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Abstract: Developing novel eco-friendly broad-spectrum visible light photocatalysts for dye re-
moval is one of the urgent problems for water treatment. Here, copper-doped carbon dots (CDs)
were reported to be directly fabricated from chromated copper arsenate (CCA) wood waste for the
photocatalytic degradation of the methylene blue dye. The properties of the resulting CDs were
thoroughly characterized and analyzed, preceding an investigation into the adsorption kinetics of
dye degradation. The kinetic study showed that reactant concentration was the rate-limiting factor.
The obtained CDs showed a 151 mg/g photocatalytic degradation capacity. Comparing pure CDs to
CDs/TiO2 composites, the former demonstrated higher photodegradation efficiency. This superiority
can be attributed to the synergistic action of adsorption and photocatalytic degradation working
in tandem. This study prepared Cu doped CDs and elucidated the photocatalysis mechanism of
methylene blue degradation by CDs. The photodegradation of organic dyes through CDs derived
from waste CCA wood emerges as an eco-friendly, facile, and highly efficient method.

Keywords: chromated-copper-arsenate wood; carbon dots; dye photocatalysis; degradation; wastewater
purification; ecology

1. Introduction

Water, the source of all life, is the most crucial element in our ecosystem for all
animals, plants, insects, and humans. However, various hazardous chemicals endanger
natural water resources due to inadequate wastewater treatment [1]. Dye is one of the
significant hazards for water pollution and must be decontaminated before discharge
into natural water bodies. Studies indicate that about 280,000 tons of dyes are wasted
through industrial sewage annually [2]. If this wastewater is not properly treated, it will
cause major environmental hazards, including the contamination of water sources and the
depletion of soil productivity. Particularly noteworthy is methylene blue (MB), a widely
used dye in various industries such as garments [3], textiles [4], ink [5], pharmaceuticals [6],
leather [7], and paper industries [8]. The release of MB wastewater into the ecosystem
significantly contributes to eutrophication, posing severe health risks, including cancer, eye
burns, mutations, skin irritations, and allergic dermatitis [9]. Therefore, MB must be well
treated before discharge to the natural environment.

Different treatments have been employed to eliminate MB from wastewater, encom-
passing ozonation, adsorption, biodegradation, chlorination, electrochemical treatment,
filtration, laser-induced plasma, and photocatalysis [10–12]. Conventional methods for
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removing dyes in industrial systems include chemical coagulation, oxidation, activated
carbon adsorption, reverse osmosis, etc. Among these, advanced oxidation processes based
on photocatalysis systems have attracted more attention from the research community, in
which the dyes are converted into non-toxic and simple molecules [8]. Photocatalysis trans-
fers organic wastes into CO2 and H2O by interacting with the gain and loss of electrons [13].
Metal oxide semiconductors are commonly used as photocatalysts because of their large
band gap [14]. Two main photochemical reactions at the surface of photocatalysts involve
oxidation initiated by positive holes and reduction initiated by negative electrons [15].
However, it is crucial to acknowledge that these photocatalysts are predominantly metal
oxides deriving from non-renewable resources.

Carbon dots (CDs) as innovative carbon nanoparticles with a size of less than 10 nm
were discovered in 2004 during the impurity removal process of carbon nanotubes [16]. Since
then, CDs as 0-dimension quasi-spherical particles have attracted wide attention [15,17,18].
Notably, various renewable and recycled precursors, such as glass, juice, and yeast, have
been employed to fabricate CDs, aligning with principles of sustainable development [19–21].
Consequently, CDs have diverse applications in bio-imaging, sensors, drug delivery, and
photocatalysis [22–25].

The first study on dye photocatalysis degradation by CDs was reported by Li et al.
(2010), where CDs/TiO2 composite could photo-reduce MB while pure CDs showed no
photodegradation of the dye [26]. Generally, CDs were hybridized with semiconductors,
including ZnS [27], TiO2 [28], and SnO2 [29], to act as photocatalysts. CDs mainly play
two roles in the photocatalytic degradation of dyes among the mixed system of CDs and
semiconductors [15]. On the one hand, CDs absorb visible light, generating photogen-
erated electrons and holes. Semiconductors then accept the photogenerated electrons,
facilitating the charge carrier separation. On the other hand, CDs act as acceptors of photo-
generated electrons from semiconductors under UV irradiation, reducing charge carrier
recombination.

There are few reports on the direct photocatalytic degradation of dyes by pure CDs,
with some suggesting their limited effectiveness [30]. Besides the CDs-semiconductor com-
posite, CDs are used more to catalyze dye degradation after doping with other atoms [17].
N-doped CDs obtained from grass were used for the dye photodegradation in visible and
UV regions [31,32]. N-doped CDs induce reactive oxide species, contributing to methylene
blue (MB) degradation. Metal-doped CDs, like Cu-CDs, CuO-CDs, ZnO-CDs, and NiO-
CDs, were commonly prepared by mixing metal ion solutions with biomass precursors,
promoting their photocatalysis application [20]. However, Cu-CDs are prepared almost
entirely from copper ions and biomass, generating a waste solution [33].

Chromate-copper-arsenate (CCA) wood has been widely used around the world. How-
ever, arsenic, copper, and chromium in the CCA-wood pose a great risk to the environment
and human health. Therefore, it is very important to reuse CCA-wood waste scientifically
and effectively. This study uses copper and carbon from waste wood to prepare carbon
dots not only to reduce the environmental pollution caused by heavy metals but also to
extend the service life of the wood and reduce the carbon footprint. Moreover, mechanism
and kinetic studies on Cu-CDs photocatalytic degradation of dyes need further exploration.

Thus, this study focuses on the direct photocatalytic degradation of MB dyes using
Cu-CDs obtained directly from CCA-wood waste. The CCA-treated wood waste was
repurposed through hydrothermal carbonization to produce CDs, subsequently employed
in catalyzing the degradation of MB dyes. Several experimental parameters, such as reactant
contents, concentrations of MB, and pH, were investigated to identify the key role in the
degradation process. CDs/TiO2 composites were prepared as a control group to explore
the obtained CDs’ photocatalytic efficiency and catalytic mechanism. Importantly, detailed
studies were conducted on reaction kinetics, adsorption isotherms, and the photocatalytic
degradation mechanism of MB in aqueous solutions.
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2. Materials and Methods
2.1. Materials

The CCA-treated wood used in this study was supplied by Tred’si (Tred’si North
America, Westbury, QC, Canada) (Figure S1). TiO2 was provided by Shanghai Macklin Bio-
chemical Co., Ltd., China. Methylene blue, citric acids, and Na2HPO4 were purchased from
Sinopharm Chemical Reagent Co., Ltd., Shanghai, China. All chemicals mentioned were
of analytical grade and were used without additional purification. The water employed
throughout the study was deionized.

2.2. Preparation of Copper-Doped CDs

The CDs in the study were synthesized using a hydrothermal carbonization method.
The specific operation steps are detailed in our previous research [34]. Briefly, 2 g of
CCA-wood powder and 80 mL of deionized water were placed in a 100 mL Teflon-lined
autoclave, then heated in an oven at 200 ◦C for 6 h. CDs were finally obtained by centrifu-
gation at 10,000 rpm for 15 min to remove large particles. Its pH value is about 2.78 at
25 ◦C. The obtained CD solution was over-dried at 100 ◦C and ground into powder for
further characterization and use. CDs/TiO2 composites were prepared based on previous
literature [30]. CDs derived from original wood and CCA wood are labeled W-CDs and
CCA-CDs, respectively. TiO2 of 0.1 g was added into CD solutions (W-CDs and CCA-CDs)
of 5 mL, and the mixture was stirred for 4 h with a magnetic stirrer. CDs/TiO2 composites
were obtained by over-drying them at 100 ◦C.

2.3. Degradation of Methylene Blue

In a glass flask, 30 mg of CDs or CDs/TiO2 composites was introduced into a 30 mL
methylene blue (MB) solution with a 10 mg/L concentration. This setup was employed
with and without ultraviolet (UV) light treatment, maintaining a constant pH. The mixed
solutions were stirred at 170 rpm using a stir plate in a laboratory setting under visible
light from LED bulbs. Samples were collected from the reaction vessel at certain intervals
for testing. The solution in the reaction vessel continues to be processed under the original
conditions. The samples were filtered using a syringe filter of 0.22 µm. The filtered super-
natant was subsequently characterized using a UV/vis spectrophotometer by analyzing
their absorbance values at the wavelength of 664 nm. Three parallel experiments were
conducted during the test, and the average and standard deviation (SD) were taken.

The degradation efficiencies of MB treated with the obtained CDs samples, Rt (%),
were calculated using the following equation:

Rt = (C 0 − Ct)/C0 × 100 (1)

The term C0 represents the concentrations of MB at the initial time, while Ct is the
concentrations at time t (mg/L).

The effects of MB concentrations, CCA-CDs content, and pH on the degradation of
dye have also been studied. The pH of the dye solution was controlled to successive initial
values between 2.2 and 9 with the addition of C6H8O7 (0.1 M) or Na2HPO4 (0.2 M). More
details are shown in Sections S1.1–S1.3 of the supplementary document.

2.4. Characterizations of CDs and MB Degradation Products

SEM analysis (Hitachi Regulus 8100, Tokyo, Japan) was used to characterize CDs and
CDs/TiO2 composites morphology. The detection was carried out with an accelerating
voltage of 20 kV. The micromorphology of the obtained CDs was also analyzed by HR-TEM
(JEM 2100, JEOL, Tokyo, Japan). CD droplets were deposited onto a carbon-coated copper
grid and then dried at room temperature, leaving the nanoparticles on the copper grid.
Images were acquired at 200 kV voltage and 105 µA beam current. The zeta potential mea-
surements were conducted using a NanoPlus HD-Zeta/Nano Particle Analyzer (Zetasizer
Nano, Malvern, Malvern College, UK). XPS equipment (Thermo Scientific ESCALAB Xi,
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Waltham, MA, USA) determined the Element analysis of CCA-CDs and the narrow scan
XPS spectra were deconvoluted employing the Origin software (Origin 2017, OriginLab,
Hampton, MA, USA). Carbon, nitrogen, oxygen, chromium, copper, and arsenic elements
in CDs were observed by XPS analysis. Functional groups of the samples were recorded
through FTIR, using a Nicolet 6700 with an ATR module (Thermo Fisher Scientific Co., Ltd.,
Waltham, MA, USA), scanning spectra from 4000 to 400 cm−1 with an average of 32 scans.
A UV-vis photo spectrometer (Shimadzu UV-2600, Tokyo, Japan) was used to measure
the absorbance value of MB and CDs. The pore characteristics of the obtained CDs were
analyzed through N2 adsorption experiments at 77.3 K using an ASAP-2020 gas adsorption
analyzer (Micromeritics, Atlanta, GA, USA). Characterization included BET-specific surface
area (SBET), external surface (Sext), total pore volume (VT), micropore volume (Vmi), and
mesopore volume (Vme). A liquid chromatography-mass spectrometry (LC-MS) instrument
(Thermo Scientific, U3000, Waltham, MA, USA) was carried out to identify intermediate
compounds during the photocatalytic degradation of MB. A Hypersil GOLD C18 column
was used, and the column was held at 18% solvent A (0.1% acetic acid in water) and 72%
solvent B (0.1% acetic acid in acetonitrile) at the temperature of 25 ◦C, with an injection
volume of 50 µL and flow rate of 0.25 mL/min.

3. Results and Discussion
3.1. Characteristics of the Synthesized Samples

The FTIR analysis was conducted to examine the functional groups of the CDs and
composites, as shown in Figure 1. The O–H stretching band at 3328 cm−1 and the C–H vibration
band in the range of 2976–2898 cm−1 were identified, consistent with previous studies [35,36].
CCA-CDs exhibited characteristic peaks at 1014, 1600, 1670, and 1710 cm−1 corresponding to C–
O stretching vibrations, aromatic ring skeleton vibrational stretching, conjugated carbonyl, and
non-conjugated carbonyl stretching vibration, respectively [37,38]. Peaks at 1190 and 1398 cm−1

were assigned to C–O–C stretching vibration and C–H bending [39,40]. Thus, the obtained
CCA-CDs contained various functional groups, including hydroxyl, carboxylic, carbonyl, and
aromatic rings. Hydrophilic groups of –OH and –COOH on CDs promoted their solubility and
stability [35]. The characteristic peak of TiO2 was observed at the location of 480–490 cm−1 [41].
The same peak was observed for CCA-CDs/TiO2 composites (Figure 1a). However, the intensity
of characteristic peaks belonging to CDs was low in the spectrum of the composites. It can be
explained by the fact that fewer CDs are present in the composites. The rigidity of the TiO2
structure showed a negative effect on the intensity of bands belonging to CDs in the FTIR
spectrum of the CCA-CDs/TiO2 composites [42].

Forests 2024, 15, x FOR PEER REVIEW 4 of 18 
 

 

grid. Images were acquired at 200 kV voltage and 105 μA beam current. The zeta potential 
measurements were conducted using a NanoPlus HD-Zeta/Nano Particle Analyzer 
(Zetasizer Nano, Malvern, Malvern College, UK). XPS equipment (Thermo Scientific ES-
CALAB Xi, Waltham, MA, USA) determined the Element analysis of CCA-CDs and the 
narrow scan XPS spectra were deconvoluted employing the Origin software (Origin 2017, 
OriginLab, Hampton, MA, USA). Carbon, nitrogen, oxygen, chromium, copper, and arse-
nic elements in CDs were observed by XPS analysis. Functional groups of the samples 
were recorded through FTIR, using a Nicolet 6700 with an ATR module (Thermo Fisher 
Scientific Co., Ltd., Waltham, MA, USA), scanning spectra from 4000 to 400 cm−1 with an 
average of 32 scans. A UV-vis photo spectrometer (Shimadzu UV-2600, Tokyo, Japan) was 
used to measure the absorbance value of MB and CDs. The pore characteristics of the ob-
tained CDs were analyzed through N2 adsorption experiments at 77.3 K using an ASAP-
2020 gas adsorption analyzer (Micromeritics, Atlanta, GA, USA). Characterization in-
cluded BET-specific surface area (SBET), external surface (Sext), total pore volume (VT), mi-
cropore volume (Vmi), and mesopore volume (Vme). A liquid chromatography-mass spec-
trometry (LC-MS) instrument (Thermo Scientific, U3000, Waltham, MA, USA) was carried 
out to identify intermediate compounds during the photocatalytic degradation of MB. A 
Hypersil GOLD C18 column was used, and the column was held at 18% solvent A (0.1% 
acetic acid in water) and 72% solvent B (0.1% acetic acid in acetonitrile) at the temperature 
of 25 °C, with an injection volume of 50 μL and flow rate of 0.25 mL/min. 

3. Results and Discussion 
3.1. Characteristics of the Synthesized Samples 

The FTIR analysis was conducted to examine the functional groups of the CDs and 
composites, as shown in Figure 1. The O–H stretching band at 3328 cm−1 and the C–H 
vibration band in the range of 2976–2898 cm−1 were identified, consistent with previous 
studies [35,36]. CCA-CDs exhibited characteristic peaks at 1014, 1600, 1670, and 1710 cm−1 
corresponding to C–O stretching vibrations, aromatic ring skeleton vibrational stretching, 
conjugated carbonyl, and non-conjugated carbonyl stretching vibration, respectively 
[37,38]. Peaks at 1190 and 1398 cm−1 were assigned to C–O–C stretching vibration and C–
H bending [39,40]. Thus, the obtained CCA-CDs contained various functional groups, in-
cluding hydroxyl, carboxylic, carbonyl, and aromatic rings. Hydrophilic groups of –OH 
and –COOH on CDs promoted their solubility and stability [35]. The characteristic peak 
of TiO2 was observed at the location of 480–490 cm−1 [41]. The same peak was observed for 
CCA-CDs/TiO2 composites (Figure 1a). However, the intensity of characteristic peaks be-
longing to CDs was low in the spectrum of the composites. It can be explained by the fact 
that fewer CDs are present in the composites. The rigidity of the TiO2 structure showed a 
negative effect on the intensity of bands belonging to CDs in the FTIR spectrum of the 
CCA-CDs/TiO2 composites [42]. 

 
Figure 1. FTIR spectra (a), XPS full scan survey spectrum (b) of the synthesized CCA-CDs, and high-
resolution XP spectrum of C1s of CCA-CDs (c). 

The XPS spectra of CCA-CDs revealed three peaks: C1s at 286 eV, O1s at 530 eV, and 
Cu at 932 eV (Figure 1b,c). The presence of Cu indicated the obtained CDs were doped 

Figure 1. FTIR spectra (a), XPS full scan survey spectrum (b) of the synthesized CCA-CDs, and
high-resolution XP spectrum of C1s of CCA-CDs (c).

The XPS spectra of CCA-CDs revealed three peaks: C1s at 286 eV, O1s at 530 eV, and
Cu at 932 eV (Figure 1b,c). The presence of Cu indicated the obtained CDs were doped
with copper because CCA wood contains a lot of copper ions. However, the XPS spectra
did not observe chromium and arsenic in CCA-CDs. XRD spectra showed similar results,
with characteristic diffraction peaks of metal oxides absent in the CDs spectra but present
in the CCA wood spectrum (Figure S2). There were no obvious diffraction peaks but
only some noise for the spectra of CDs (Figure S2b). Chromium and arsenic are too low
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to be observed. Those results indicated that chromium and arsenic were barely leached
from CCA wood during the hydrothermal carbonization and thus less bound to carbon
dots. On the other hand, compared with chromium and arsenic, copper ions are more
easily complexed with polycarboxylic acids and thus retained on carbon dots. Four peaks
presented in the C1 bands of CCA-CDs at 284.6, 286.2, 287.8, and 288.8 eV, respectively,
corresponding to the functional groups of C-C, C-O, C=O, and O-C=O (Figure 1c). This
confirmed the presence of hydroxyl and carboxyl functional groups, consistent with the
FTIR results mentioned earlier.

The zeta potential measurement of the Cu-CDs solution revealed a value of approx-
imately −9.61 (±0.74) mV, indicating a decrease compared to the findings reported by
Zulfajri et al. This decline in zeta potential can likely be attributed to the complexation
of copper ions, which leads to the consumption of carboxylic acid functional groups on
the surface of carbon dots. Consistent with previous research, nitrogen doping has been
observed to diminish the zeta potential of carbon dots. This effect is attributed to the
substitution of carboxyl groups by the less electronegative amino groups [43].

Figure 2 illustrates the surface morphologies of pure TiO2, CCA-CDs, and CCA-
CDs/TiO2 composites. Both the CCA-CDs/TiO2 composites and pure TiO2 particles
exhibit similar structures characterized by regular-shaped particles. These particles display
uniformity, with the size of individual TiO2 particles measuring approximately 50 nm. The
SEM results did not find that carbon dots changed the microstructure of titanium dioxide.
The size of CCA-CDs/TiO2 composites barely changed compared with pure TiO2. This
negligible change can be attributed to the small size of CCA-CDs in the aqueous phase,
measuring 2–4.5 nm in diameter, as depicted in Figure 3. The EDX result indicated that CDs
were evenly dispersed in the composites. The atomic mass ratio of carbon and titanium in
the composite material is approximately 3:7.

SEM analysis reveals that the CCA-CDs lose their nano state upon drying, resulting in
non-uniform particle sizes. The dried nano-carbon dots are ground into powder to prepare
the test samples of CCA-CDs. During the drying process, the nanodots agglomerate due to
numerous functional groups on their surfaces. Dehydration of hydroxyl or carboxyl groups
on the carbon dots’ surfaces leads to the forming of new ether bonds, facilitating agglomer-
ation. This agglomeration contributes to the macroscopically amorphous characteristics of
CDs, resulting in larger particle sizes than the other two materials.

Nitrogen adsorption/desorption isotherms curves of the TiO2, CCA-CDs, and CCA-
CDs/TiO2 composites at 77.3 K, as well as Barrett–Joyner–Halenda (BJH) pore-size dis-
tribution curves, are shown in Figure 4. Generally, the greater the surface area of the
photocatalyst is, the more active the reaction sites are. The tested samples showed type
IV adsorption isotherms, suggesting that these materials are rich in slit-like pores [44].
The N2 adsorbed quantity of CCA-CDs was lower than that of TiO2 and CCA-CDs/TiO2
composites at the same relative pressure. This result indicated that CCA-CDs have the
lowest surface area among the three tested samples, consistent with SEM results. The
intensities of isotherm curves for all tested samples were low at low pressure, revealing that
they had fewer micropores (Figure 4a) [45]. This observation was further supported by the
pore-size distribution curves results, as shown in Figure 4b. The adsorption and desorption
isotherms did not overlap and thus formed a hysteresis loop. The types of hysteresis loop
curves of TiO2 differ from those of CDs because of their different pore size distribution. The
hysteresis loop curves of CCA-CDs and CCA-CDs/TiO2 composites are very similar. The
BJH pore-size distribution curves (Figure 4b) displayed that mesopores were the primary
pores for TiO2. CCA-CDs and CCA-CDs/TiO2 composites mainly contained mesopores
and macropores. TiO2 showed a relatively narrow distribution ranging from 5 to 25 nm,
while relatively broad distributions were observed for CCA-CDs and CCA-CDs/TiO2
composites. The broad distributions can be ascribed to the agglomeration of CDs.
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the TiO2, CCA-CDs, and CCA-CDs doped-TiO2 at 77.3 K.

Table 1 shows the texture parameters obtained from the N2 adsorption isotherms. For
all tested samples, TiO2 had the highest Brunauer–Emmett–Teller (BET) specific surface
area of 158.25 m2/g and a total pore volume of 0.406 cm3/g. The situation was reversed for
CCA-CDs. The mesoporous volume of TiO2 was also superior to the other two samples,
suggesting its higher adsorption ability.

Table 1. Porous texture parameters calculated from the N2 adsorption isotherms at 77.3 K.

Samples SBET (m2/g) Sext (m2/g) Vmi (cm3/g) Vme (cm3/g) VT (cm3/g)

TiO2 158.25 108.24 0.011 0.395 0.406
CCA-CDs 80.50 55.38 0.016 0.227 0.243

CCA-CDs/TiO2 144.63 98.56 0.007 0.326 0.333

3.2. Photocatalysis Degradation of MB
3.2.1. Influence of Photocatalyst Types

The degradation efficiency of MB was affected by the types of photocatalysts (Figure 5).
CCA-CDs exhibited the highest catalysis efficiencies, achieving a removal rate of 98.9%
under the artificial lamp light for one hour. The degradation rate of MB treated with
CCA-CDs increased by 93.4% after 15 min compared to TiO2 (Figure 5a). This result may
seem contradictory to the gas adsorption experimental findings, where a larger BET-specific
surface area generally leads to more efficient adsorption degradation [46]. The reason
may be that carbon dots have adsorption and catalytic functions. The size and functional
groups are different between MB and N2. Moreover, it is important to note the surface
area of CDs in solution is higher than solid CDs. During the concentration and drying
process, agglomeration will occur between carbon dots, thus destroying nanoparticles’
high surface area characteristics. Therefore, the measured specific surface area should be
smaller than the true specific surface area of the carbon dots. The diameter of CCA-CDs
particles in solutions is about 2.5 nm, less than that of TiO2. The density of TiO2 is greater
than that of carbon dots. Under the same solid–liquid ratio, the volume fraction of pure
carbon dots is larger and more uniformly dispersed. Moreover, TiO2 has a relatively narrow
bandgap, which has high catalytic activity only under UV light. CDs can photocatalyst
the degradation of dyes under visible light [47]. Interestingly, the degradation rate of MB
by CCA-CDs/TiO2 composites was higher than by W-CDs/TiO2 composites (Figure 5b).
The observation can be attributed to the presence of Cu element in CCA-CDs, which was
revealed in the XPS results. CCA-CDs act as acceptors of photogenerated electrons, thus
reducing the charge carrier recombination rates and promoting the charge carrier separation
process [15].
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methylene blue (MB) solution with a concentration of 10 mg/L. and (d) digital photo of photocatalytic
degradation of methylene blue aqueous solution (50 mg/L) by copper doped carbon dots.

As Figure 5c shows, the photocatalytic degradation rate of MB by CCA-CDs was lower
under a lamp light than under 365 nm UV light within 15 min. This is mainly because the
maximum absorption spectral range of CCA-CDs is in the ultraviolet region (Figure S3). Of
note, the CCA-CDs solution still maintains good photoluminescence after 24 months of
storage at 4 ◦C (Figure S4). This observation indicates the CCA-CDs have excellent stability.
After 30 min, there was almost no difference in the degradation rate of BM under different
light resources. Those observations indicated that photocatalytic degradation of MB using
CCA-CDs occurred even under weak light (artificial visible light from bulbs) accompanied
by an adsorption process.

3.2.2. Influence of MB Concentrations, CCA-CDs Contents, and pH

The photocatalytic activity of CCA-CDs was investigated against MB solution under
artificial visible light from a bulb, as shown in Figure 6 and Figure S5. Generally, increasing
the dye concentration in solutions decreases photocatalytic efficiency. The MB concentra-
tion significantly decreased within 15 min and then gradually reached equilibrium with the
degradation rate near 100% when the MB concentration was below 50 mg/L (Figure 6a).
The photocatalytic activity for MB barely changed with the MB concentration increasing
when the MB concentration was below 50 mg/L. The reason is that CDs with a small
diameter have many active sites on their surface. Even though the MB concentration was
up to 50 mg/L, there were still enough available active sites to catalyze the degradation
reaction [48]. Upon further increase in MB concentrations from 100–300 mg/L, the photo-
catalytic efficiency decreased, consistent with a previous report [42]. The degradation was
segmented into three sections as the time of the reaction continued: the dye concentrations
decreased sharply in 120 min, and the degradation rate slowed down between 120 and
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480 min and finally reached equilibrium (Figure 6b). The high concentration of MB prevents
photons from arriving at the catalysts’ surface. The excitation of photocatalyst particles by
photons diminished, reducing the generation of electron-hole pairs [44,49]. Moreover, more
MB molecules will cover the surface of CDs and shield their active sites with increasing
concentrations of MB [50]. Those reasons lead to the reduction of the degradation efficiency
of MB.
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The removal of MB in the aqueous solution increased with an increase in CCA-CDs
doses (Figure 6c). After 15 min under visible light, the removal of the MB dyes was
improved from 38 to 82% using 10 to 30 mg doses. A large quantity of CCA-CDs provided
more reaction sites for photocatalytic degradation and adsorption of MB, resulting in a
higher removal efficiency [51]. However, the rate of increase slowed when the catalyst
amount exceeded 20 mg, attributed to the active sites gradually reaching saturation.

The pH of the solution plays a crucial role in affecting the photocatalytic degradation
of MB dyes since pH affects the charge distribution on the CDs’ surface and the electrostatic
interactions between MB and catalysts in the aqueous solution [51,52]. The influences of
pH on MB degradation by CCA-CDs are depicted in Figure 6d. The removal rate of MB
was observed to increase with an increase in pH from 2 to 5 and decreased beyond pH
8. The catalytic activity was enhanced because electron recombination decreased with
increasing the pH value. There is a strong repulsion between the MB dye cationic and the
catalyst surface covered with positive charges in a low pH solution. Zhu et al. (2019) found
that the increase in the pH led to the ease of formation of •OH radicals by the following
chemical reactions: CCA-CDs + hν → e−CB + h+VB and (H2O ⇔ H+ + OH−)ads + h+VB → H+

+ OH• [53]. At pH > 8, the photocatalyst becomes unstable due to copper ions. The CD
solution prepared from CCA wood is acidic, with a pH of about 2.78 at 25 ◦C. When the pH
of the solution is greater than 8, the free hydroxyl groups in the solution will change the
surface functional groups and charges of the carbon dots, thereby reducing the adsorption
capacity of the carbon dots to methylene blue. Thus, a pH from 5 to 8 was the most
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suitable condition for MB degradation in this study, and the lowest efficiency was obtained
at a pH of 2–4. Compared with the previous report, the synthetic CCA-CDs had wide
pH adaptability [42]. A conclusion could be drawn that high degradation efficiency was
observed when the target dye was effectively adsorbed on the surface of the photocatalyst,
which was consistent with previous reports [49].

3.3. Kinetic Studies

The kinetic study is essential for understanding the photocatalytic reaction pathways
in the treatment process of the aqueous solution. This study employed two models to
investigate the mechanism of the reaction process and characterize the rate constants,
namely the pseudo-first-order and pseudo-second-order equations, for the degradation of
MB by CCA-CDs, as follows:

The pseudo-first-order equation [54] is expressed as follows:

qt = qe

(
1 − ek1t

)
(2)

where qt and qe present the amounts of MB adsorbed at time t and equilibrium, respectively.
The parameter k1 denotes the rate constant for the pseudo-first-order.

The pseudo-second-order equation [55,56] is expressed as follows:

qt = qe
2k2t/(1 + qek2t) (3)

The k2 denotes the rate constant in the pseudo-second-order equation.
Kinetic models and parameters for photocatalytic degradation of MB by CCA-CDs

are indicated in Figure 7 and Table 2. For a 100 mg/L MB solution, the R2 value for the
pseudo-first-order model was 0.870, while the R2 value for the pseudo-second-order model
was 0.963. Similar results were observed when the MB concentration was 300 mg/L. The
Lagrangian first-order rate equation assumes that the rate at which adsorbate occupies
adsorption sites is proportional to the number of unoccupied sites. The second-order
kinetic model is based on the following assumption: the adsorption of adsorbate on the
adsorbent is chemical adsorption. This process is also commonly used to predict overall
adsorption behavior [42]. The pseudo-second-order model was deemed more appropriate
for describing the removal of MB dye in this study, and the adsorption process is chemical
adsorption. This also showed that carbon dots had a photocatalytic effect. The calculated
qe,cal values aligned well with the experimental data (qe,exp) in the case of the pseudo-second-
order kinetic model. Table 2 demonstrates a regular effect of initial MB concentration on
the rate constants (k1 and k2) was regular, where both k1 and k2 decreased with increasing
MB concentration. This finding was consistent with a previous report [57]. When the
dye concentration increases, the chromaticity of the solution increases, which affects the
transmittance of ultraviolet light, thereby reducing the reaction rate of the photocatalytic
degradation of the dye. This suggested that reactant concentration was one of the rate-
limiting factors in the degradation process of MB.

Table 2. Non-linear kinetics parameters calculated for MB degradation by CCA-CDs.

Models Parameters
Samples

100.000 mg/L 300.000 mg/L

qe,exp (mg/g) 95.280 171.660

Pseudo-first-order
qe,cal (mg/g) 87.290 150.850
k1 (min−1) 0.055 0.026

R2 0.870 0.883

Pseudo-second-order
qe,cal (mg/g) 93.430 163.620

k2 (g/(mg·min)) 0.087 × 10−2 0.024 × 10−2

R2 0.963 0.964
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Figure 7. Kinetic models for removing methylene blue at 100 and 300 mg/L concentrations by 30 mg
CCA-CDs at a pH value of 6.2.

3.4. Isotherm Studies

Isotherm studies express the relationship between the amount of MB adsorbed per
gram of adsorbent and the equilibrium concentration of adsorbates. This investigation
employed diverse nonlinear isotherm models—Langmuir, Freundlich, Redlich–Peterson,
and Sips—to fit the reaction process, with the respective equations detailed below:

(a) Langmuir model [58]:

qe = qmaxKLCe/(1 + KLCe) (4)

The Ce is MB concentration at equilibrium (mg/L), qe signifies the quantity of MB
adsorbed per unit mass of adsorbent under equilibrium state (mg/g), KL stands for the
Langmuir isotherm constant (L/mg), qmax is the maximum adsorption capacity (mg/g).

The fundamental feature of the Langmuir isotherm is conveyed through a dimension-
less equilibrium constant (Rl). The equation [51] is expressed as follows:

Rl = 1/(1 + KlCi) (5)

where Ci represents the initial MB concentration.
(b) Freundlich model [59]:

qe = K f Ce
1/n (6)

where K f is a Freundlich constant, reflecting the relative adsorption capacity (mg/g), and n
is the reciprocal of the adsorption intensity constant, Ce and qe are the same as mentioned
above.

(c) Redlich–Peterson [60] model:

qe = KrCe/
(

1 + arCe
β
)

(7)

where Kr and β are constants in the Redlich–Peterson model; when β = 1, the equation
can be transformed into the Langmuir isotherm, and when arCe

β is much greater than 1,
the model becomes the Freundlich isotherm. The ratio of Kr/ar represents the adsorption
capacity of the reactants to the substrate.

(d) The nonlinear Sips model [61]:

qe = qsKsCe
ns /(1 + KsCe

ns) (8)

where Ks is the equilibrium constant. If ns = 1, this equation will become a Langmuir
isotherm. Likewise, it reduces to the Freundlich equation when Ce or Ks approaches 0.
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The experimental data of MB degradation by CCA-CDs were fitted using the above
four models (Figure 8), and the isotherm parameters of different models were listed in
Table 3. Notably, the results indicated a superior fit of the Redlich–Peterson and Sips
models compared to the Langmuir and Freundlich models. Specifically, the correlation coef-
ficients (R2) for the Sips and Redlich–Peterson isotherms were 0.983 and 0.980, respectively,
surpassing those of the Langmuir and Freundlich isotherms. Previous literature shows
that the Langmuir and Freundlich equations reflected monolayer and multilayer surface
characteristics of absorbents, respectively [61]. The results showed that the adsorption
of MB on CDs is heterogeneous multilayer adsorption because CCA-CDs are capable of
adsorbing MB and have a photocatalytic effect. The maximum degradation capacity of
CCA-CDs was 151.07 mg/g obtained from the Sips model and demonstrated that the
performance of CCA-CDs was considerably effective for MB removal.
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Figure 8. Isotherm curves of MB degradation by CCA-CDs (a) and the R1 plots (b) with 30 mg
CCA-CD dispersed in 30 mL MB solution.

Table 3. Isotherm parameters of MB removal by CCA-CDs.

Models Parameters CCA-CDs

Langmuir
qmax (mg/g) 121.81
KL (L/mg) 0.82

R2 0.877

Freundlich
Kf (mg/g) 67.05

1/n 0.14
R2 0.940

Redlich–Peterson

Kr (L/g) 290.52
ar (L/mg) 3.58

β 0.91
R2 0.980

Sips

qs (mg/g) 151.07
Ks (L/g) 0.68

ns 0.43
R2 0.983

3.5. Mechanism of MB Dye Photodegradation

CCA-CDs as nanoparticles exhibited great adsorption abilities for MB dyes due to
their large surface area, facilitating the photodegradation of MB dyes. To further reveal
the degradation chemical pathway of MB by CCA-CDs, the degradation products of MB
solution of 50 mg/L were investigated by LC-MS analysis. The chromatogram and mass
spectra for MB in aqueous after photocatalytic degradation for 15, 30, and 60 min are shown
in Figure 9. The intensity of MB peak at the retention time of 1.12 min with m/z 284 [55]
decreased with the increase in treatment time. Further, this peak completely disappeared
after photocatalytic degradation for 60 min. This result indicated MB had been completely
degraded after 60 min. The peak load at 1.03 min was ascribed to 3-Hexenedioic acid. Of
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note, the intensity of the peak located at the retention time of 0.83 min increased with the
treatment time increasing. This showed that the catechol concentration in the aqueous
solution increased during treatment. Those observations indicated that the water-soluble
degradation products of MB are mainly phenolic and carboxylic acid compounds.

Forests 2024, 15, x FOR PEER REVIEW 14 of 18 
 

 

 
Figure 9. LC-MS chromatogram spectra of MB treated with CCA-CDs for 15 min (a), 30 min (b), 60 
min (c), and mass spectra with retention time at 1.12 min (d), 1.57 min (e), 1.03 min (f), 0.83 min (g), 
0.72 min (h) and the average of subfigure (c) (i), respectively. 

Various studies have demonstrated that CDs or CDs/semiconductor composites ab-
sorb photonics, resulting in the generation of photogenerated electrons and holes [62,63]. 
CDs act as photogenerated electronic transfers for CD composites, reducing the charge 
carrier recombination rates. Conversely, they absorb the radiation in the visible region, 
generating electrons and holes. In this study, CCA-CDs successfully generated electron-
hole pairs under artificial visible light, driving redox reactions (Figure 10), which agrees 
with a previous study [31]. Hydroxide ions are oxidized to hydroxyl radicals by the pho-
togenerated hole in the valence band. The superoxide radical anions are generated by do-
nating electrons in the conductance band to oxygen [55]. The presence of •OH radicals 
has been proved by adding scavengers [42]. In contrast to earlier investigations, introduc-
ing copper doping imparts electron acceptor properties to CCA-CDs, enhancing their pho-
tocatalytic efficiency. 

Figure 9. LC-MS chromatogram spectra of MB treated with CCA-CDs for 15 min (a), 30 min (b),
60 min (c), and mass spectra with retention time at 1.12 min (d), 1.57 min (e), 1.03 min (f), 0.83 min
(g), 0.72 min (h) and the average of subfigure (c) (i), respectively.

Various studies have demonstrated that CDs or CDs/semiconductor composites
absorb photonics, resulting in the generation of photogenerated electrons and holes [62,63].
CDs act as photogenerated electronic transfers for CD composites, reducing the charge
carrier recombination rates. Conversely, they absorb the radiation in the visible region,
generating electrons and holes. In this study, CCA-CDs successfully generated electron-
hole pairs under artificial visible light, driving redox reactions (Figure 10), which agrees
with a previous study [31]. Hydroxide ions are oxidized to hydroxyl radicals by the
photogenerated hole in the valence band. The superoxide radical anions are generated
by donating electrons in the conductance band to oxygen [55]. The presence of •OH
radicals has been proved by adding scavengers [42]. In contrast to earlier investigations,
introducing copper doping imparts electron acceptor properties to CCA-CDs, enhancing
their photocatalytic efficiency.
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