modeling
for hydraulic property estimation. Numerical simulation models, such as finite element
or finite difference methods, allow for a more detailed representation of the soil profile,
like HYDRUS, SWAP, and MODFLOW. Numerical models demand computational re-
sources and data-intensive input, making them challenging for certain applications [28].
Pedo-transfer functions (PTFs) are empirical equations that estimate SHPs based on easily
measurable soil characteristics. These functions leverage statistical relationships derived
from extensive soil databases. PTFs provide a quick and practical way to estimate SHPs,
but may have limitations in capturing site-specific variations like soils under conservation
or conventional agriculture [29,30]. Recent advances in machine learning (ML) have intro-
duced innovative techniques for estimating hydraulic properties. ML algorithms, including
support vector machines, neural networks, and random forests, can learn complex patterns
from large datasets. These data-driven approaches offer flexibility and adaptability to di-
verse soil conditions. But ML approaches may be considered “black-box” models, making
it challenging to interpret their internal workings.

In fact, most studies have only measured Ks, Ku, and SWRC, and only a few have
measured the IR and AWC. AWC is defined as the ability of soil to store water between
the field capacity (FC) and the permanent wilting point (PWP). FC refers to the amount of
water retained in the soil after any excess water has drained out, leaving the soil saturated
but not waterlogged. It represents the maximum amount of water the soil can hold against
the force of gravity and is available for plant use. PWP is the soil moisture content at
which plants are unable to extract more water, leading to irreversible wilting. It is the
lower limit of plant-available water in the soil, indicating the point at which the soil water
potential becomes too low for plants to sustain normal growth [31,32]. Veihmeyer and
Hendrickson [33] used sensor measurements, in situ moisture content monitoring, and the
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laboratory measurements of soil cores in pressure chambers to directly acquire the AWC. It
is worth mentioning that the FC is an empirical concept whose physical definition remains
under discussion [34]. Th FC is generally defined as the soil moisture content (θ) retained
at ψ levels approximately between −10 and −33 kPa, whereas the PWP represents the
SWRC at −1500 kPa [35]. Hence, the FC and PWP are defined as the θ at the −33 kPa and
−1500 kPa, respectively, based on the estimated SWRC in this study. The above-mentioned
parameters are associated, except for the IR, which can be estimated using the linear source
method [36] and point source method [37].

This study proposes a new method that uses a simplified device for estimating near-
surface SHPs. Assuming soil samples are homogeneous, a steady flow rate is provided
to the soil during the experimental process. The soil wetting area is collected via the use
of image sensors, while the soil moisture information is obtained using moisture sensors.
Both multi-sensor measurements and inverse modeling methods were used to estimate the
IR, Ks, SWRC, Ku, and AWC. The SHPs estimated by the proposed method are validated
against those estimated by traditional methods. Upon ensuring the accuracy of this method,
it is demonstrated that only two sets of data, namely the wetting area and soil moisture
information, combined with an inversion module, are required to obtain SHPs.

2. Materials and Methods
2.1. Mathematical Models for the Estimation of the Near-Surface Soil Hydraulic Properties
2.1.1. Linear Source Inflow Method for Estimating Soil Infiltration Rate and Saturated Soil
Hydraulic Conductivity

Assuming the soil is uniform and non-layered, when the soil moisture content near the
soil surface saturates during the water infiltration process, the soil IR approaches a constant
value (steady-state IR), which is commonly considered to be the Ks value. To determine
the soil IR, a linear source inflow method proposed by Mao et al. [36] was combined with
the camera image processing method to estimate Ks. Assuming a near-uniform soil texture
and a sufficient water supply, the soil water infiltration process can be calculated using the
relationship between the soil-wetted area and time (Figure 1a). Initially, the wetting area is
near zero, but has the highest IR. Subsequently, the IR and the increase in the wetting area
gradually decrease. When the wetted area and the IR reached the steady-state value, Ks
was estimated from the steady-state IR.

Figure 1. (a) Variations in soil wetting area and infiltration rate and (b) the soil infiltration rate curves
as a function of time at three different points in a horizontal position.

However, during the process of surface water flow, the starting time of the IR at
different points on the surface is different. Figure 1b illustrates the distribution of the IR at
different spatial locations and times. At time t1, the water has just reached spatial point
A1, where the soil IR is the maximum initial value, denoted as i1. Subsequently, at time t2,
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the water has just reached the spatial point A2, where the IR remains at the initial value
of i1. However, at this time, the IR performance at the spatial point A1 has decreased, as
indicated by the curve in Figure 1b, which has decreased to i2. As time progresses to t3, the
IR at points A1 and A2 have decreased to i3 and i2, respectively, following the trend shown
in Figure 1b.

The relationship among the soil IR, the wetted area in the horizontal direction, and the
time during the infiltration process can be obtained using the following equation [36]:

q =
∫ A

0
i(A, t)dA (1)

where q is the in-flow rate (µL h−1), i is the infiltration rate (mmh−1), and A is the wetted
area in the horizontal direction (mm2). In fact, directly obtaining the analytical solution of
Equation (1) is challenging. Therefore, we divide time into infinitesimally small intervals,
and then select the corresponding soil wetting area increment steps (∆A) for each interval.
Within each time interval and ∆A, we consider the IR as the average value for that segment.
At time t2 (Figure 1b), with a wetting area increment of ∆A2, the infiltration rate is i1,
consistent with that observed on ∆A1 at time t1. However, the IR on ∆A1 decreases to i2 at
this moment. Similar situations occur in other time intervals. Eventually, we iteratively
derive an approximate estimate of in. The specific computational process is described
as follows:

According to the principle of water flow balance at time t1 [36],

q1 = i1 · ∆A1 (2)

at time t2,
q2 = i2 · ∆A1 + i1 · ∆A2 (3)

at time tn,
qn = in · ∆A1 + in−1 · ∆A2 + · · ·+ i2 · ∆An−1 + i1 · ∆An (4)

From Equations (2)–(4), the in at different times is given by the following equation:

in =
qn − ∑n−1

j=1 ij · ∆An−j+1

∆A1
(n = 1, 2, 3 . . .) (5)

Finally, Ks was estimated from the steady-state in.

2.1.2. Inverse Estimation of the Soil Water Retention Curve Using HYDRUS-2D

A two-dimensional soil hydrodynamic model was used to describe the soil water
vertical infiltration and horizontal diffusion processes. Assuming that the soil properties
and texture are identical near the soil surface and that the influence of the roots can be
ignored without vegetation cover, the model can be described by Richards’ equation:

∂θ

∂t
=

∂

∂x

(
Ku

∂ψ

∂x

)
+

∂

∂z

(
Ku

∂ψ

∂z

)
+

∂Ku

∂z
(6)

where θ is the soil moisture content
(
m3 m−3), t is the infiltration time (min), ψ is the

soil matric potential (kPa), x and z are the horizontal and vertical diffusion (infiltration)
distances (m), respectively, and Ku is the unsaturated soil hydraulic conductivity.

The relationship between θ, ψ, and Ku in Richards’ equation are given by the van
Genuchten [10] (VG) model:

θ(ψ) =

{
θr +

θs−θr

[1+|α·h|n]
m h< 0

θs h ≥ 0
(7)
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Ku = Ks · Sl
e ·

[
1 −

(
1 − S1/m

e

)m
]2 (8)

Se =
θ − θr

θs − θr
=

1(
1 + |α · h|n

)m (9)

where θr and θs denote the residual and saturated moisture content (m3m−3), respectively,
Se is the effective saturation, α

(
m−1) is the inverse of the air-entry value (or bubbling

pressure) relating to pore-size distribution, l is a pore-connectivity parameter assumed to
be 0.5 as an average for many soils [13], and m = 1 − n−1 [14].

To estimate the SWRC, the inversion module of HYDRUS-2D was utilized, with the
Levenberg–Marquardt (LM) algorithm being selected to optimize the parameters during
the inversion process. The optimization principle of the LM algorithm is to minimize the
difference between the measured and simulated variables (e.g., ψ and θ). The sum of the
squares of these differences is represented by the objective function Φ, which is expressed as

Φ(θ, α, n) =
N

∑
i=1

(
θ*(ti)− θ(ti, α, n)

)2
(10)

where α and n are the empirical parameters of the VG model, θ* is the measured value of
the moisture content of the soil vertical profile

(
m3 m−3), θ is the soil moisture content

when the parameter α, and n takes different values
(
m3 m−3).

2.2. System Design

The system design (Figure 2) included the water supply part (Mariotte bottle, linear
source water distribution device), soil moisture measurement device, image recording
part (camera), a rectangular acrylic container, and a laptop. This camera model is SD-200
(Shenzhen Micro Technology Co., Ltd., Shenzhen, China), with an effective resolution
of 1920 H*1080 V (2 megapixels). The outlet of the Mariotte bottle was connected to a
linear-source water distribution device in order to supply water at a constant rate. The
linear source water distribution device uses a copper adjustable diverter valve, placed
directly above the soil surface to ensure that water linearly flows into the soil. The soil
sample was filled into an acrylic container (1 m × 0.3 m × 0.2 m). The water supply
rates were 27.33 ± 6.17 mL min−1, 31.33 ± 11.67 mL min−1, and 33.833 ± 8.0 mL min−1

for the soil from the cork oak (Quercus suber L.) stand, the soil from the oleander (Pinus
tabuliformis L.) stand, and the sandy loam from a farmland, respectively. Commercial soil
water potential sensors Teros 21 (METER Group, Inc., Pullman, WA, USA) were used to
validate the estimated SWRC.

Based on the study conducted by Yu et al. [38], we designed the moisture sensor, and
the diagram and photograph are shown in Figure 3. To calibrate the sensor, we used three
types of soil samples which were required for the experiment: the humous soil from both
the cork oak and oleander stands, and the sandy loam from the farmland. All soil samples
were dried at 105 ◦C for 48 h, and then moistened with different water contents. Under
laboratory conditions at room temperature (25 ± 1 ◦C), the mixed soil samples were filled
into cylindrical PVC containers. The sensor surrounded by the soil samples was placed
at the center of the PVC container. Table 1 displays the calibration results of the moisture
sensor in the three soil samples, with the fitted correlation R2 between the sensor output
and the soil moisture content ranging from 0.9887 to 0.9986.
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Figure 2. Schematic pictures of the measuring system at (a) the upper positive and (b) the upper right
positions.

Figure 3. Diagram and photograph of the redesigned sensor probe for measuring the moisture
content of the soil vertical profile at 1 cm intervals.
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Table 1. The relations and R2 values in the different soil samples: the humous soil from both the
cork oak (Quercus suber L.) and oleander (Pinus tabuliformis L.) stands, and the sandy loam from the
farmland. In which “y” represents the soil moisture content and “x” represents the output voltage
value of the moisture sensor.

Soil Samples Relations R2

Humus soil
Cork oak stand y = 22.692x3 − 27.274x2 + 11.809x − 1.7261 0.9898

Oleander stand y = −7.5084x3 + 10.08x2 − 2.8212x + 0.1402 0.9986

Sandy loam Farmland y = −186.67x4 + 383.46x3 − 2877.77x2 + 94.603x − 11.533 0.9887

2.3. Experimental Preparation and Procedure
2.3.1. Experimental Materials

The experimental materials used were undisturbed soil samples that were collected
from two forest stands and a farmland. The humus soil samples were obtained from the
surface high-organic-matter soil in the cork oak stand area and the oleander stand area of
the Jiufeng National Stand Park (39◦54′ N, 116◦28′ E), Haidian District, Beijing, with initial
moisture contents of 1.42%, and 22.93%, respectively. The sandy loam sample was taken
from the 0–10 cm soil layer of San Qingyuan (40◦0′ N, 116◦20′ E) from the Beijing Forestry
University, with an initial moisture content of 2.83%. The soil colors were determined
according to the Munsell chart, with the cork oak stand soil being 5GY6/1, the oleander
stand soil being 7.5Y8/4, and the sandy loam being 10Y7/2. The experiments for each
sample were repeated three times. The physical properties of the soil samples are listed
in Table 2.

Table 2. Physical properties of the experimental soil samples.

Soil Texture Depth
(cm)

Initial
Moisture

Content (%)

Sand
(%) Silt (%) Clay

(%)

Organic
Matter

Content (%)

Bulk
Density
(g cm3)

Porosity
(%)

Humus
soil

Cork oak
stand

0–10

1.42

/ / /

8.35 1.18 55.47

Oleander
stand 22.93 14.95 1.071 59.58

Sandy
loam Farmland 2.83 39.9 46.6 13.5 1.85 1.33 50.19

2.3.2. Experimental Procedure

In the measurement system, a hole was drilled in the undisturbed soil samples for
the in situ installation of the PVC pipe. At the beginning of the measurement, the sensor
probe was controlled to descend to different depths, measuring the soil moisture content
and time.

Using the linear source inflow process, images of water diffusion at the soil surface at
different times were captured using a camera. Image processing technology was employed
to calculate the wetting areas (A) from the pictures using OpenCV. It includes three steps:
distortion correction, binarization, and counting the number of pixels. Distortion correction
refers to the phenomenon in which the actual and ideal images differ because of the lens
itself. The captured images were cropped to obtain the mesh corner point information to
calculate the camera correction coefficient. Binarization was used to set the gray values of
the pixels to 0 or 255 for each image. After binarizing the images, the number of pixels in
the mesh image was determined using OpenCV. Finally, the wetting area was calculated
according to the number of mesh pixels and individual mesh areas.

The inversion module of the HYDRUS-2D model was used to estimate the SWRC.
In managing the experiment in 2D, we considered both the vertical (z) and horizontal (x)



Forests 2024, 15, 569 8 of 18

directions. Despite the horizontal wetting area extending in both the x and y directions,
we opted for the linear source infiltration method and assumed homogeneity within the
soil samples. Hence, for simplicity, we focused solely on the x direction. Consequently, in
HYDRUS, we constructed a soil model with dimensions of 30 cm in the x direction and
20 cm in the z direction, divided into 1200 triangular grids. Furthermore, the inversion
module was selected to simulate the water flow dynamics of the model within 120 min,
with the estimated results (i.e., output data) set as the soil hydraulic parameters. The soil
moisture content was used as the initial condition for the model, with initial moisture
contents of the two humus soils and the sandy loam being 0.015 cm3 cm−3, 0.24 cm3 cm−3,
and 0.17 cm3 cm−3. Observation points were selected at depths ranging from 2 to 5 cm,
with a depth interval of 1 cm, and the soil moisture sensor was used to measure the soil
moisture changes at four depth points, providing input data. Additionally, the saturation
moisture content (θs) in the soil hydraulic parameters was measured from the sensor in
saturated soil conditions, while the volumetric moisture content (θr) was estimated from
the soil moisture characteristic curve corresponding to −1500 kPa. The Ks was obtained
using the NSIRM. The remaining soil hydraulic parameters, α and n, were the output
data. The upper boundaries of the three soil samples were set at flow rates of 1.64 L h−1,
1.85 L h−1, and 2.06 L h−1, respectively, to simulate atmospheric rainfall boundaries, while
the lower boundary was set as a free drainage boundary.

The AWC was estimated using the SWRC. The FC and PWP of the three soils were
taken from the moisture contents corresponding to −33 kPa and −1500 kPa in the SWRC,
respectively. The Ku value can be calculated using the above parameters with Equation (8).
A flowchart for estimating the near-surface SHPs is shown in Figure 4.

Figure 4. Flowchart for estimating the near-surface SHPs.

2.4. Method for Validation and Error Analysis
2.4.1. Validation of the Saturated Hydraulic Conductivity Using the CHM

The measurement error of Ks, estimated by the NSIRM (Figure 5), assuming the
constant head measurement as the true value, can be calculated as follows:

Ks =
Q · L

A · ∆h
(11)
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where Q is the amount of water flowing out of the test container (mm3 h−1), L is the length
of the soil column in the measurement section (mm), Ac is the cross-sectional area of the
soil column in the test container (mm2), and ∆h is the height difference between the lowest
point of the conduit in the Mariotte bottle and the water outlet of the test container (mm).
The measurement error can be calculated using Equation (12).

δ =

∣∣∣∣ I2 − I1

I2

∣∣∣∣× 100% (12)

where I2 is the Ks measured using the CHM, and I1 is the Ks value measured using
the NSIRM.

Figure 5. Schematic picture of the device for determining saturated soil hydraulic conductivity.

2.4.2. Comparison of the SWRC and the Measured Results

The HYDRUS-2D software (v2.04) simulation was quantitatively validated using the
normalized root mean square error (NRMSE) as follows:

RMSE =

√
∑N

i=1(Pi − Oi)
2

N
(13)

NRMSE =
RMSE

Omax − Omin
(14)

where N is the total number of observation points of θ or ψ, Pi and Oi are the simulated and
measured values of stand θ or ψ of the ith observation point, respectively, and Omax and
Omin are the measured maximum and minimum values of θ or ψ at the observation point,
respectively. The root mean square difference represents the fitting degree between the sim-
ulated and actual values. NRMSE is the normalized RMSE, used to facilitate comparisons.

3. Results
3.1. Estimation Results of the Soil Wetting Area Using Image Processing

After the experiment begins, the camera captures images of the soil wetting situation
every 2 min. Here, we have chosen one example to explain the image processing process.
Figure 6 shows the image processing results. A checkerboard (Figure 6a) was used to
calibrate and correct the camera images, and 54 corners were extracted in order to establish
the corner point coordinates (Figure 6b). According to the relationship between the corner
point, world, and image coordinates, the internal and external parameter matrices and
distortion coefficients of the camera were obtained, and the calibration result (Figure 6c) of
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the camera was 0.0766. The area of one checkerboard is 4.84 cm2 with 3600 pixels; thus,
one pixel corresponds to an area of 0.134 mm2. The internal and external parameters of the
camera and the distortion coefficient are shown in Figure 6d, and the corrected results are
shown in Figure 6e. Following binarization (Figure 6f), the soil wetting area was calculated
according to the correspondence between the pixels and the area.

Figure 6. Image processing: original image (a,b,d), distortion correction (c,e), and binarization (f).

We recorded the soil wetting area calculated from image processing every 2 min, and
fitted it into a curve representing the change over time (Figure 7). In the initial stage, as
infiltration begins, the soil wetting area gradually expands as water penetrates the soil
and spreads outward. At the onset of the infiltration experiment, the rate at which the
increase in the spread of the wetting area is rapid, especially when there are no significant
obstacles on the soil surface. As time progresses, the rate of increase in the wetting area
starts to decline because the soil has begun to saturate, and any further infiltration of water
is limited or slows down. After a period of time, when the infiltration experiment ceases,
the soil wetting area reaches a stable state.

The regression equations of the three soil samples according to the relationship be-
tween the wetting area and time are shown in Table 3. The coefficients of determination
(R2) are 0.9938, 0.9947, and 0.9988, respectively, indicating that the regression equations can
better describe the water diffusion of the soil surface over time.



Forests 2024, 15, 569 11 of 18

Figure 7. Variations in the averaged wetted areas of the three soil samples from the cork oak stand
(a), oleander stand (b), and sandy loam (c).
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Table 3. Regression equations between the wetting area and time of the three soil samples.

Soil Samples Wetting Area (mm2) R2

Humus soil
Cork oak stand A = 5.93 × 102 − 4.848 × 102 · e−0.02265t 0.9938

Oleander stand A = 7.599 × 102 − 5.226 × 102 · e−0.02204t 0.9947

Sandy loam Farmland A = 7.146 × 102 − 5.724 × 102 · e−0.02438t 0.9988

3.2. Estimation Results of Ks Using the Estimated Stable IR

The IR of each soil sample (Figure 8) was calculated using Equation (5). Initially, the
IR reaches its peak because the soil is not yet saturated, thus allowing water to quickly
penetrate into the deeper layers of the soil. As time progresses, the IR gradually decreases,
and the speed of water infiltration slows down. When the soil becomes fully saturated, the
IR stabilizes, meaning the soil can no longer absorb more water. We defined a threshold
value of 0.1 mm min−1, and the soil IR was regarded as Ks when the slope of the IR curve
was less than the threshold value. The estimated and measured Ks values are summarized
in Table 4. The Ks of the humus samples from the cork oak stand and the oleander stand
were 23.40 ± 1.21 mm min−1 and 23.86 ± 1.83 mm min−1, respectively, and the sandy
loam was 22.99 ± 2.26 mm min−1. The soil texture and bulk density of the test soil column
(19 cm long, 8 cm diameter) were the same as those of the drying test. The pressure head
is set to 15 cm. When water flows out of the soil column at a constant rate, the increasing
rate of the weight of the outgoing water as time elapsed was recorded, which was used
to determine Ks. The Ks of the three soil samples calculated using Equation (11) were
24.41 ± 1.53 mm min−1, 24.26 ± 0.37 mm min−1, and 23.81 ± 0.10 mm min−1, respectively.
The relative errors of the three soil samples between the two methods were 4.14%, 1.64%,
and 3.42%, indicating that the NSIRM can accurately estimate Ks.

Figure 8. Cont.
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Figure 8. Variations in the infiltration rate (IR) of the three soil samples from the cork oak stand (a),
oleander stand (b), and sandy loam (c).

Table 4. Results of Ks as measured using the CHM and NSIRM.

Soil Texture Constant Head Standard
(mm min−1)

Linear Source Inflow
(mm min−1)

Relative Error
(%)

Humus soil
Cork oak stand 24.41 ± 1.53 23.40 ± 1.21 4.14

Oleander stand 24.26 ± 0.37 23.86 ± 1.83 1.64

Sandy loam Farmland 23.81 ± 0.10 22.99 ± 2.26 3.42

3.3. Estimation Results of the SWRC, AWC, and Ku

The optimized parameters α and n in the SWRC for each sample were inversely yielded
when Equation (10) was minimized based on the comparisons between the simulated and
measured θ (Figure 9a–c). Comparisons between the inverse-estimated and measured
SWRC (Figure 9d–f) and the inverse estimation errors (Table 5) indicated that the proposed
method is feasible for the inverse estimation of the SWRC.
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Figure 9. Estimated and measured θ and SWRC from the cork oak stand (a,d), oleander stand (b,e),
and sandy loam farmland (c,f), respectively.
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Table 5. NRMSE of the simulated and measured θ and SWRC of the three soil samples.

Soil Texture NRMSE of Soil Water Content (θ) NRMSE of SWRC Averaged NRMSE of SWRC

Humus soil

Cork oak stand
First 0.1958 0.1489

0.1724Second 0.1947 0.1597
Third 0.2019 0.2086

Oleander stand
First 0.1216 0.1209

0.1454Second 0.1471 0.1286
Third 0.1688 0.1867

Sandy loam Farmland
First 0.1337 0.0672

0.0606Second 0.1552 0.0726
Third 0.1542 0.0421

The AWCs (Table 6) of the three soil samples were obtained from the SWRC. Based
on the estimated Ks and SWRC, the results of the parameter estimation of the three soil
samples using the inverse module are listed in Table 7.

Table 6. AWC of the three soil samples.

Soil Texture Field Capacity
(FC)

Permanent Wilting
Point (PWP)

Available Water
Capacity (AWC)

Average of
AWC

Humus soil

Cork oak stand
First 0.0227 0.016 0.0067

0.0058Second 0.0166 0.015 0.0016
Third 0.0221 0.013 0.0091

Oleander stand
First 0.4031 0.0676 0.3355

0.307Second 0.3572 0.0534 0.3038
Third 0.3274 0.0457 0.2817

Sandy loam Farmland
First 0.3062 0.0422 0.264

0.221Second 0.3062 0.113 0.1932
Third 0.314 0.1083 0.2057

Table 7. Parameter identification results of the three soil samples.

Soil Texture θr θs α n Ks (mm min−1) l

Humus soil
Cork oak stand 0.0147 0.460 0.0986 5.0757 23.40 0.5

Oleander stand 0.0200 0.486 0.0357 1.6496 23.86 0.5

Sandy loam Farmland 0.0126 0.340 0.0177 1.5127 22.99 0.5

4. Discussion

Among the current direct methods for estimating soil hydraulic properties, some
require measuring ψ at two depths as well as soil evaporation to determine Ku [5–9], while
others necessitate flow data measurements using a permeameter to determine Ks [19,20].
Additionally, there are methods that rely on a tensiometer to measure the soil suction and
on θ to determine the SWRC [25,26]. However, these direct methods have drawbacks,
such as extensive data requirements or the disruption of the soil structure. Like the
underlying logic of this study, indirect methods like PTFs [27] estimate SHPs based on
readily available soil information. However, research has identified up to 31 factors that
can affect soil hydraulic properties (particle size distribution, hydraulic, morphological,
and chemical properties) [39], indicating that this method requires numerous soil property
parameters. Regardless of the method used, it only estimates a single SHP, and, if one aims
to simultaneously obtain all SHPs, the required measurement data will accumulate further.

When compared to the traditional methods, the approach that combines sensors and
data inversion retains the advantages of real-time monitoring, high accuracy precision,
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integration with automated systems, and the inherent labor savings of sensor-based mea-
surement methods. Simultaneously, this approach harnesses the comprehensiveness and
flexibility of data inversion, thus allowing the integration of diverse data sources and reduc-
ing the research costs. Specifically, this study only requires one soil infiltration experiment.
Based on the easily obtainable θ and the estimated Ks, the parameters of the VG model can
be inversely estimated, and then Ku can be estimated.

While this method can meet the practical measurement needs, it is still constrained
by individual proficiency, and there are still some shortcomings. The collection of the
soil wetting area requires manual handling, leading to a disconnection from the overall
measurement process. The water supply arrangement for the linear infiltration method
is also a manual operation, and the flow rate setting is cumbersome with inherent ran-
domness. Additionally, this study is limited to laboratory measurements; in the future,
point source experiments could be considered to extend the application of this method to
field environments.

5. Conclusions

This study proposed a method for estimating near-surface SHPs using sensor-based
soil infiltrability measurements and the inverse modeling of HYDRUS-2D. The near-surface
soil infiltration rate was estimated using a linear source inflow method combined with an
imaging processing method. The near-surface Ks was estimated using the stable infiltration
rate. The estimated Ks values of two humus soil from the cork oak and oleander stands and
one sandy loam from a farmland were 23.40 ± 1.21, 23.86 ± 1.83, and 22.99 ± 2.26 mm h−1,
respectively. In comparison, the Ks of the three soil samples measured using the constant
water head method were 24.41 ± 1.53, 24.26 ± 0.37, and 23.81 ± 0.1 mm h−1, respectively.
The relative errors of the two methods were 4.14%, 1.64%, and 3.42%, respectively. The
NRMSE of the SWRC for the three soil samples were 0.1724, 0.1454, and 0.0606, respectively.
The AWC and Ku were also estimated based on these results. The method presented in this
paper introduces a novel approach where SHPs can be obtained using just two devices,
namely the image sensor and the moisture sensor, combined with the HYDRUS inversion
module. In this process, data collected from the moisture sensor and the image sensor serve
as input data for HYDRUS, and the output data from HYDRUS represent the estimated soil
hydraulic properties. This represents a novel approach in the field, utilizing fewer devices
that are integrated into a single apparatus, allowing for simultaneous data acquisition,
while ensuring accuracy in estimation results. Further studies are needed to evaluate the
performance of the proposed method under different soil classes.

Author Contributions: Conceptualization, X.Y., W.Z. and Q.C.; methodology, X.Y., W.Z., C.Z. and
Q.C.; software, W.Z., Y.Z. and C.Z.; validation, W.Z. and Y.Z.; formal analysis, W.Z. and C.Z.; inves-
tigation, X.Y., W.Z., Y.Z. and C.Z.; resources, W.Z. and C.Z.; data curation, W.Z.; writing—original
draft preparation, X.Y. and W.Z.; writing—review and editing, Q.C.; visualization, W.Z., Y.Z. and
C.Z.; supervision, X.Y. and Q.C.; project administration, X.Y.; funding acquisition, X.Y. and Q.C. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (Grant Nos.
31971576 and 32271990).

Data Availability Statement: The raw/processed data required to reproduce these findings cannot
be shared at this time, as the data also form part of an ongoing study.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Virano-Riquelme, V.; Feger, K.-H.; Julich, S. Variation in Hydraulic Properties of Forest Soils in Temperate Climate Zones. Forests

2022, 13, 1850. [CrossRef]
2. Archer, N.A.L.; Otten, W.; Schmidt, S.; Bengough, A.G.; Shah, N.; Bonell, M. Rainfall infiltration and soil hydrological charac-

teristics below ancient forest, planted Forest and Grassland in a Temperate Northern Climate. Ecohydrology 2016, 9, 585–600.
[CrossRef]

https://doi.org/10.3390/f13111850
https://doi.org/10.1002/eco.1658


Forests 2024, 15, 569 17 of 18

3. Julich, S.; Kreiselmeier, J.; Scheibler, S.; Petzold, R.; Schwärzel, K.; Feger, K.H. Hydraulic properties of forest soils with stagnic
conditions. Forests 2021, 12, 1113. [CrossRef]

4. Archer, N.A.L.; Bonell, M.; MacDonald, A.M.; Coles, N. A Constant Head Well Permeameter Formula Comparison: Its Significance in
the Estimation of Field-Saturated Hydraulic Conductivity in Heterogeneous Shallow Soils. Hydrol. Res. 2014, 45, 788–805. [CrossRef]

5. Schindler, U. A rapid method for measuring the hydraulic conductivity in cylinder core samples from unsaturated soil. Arch.
Agron. Soil Sci. 1980, 24, 1–7.

6. Schindler, U.; Durner, W.; von Unold, G.; Müller, L. Evaporation method for measuring unsaturated hydraulic properties of soils:
Extending the measurement range. Soil Sci. Soc. Am. J. 2010, 74, 1071–1083. [CrossRef]

7. Schwen, A.; Zimmermann, M.; Bodner, G. Vertical variations of soil hydraulic properties within two soil profiles and its relevance
for soil water simulations. J. Hydrol. 2014, 516, 169–181. [CrossRef]

8. Peters, A.; Durner, W. Simplified evaporation method for determining soil hydraulic properties. J. Hydrol. 2008, 356, 147–162.
[CrossRef]

9. Peters, A.; Iden, S.C.; Durner, W. Revisiting the simplified evaporation method: Identification of hydraulic functions considering
vapor, film and corner flow. J. Hydrol. 2015, 527, 531–542. [CrossRef]

10. Tian, Z.; Kojima, Y.; Heitman, J.L.; Horton, R.; Ren, T. Advances in thermo-time domain reflectometry technique: Measuring ice
content in partially frozen soils. Soil Sci. Soc. Am. J. 2020, 84, 1519–1526. [CrossRef]

11. Xu, Q.; Zhu, Y.; Xiang, Y.; Yu, S.; Wang, Z.; Yan, X.; Du, T.; Cheng, Q. A novel frequency-domain integrated sensor for in-situ
estimating unsaturated soil hydraulic conductivity. J. Hydrol. 2022, 610, 127939. [CrossRef]

12. Burdine, N. Relative permeability calculations from pore size distribution data. J. Petrol. Technol. 1953, 5, 71–78. [CrossRef]
13. Mualem, Y. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 1976, 12,

513–522. [CrossRef]
14. van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J.

1980, 44, 892–898. [CrossRef]
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