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Abstract: This study aimed to develop simultaneous models with universal applicability for the
estimation of the main factors of forest stands based on airborne LiDAR data and to provide a
reference for standardizing the approach and evaluation indices of main forest factor modeling.
Using airborne LiDAR and field survey data from 190 sample plots in spruce (Picea spp.), fir (Abies
spp.), and spruce–fir mixed forests in Northeast China, the simultaneous models for estimating the
main factors of forest stands were developed. To develop the models, the relationships between
mean tree height, stand basal area, stand volume, and the main metrics of the LiDAR data and the
correlations between eight quantitative factors of forest stands were considered, and the error-in-
variable simultaneous equations approach was employed to fit the models. The results showed that
the mean prediction errors (MPEs) of eight forest stand factors estimated by the simultaneous models
were mostly within 5%, and only the MPE of the number of trees per hectare exceeded 5%. The
mean percentage standard errors (MPSEs) of the estimates, including the mean diameter at the breast
height (DBH), mean tree height, and mean dominant tree height, were within 15%; the MPSEs of
the estimates of the stand basal area, volume, biomass, and carbon stock per hectare were within
25%; and only the MPSE of the estimated number of trees per hectare exceeded 30%. The coefficients
of determination (R2) of the core prediction models for the volume, biomass, and carbon storage
were all greater than 0.7. It can be concluded that estimating the main factors of forest stands based
on the combination of LiDAR and field survey data is technically feasible, and the simultaneous
models developed in this study for the estimation of the eight main stand factors of spruce–fir forests
can meet the precision requirements of forest resource inventory, except for the number of trees,
indicating that the models can be applied in practice.

Keywords: airborne LiDAR data; forest stand factors; error-in-variable; simultaneous models

1. Introduction

Light detection and ranging (LiDAR) is an active laser measuring technology that
combines laser scanning and position and orientation systems (POSs) in imaging for the
generation of accurate and dense 3D point clouds, digital elevation models (DEMs), digital
surface models (DSMs), and tree heights estimated from the 3D point cloud products [1].
LiDAR can be divided into four categories: space-borne, airborne, unmanned aerial systems
(UAS), and ground-based according to the method of sensor mounting. Airborne LiDAR
is widely used to obtain three-dimensional forest scanning data at different scales to
estimate major forest parameters such as average stand height, basal area, volume, and
biomass [2–5].

Research on forest stock estimation based on LiDAR data can be traced back to the
1980s [6]. After nearly 40 years of research and practice, LiDAR technology, especially
airborne LiDAR data, has been widely used for estimating forest volume and has achieved

Forests 2024, 15, 775. https://doi.org/10.3390/f15050775 https://www.mdpi.com/journal/forests

https://doi.org/10.3390/f15050775
https://doi.org/10.3390/f15050775
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/forests
https://www.mdpi.com
https://orcid.org/0000-0002-5462-0737
https://doi.org/10.3390/f15050775
https://www.mdpi.com/journal/forests
https://www.mdpi.com/article/10.3390/f15050775?type=check_update&version=1


Forests 2024, 15, 775 2 of 12

fruitful and successful research results [7–15]. LiDAR technology has significant advantages
in estimating tree height and forest spatial structure. Existing case studies that estimate
major forest parameters based on LiDAR data have revealed new approaches for the
application of remote sensing technology in forest resource surveys [16–19].

In recent years, the emergence of new laser scanning forms, such as Terrestrial Laser
Scanning (TLS) and Unoccupied Aerial Vehicle Laser Scanning (UAV-LS), accompanied
by innovative data fusion and other data processing algorithms have further improved
the accuracy of models based on LiDAR data for forest parameters estimation. In a recent
study, Panagiotidis et al. [20] created a 3D point cloud from fusion of the UAV-LS and TLS
data to assess several tree metrics, such as the diameter at breast height (DBH), total tree
height (HT), crown projection area (PAC), crown width (WC), crown length (LC), 3D crown
surface (SC), and 3D crown volume (VC). Their results showed that LiDAR fusion can
significantly improve the estimation accuracy of DBH and HT, and these estimations for
broadleaves reach an accuracy of 97.8%. Terryn’s research also proved that fusion from
the TLS and UAV-LS opens up new avenues for obtaining accurate and detailed forest
structural information [21].

Research on the application of LiDAR technology in forestry field surveys in China
is relatively lagging compared with that in other countries, and most of these methods
have been used only for forest stock estimation for research purposes [22–26]. Addition-
ally, pilot studies attempting to use LiDAR technology for forest resource inventories are
relatively rare [27–31]. Traditional forest resource planning and design inventories are
time-consuming and labor-intensive [32], and these shortcomings provide opportunities
for the application of remote sensing. Existing pilot results show that the accuracy of the
estimation of core parameters such as forest stock based on LiDAR can meet the require-
ments of forest resource inventories [27–30]. It has been proposed that key small-scale
factors of forest stands can be identified via remote sensing technologies such as LiDAR [33].
However, there is currently no clear conclusion on whether the major parameters of forest
stands, such as the stand volume, biomass, carbon stock, mean diameter at breast height
(MD), mean tree height (MH), mean dominant tree height (DH), number of trees (NT), and
stand basal area (BA) can be estimated simultaneously based on LiDAR data, and the joint
estimation of these major forest stand factors based on LiDAR has not yet been reported.

In this study, we used LiDAR data and synchronous ground survey data from 190 sam-
ple plots in spruce (Picea spp.), fir (Abies spp.), and spruce–fir mixed forests distributed in
the forest region of northeastern China and estimated eight major stand factors, including
the mean diameter at breast height, mean tree height, mean dominant tree height, number
of trees, basal area, volume, biomass, and carbon storage per hectare based on the error-in-
variable simultaneous equations method [34]. Then, we comprehensively evaluated the
various errors of the model [35] to provide a scientific basis for standardizing the estimation
methods of the major stand factors and advancing the application of LiDAR technology in
forest resource inventory and monitoring.

2. Data and Methods
2.1. Study Area

The study areas involved eight Forestry Bureaus, which were distributed in five forest
regions in Northeast China, including Tahe and Xinlin in the Daxinganling region, Zhanhe
and Nancha in the Xiaoxinganling region, Fangzheng in the Songhuajiang region, Weihe in
the Mudanjiang region, and Dunhua and Bajiazi in the Changbaishan region. The five forest
regions are located between 41◦29′–53◦21′ N, 123◦19′–129◦25′ E (Figure 1). The spruce
(Picea spp.), fir (Abies spp.), and spruce–fir mixed forests selected in our study were also the
typical coniferous forest types that are widely distributed in northeastern China.
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circular with an area of 600 m2, and the coordinates of the center point were positioned 
with RTK equipment with a positioning accuracy of 0.2 m. In addition to measuring the 
diameter at the breast height of each tree with a tape meter, the heights of 15 sample trees 
distributed in five different diameter classes/groups were also measured with a Blume-
Leiss altimeter or laser altimeter. Based on these, a tree height–diameter at breast height 
curve model was established to estimate the height of each tree on a plot and combined 
with the two-variable tree volume model [36], the biomass model, and the carbon content 
coefficient [37,38]; the volume, biomass and carbon stock of trees and plots were calcu-
lated. The mean diameter at breast height, mean tree height (the height corresponding to 
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were conducted in the mentioned eight Forest Bureaus. The flight weather required avoid-
ing strong winds, rain, and snow. The RIEGL-VUX-1UAV laser scanning system was used 
to obtain LiDAR point cloud data, and the main parameters of the LiDAR system were as 
follows: a measurement accuracy of 10 mm, a maximum distance measurement range of 
920 m, a maximum transmission frequency of 550 kHz, a maximum effective measure-
ment rate of 500,000 times per second, a point cloud density greater than 4 points per 

Figure 1. Locations of the eight Forest Bureaus in which 199 sample plots were distributed.

2.2. Data Collection
2.2.1. Field Data

The data used in this study were collected from 199 sample plots in spruce, fir, and
spruce–fir mixed forests distributed in the eight Forest Bureaus mentioned above. The
ground survey was conducted from September to November 2019. The sample plot was
circular with an area of 600 m2, and the coordinates of the center point were positioned
with RTK equipment with a positioning accuracy of 0.2 m. In addition to measuring the
diameter at the breast height of each tree with a tape meter, the heights of 15 sample trees
distributed in five different diameter classes/groups were also measured with a Blume-
Leiss altimeter or laser altimeter. Based on these, a tree height–diameter at breast height
curve model was established to estimate the height of each tree on a plot and combined
with the two-variable tree volume model [36], the biomass model, and the carbon content
coefficient [37,38]; the volume, biomass and carbon stock of trees and plots were calculated.
The mean diameter at breast height, mean tree height (the height corresponding to the
mean DBH), mean dominant tree height (the mean height of the three tallest trees in a plot),
number of trees, and basal area per hectare were also calculated for each sample plot. These
eight key quantitative factors of stands, including the mean diameter at breast height, mean
tree height, mean dominant tree height, number of trees per hectare, basal area per hectare,
volume per hectare, biomass per hectare, and carbon storage per hectare, were defined as
the target variables in the modeling process.

2.2.2. Aerial Data

The coverage range and acquisition time of the LiDAR data are the same as those of
the field survey, which was conducted from September to October 2019. A vertical take-off
and landing fixed-wing UAV modeled YC–02 was selected to carry out the flight missions.
A total of 49 sorties with a flight altitude of 350 m, covering 695 square kilometers, were
conducted in the mentioned eight Forest Bureaus. The flight weather required avoiding
strong winds, rain, and snow. The RIEGL-VUX-1UAV laser scanning system was used to
obtain LiDAR point cloud data, and the main parameters of the LiDAR system were as
follows: a measurement accuracy of 10 mm, a maximum distance measurement range of
920 m, a maximum transmission frequency of 550 kHz, a maximum effective measurement
rate of 500,000 times per second, a point cloud density greater than 4 points per square meter,
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and on-site positioning accuracy of 0.11 m. After completing the raw data prepossessing,
classification, and adjustment, the digital elevation model (DEM), digital surface model
(DSM), and canopy height model (CHM) were applied to process the point cloud data, and
98 metrics reflecting the height, density, and structure of the forest stands were extracted as
the explanatory variables for modeling [29].

2.2.3. Data Screening

Before modeling, abnormal data or outliers were determined and eliminated by draw-
ing scatter plots between core target variables and key explanatory variables. A total of
9 sample plots were eliminated, and the remained 190 sample plots ultimately consti-
tute the modeling data. Table 1 shows the statistical parameters of the eight main forest
stand factors.

Table 1. Statistical parameters of eight forest stand factors used for modeling plots.

Forest Stand Factors Mean Min Max Standard
Deviation (SD)

Coefficient of
Variation (CV)/%

Mean diameter at breast height D (cm) 16.8 7.6 30.6 4.8 28.3
Mean tree height H (m) 14.13 4.59 24.85 3.93 27.8
Mean dominant tree height Hd (m) 18.71 5.15 28.23 4.10 21.9
Number of trees per hectare N (ha−1) 1097 400 3133 461 42.0
Basal area per hectare G (m2/ha) 23.02 1.93 45.22 9.16 39.8
Volume per hectare V (m3/ha) 185.8 5.3 491.8 100.7 54.2
Biomass per hectare B (t/ha) 140.1 6.7 326.2 67.1 47.9
Carbon storage per hectare C (t/ha) 68.5 3.3 156.3 32.7 47.7

2.3. Modeling Method

Based on the screened airborne LiDAR data and ground survey data of 190 spruce–fir
forest plots, independent regression models for the estimation of the main stand factors
were established according to the correlations between the mean tree height, basal area,
and volume of stands, and the main metrics were extracted from the LiDAR data and the
relationships between eight quantitative factors of forest stands. Then, the error-in-variable
simultaneous equations approach was employed to fit the models.

2.3.1. Independent Models

According to the conclusions of existing studies, forest volume is mainly related to
the variable with the largest positive correlation (the mean height of the point cloud)
and the largest negative correlation (the mean intensity of the point cloud) among the
98 LiDAR metrics [29]. Since volume is the most important target variable for forest
resource inventories and mainly depends on the mean tree height and basal area of the
stands [27], our research utilized the key LiDAR metrics, the mean height (X1) and mean
intensity (X2) of the point cloud, to establish prediction models for the direct estimation of
the main factors of stands, including the mean tree height, basal area, and stand volume.

H = a0X1
a1X2

a2 + εH (1)

G = b0X1
b1X2

b2 + εG (2)

V = c0X1
c1X2

c2 + εV (3)

In these equations, H is the mean tree height of the stand (m), G is the basal area per
hectare (m2/ha), V is the volume per hectare (m3/ha), X1 is the mean height of the point
cloud, X2 is the mean intensity of the point cloud, ai, bi, and ci are the model parameters,
and εH, εG, and εV are the error terms, which are assumed to follow a normal distribution
with a mean of zero.
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According to the correlations between biomass, carbon storage, and volume, as well
as the correlations between the mean diameter at breast height, the mean dominant tree
height, and the mean tree height [34], the following regression model can be developed:

B = d0 + d1V + εB (4)

C = e0B + εC (5)

D = f 0Hf1 + εD (6)

Hd = g0 + g1H + εHd (7)

where B is the biomass per hectare (t/ha), C is the carbon storage per hectare (t/ha), D is
the mean diameter at breast height (cm), Hd is the mean dominant tree height (m), di, ei, f i,
and gi are model parameters, and εB, εC, εD, and εHd are error terms, which are assumed to
follow a normal distribution with a mean of zero. The other symbols in the equations are
the same as those mentioned above.

In addition, the number of trees per hectare N can be directly calculated from the basal
area per hectare G and the mean diameter at breast height D. The calculation formula is
as follows:

N = G/(πD2/40000) (8)

Models (1) to (7) can be independently fitted based on the data from the 190 sample
plots. Except for Equations (1), (6), and (7), which can be fitted by the ordinary regression
method due to insignificant heteroscedasticity, the other four models from (2) to (5) should
be fitted by the weighted regression method [35].

2.3.2. Simultaneous Models

Due to the correlations between models for the estimation of the eight forest stand
factors mentioned above, if they are all fitted independently, there will be two deficiencies.
On the one hand, the compatibility between the parameter estimates cannot be guaranteed.
For example, the independent fitting of Equations (2) and (6) cannot satisfy the estab-
lishment of Equation (8). On the other hand, the transmission of errors cannot be taken
into account in the models with progressive relationships. For example, the estimation
of Equations (4) and (5) do not consider the estimation errors of the volume and biomass,
respectively. Therefore, only by transforming the eight independent models mentioned
above into a set of equations and solving the parameters via the error-in-variable simulta-
neous equations method [27,34], can we ensure the compatibility between parameters and
consider the impact of error transmission in order to objectively evaluate the accuracy of
forest stand factors based on LiDAR data. The simultaneous equations are as follows:

Ĥ = a0Xa1
1 Xa2

2
Ĝ = b0Xb1

1 Xb2
2

V̂ = c0Xc1
1 Xc2

2
B̂ = d0 + d1V̂
Ĉ = e0B̂
D̂ = f0Ĥ f1

Ĥd = g0 + g1Ĥ
N̂ = Ĝ/(πD̂2/40000)

(9)

In these equations, Ĥ, Ĝ, V̂, B̂, Ĉ, D̂, Ĥd, N̂ are the estimates of the mean tree height,
basal area per hectare, volume per hectare, biomass per hectare, carbon storage per hectare,
mean diameter at breast height, mean dominant tree height, and number of trees per
hectare, respectively. The parameters are the same as those mentioned above.
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2.3.3. Model Evaluation

The coefficients of determination (R2), standard error of estimates (SEE), total relative
error (TRE), average systematic error (ASE), mean prediction error (MPE), and mean
percentage standard error (MPSE) are the indices widely used for models evaluation [34,35],
and the key indices for evaluating whether models are applicable in forest inventory are the
MPE and MPSE. For the simultaneous prediction models of eight forest stand factors, the six
evaluation indices mentioned above were calculated to assess the models. In addition, the
residual plot is also an important reference for the evaluation of models, and the residuals
are generally required to be distributed randomly.

3. Results and Analysis

The eight forest stand factors from the field survey and LiDAR data collected from
190 spruce–fir forest sample plots were used to simultaneously fit the independent models
from (1) to (8) and, simultaneously, model (9), respectively. The parameter estimates and
six evaluation indices for the models are shown in Table 2, and the estimated effects of the
simultaneous models are shown in Figure 2.

Table 2. Estimates and evaluation indices of independent and simultaneous models.

Type Factors
Parameter Estimates Evaluation Indices

a0~g0 a1~f 1 a2~c2 R2 SEE TRE/% ASE/% MPE/% MPSE/%

Independent
model

H 8.17 0.6618 −0.3226 0.696 2.19 0.07 0.33 2.21 12.55
G 10.50 1.0234 −0.5259 0.699 5.07 −0.03 −0.21 3.15 18.86
V 65.38 1.5221 −0.8354 0.743 51.49 −0.11 −0.25 3.97 21.68
B 9.330 0.7050 / 0.888 22.63 −0.15 0.86 2.31 10.99
C 0.4886 / / 0.899 10.40 −0.09 0.91 2.17 10.54
D 1.780 0.8491 / 0.695 2.64 0.07 0.34 2.25 12.03
Hd 7.34 0.8048 / 0.596 2.62 0.00 −0.17 2.00 12.39
N / / / 0.115 442 2.83 5.90 5.77 31.24

Simultaneous
model

H 3.46 0.6052 / 0.664 2.29 −1.37 −1.97 2.32 13.00
G 31.85 1.0331 −0.8960 0.672 5.29 1.84 2.93 3.29 19.92
V 71.47 1.4719 −0.8316 0.742 51.61 2.21 1.27 3.98 22.07
B 5.085 0.7334 / 0.709 36.67 1.24 2.67 3.75 21.84
C 0.4890 / / 0.712 17.82 1.22 2.65 3.72 21.61
D 0.7256 1.1810 / 0.692 2.67 −0.67 −0.07 2.28 12.69
Hd 5.80 0.8968 / 0.551 2.78 0.35 −0.22 2.12 12.29
N / / / 0.060 456 10.42 10.59 5.94 32.79

As shown in Table 2, differences existed between the estimation results of the inde-
pendent models and the simultaneous models for the eight forest stand factors. Since the
simultaneous models are affected by both the correlation between equations and error
transmission, most of its evaluation indices are slightly worse than those of the independent
models, among which R2 decreases, while SEE and the other four error indices increase.
The MPEs of the eight forest stand factors estimated by the simultaneous models were
mostly within 5%, and only the MPE of the number of trees per hectare exceeded 5%. The
MPSEs of the estimates for the mean diameter at breast height, mean tree height, and
mean dominant tree height were within 15%; the MPSEs of the estimates for the basal
area, volume, biomass, and carbon stock per hectare were approximately 20%; and only
that of the estimated number of trees per hectare exceeded 30%. The R2 values of the core
prediction models for volume, biomass, and carbon storage per hectare were all greater
than 0.7, and the R2 of the models for the stand basal area, mean DBH, and mean tree height
(H) were more than 0.66. We noticed that two models for mean dominant height (Hd)
and number of trees per hectare (N) performed worse. The first reason is that spruce–fir
forests are close to uneven-aged but regarded as even-aged stands, resulting in a decrease
in relationships between stand factors, such as Hd, H, D, and N. The second reason is the
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error propagation; that is, the error in the Hd estimate includes both errors in the H estimate
and the Hd–H model. Similarly, the error in the N estimate includes both errors in the D
estimate and the stand basal area estimate (G).
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In addition, the TRE and ASE of the main forest stand factors that were estimated by
the simultaneous models were all within ±3%, with the exception of those for the number
of trees, which had larger errors. This indicates a good estimation of the overall eigenvalues
without a systematic bias. Figure 3 shows the distribution of the relative errors of the
volume and carbon stock models with X1 as the mean height of the point cloud, which can
be considered a random distribution. Although the MPSEs of both the volume and carbon
stock models are within 25%, the main distribution of the relative errors ranges by ±40%,
and the errors of some sample plots even exceed 90%. The residual distributions of other
factors are similar and were omitted here.
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4. Discussion

Combining the actual data requirements of forest resource inventory and monitoring
at present in China and referencing previous research results, our research used the error-
in-variable simultaneous equations approach for estimating the eight main forest stand
factors. This approach not only ensures the consistency of the estimates of forest stand
factors but also solves the problem of error transmission between the estimation results of
the related factors.

When applying LiDAR data combined with field survey data to construct prediction
models of stand factors, our research utilized the key LiDAR metrics, namely, the mean
height (X1) and mean intensity (X2) of the point cloud, to establish prediction models for
the direct estimation of stand volume and other main factors. The two selected explanatory
variables are also widely used in other related studies when constructing main forest stand
factor prediction models. Bottalicoa et al. [39] extracted 49 metrics from LiDAR point cloud
data as explanatory variables for the estimation of volume and other main stand factors,
and their results showed that the mean height of the point cloud had the greatest correlation
with the estimated stand volume. White et al. [40] also concluded that the mean height of
the point cloud was one of the most important predictor variables in volume estimation
based on ALS data. The variables selected in these studies are basically consistent with the
explanatory variables employed in our study. Furthermore, the metrics, including different
percentiles of normalized point heights and standard deviations of point heights, derived
from the height of point cloud data were also used to establish prediction models for the
top height, basal area, and total plot volume, and the R2 values of the models were 0.76,
0.71, and 0.78, respectively [41]. The results indicate that the models can meet the needs
of forest inventories. In the research conducted by Mariano García et al. [42] for biomass
and carbon stock estimation based on LiDAR data, the mean height of the point cloud
data was the explanatory variable selected for model estimation of above-ground biomass
(AGB) and branch biomass (BB) modeling, which is consistent with the key variable X1,
used in our study for volume and biomass prediction. However, for the intensity-based
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models in their work, both the general models and species-specific models, the variables
used for modeling were % int_Pi, CVi, and DWCRS, among others, which were derived
from the normalized intensity of the LiDAR data rather than X2 (the mean intensity of
the point cloud) directly, as used in our study. However, it is worth noting that the mean
intensity of the point cloud data, used in our study for volume and biomass estimation, was
also employed as a correction factor in their study. They calculated the density-weighted
canopy reflection sum (DWCRS) based on the mean intensity of the point cloud data, and
the DWCRS was the key explanatory variable for the estimation of the AGB and FB of holm
oak. The R2 values of the corresponding models were 0.98 and 0.96, respectively, indicating
the best-fitting effects among the models mentioned in their study.

In order to objectively evaluate the estimation errors of different forest stand factors,
conventional indices such as the coefficient of determination (R2), root mean square error
(RMSE), and relative root mean square error (RRMSE) were widely used for the evaluation
of models in previous studies [24–26,31,32], but various relative error indices that can reflect
the practicality of models, such as the TRE, ASE, MPE, and MPSE [34], were not selected
for the model evaluation. There is no doubt that R2 is one of the most important indices for
model evaluation, but the quality of a model cannot be evaluated entirely by it. This can be
supported by comparing the R2 values of the simultaneous models of eight forest stand
factors and the other four error indices in Table 2: the models with the highest R2 values do
not have better performance in the four error indices, while the models with the lowest
R2 values do not have the worst performance in the four error indices. Furthermore, the
RMSE and SEE are basically equivalent, and the difference between them is similar to that
between the coefficient of determination R2 and the adjusted coefficient of determination
R2

adj. Since the RMSE or SEE of different research subjects varies greatly, these kinds of
indices are not comparable. The model evaluation indices that can be used to compare
models include a variety of relative error indices, such as the commonly used RRMSE and
the four error indices used in this study.

The purpose of modeling is to find universal rules and apply them to various pre-
dictions or forecasts; hence, the determination of evaluation indices is highly important.
Previous studies have established a comprehensive index framework that can be used to
conduct model evaluation [35], which contains the six basic indices listed in Table 2. Except
for the two conventional indices R2 and SEE (which are similar to RMSE but related to
MPE), the other four indices, namely, TRE, ASE, MPE, and MPSE, are all relative error
indices. The practicality of the prediction models of forest stand factors mainly depends
on the magnitude of two indicators, MPE and MPSE. The former can be used to assess the
estimation error of the population, while the latter can be used to assess the estimation
error of a single unit in the population, such as a plot, a stand, or a sub-compartment. The
simultaneous models established for the estimation of the eight forest stand factors in this
study had MPE values between 2.12% and 5.94%, with only the MPE of the model for
the estimation of the number of trees per hectare exceeding 5%; the MPSE values ranged
from 12.29% to 32.79%, with only that of the model for the number of trees per hectare
exceeding 30%. In this study, we focused on the establishment of simultaneous models and
did not pay much attention to the improvement of each model, such as the dominant tree
height model. We would make further efforts to improve the performance of each model
in a future study. One direction is to combine laser scanning metrics with derived canopy
surface texture metrics [43].

We know that the Technical regulations for inventory for forest management planning
and design [44] classified the accuracy of field surveys of volume per hectare into three
levels—A, B, and C—and each level required that the errors do not exceed 15%, 20%, and
25%, respectively. As seen from the MPSE in Table 2, the estimations of the three core
variables of forest stands (volume, biomass, and carbon storage) all met the C-level accuracy
requirements. Traditional methods for conducting field surveys that can meet the accuracy
requirements mentioned in the Technical regulations for inventory for forest management
planning and design are time-consuming and labor-intensive. When LiDAR data are
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used to construct the prediction model, only the relevant metrics need to be extracted to
obtain unbiased estimation values with guaranteed accuracy. This new approach not only
improves work efficiency but also ensures the objectivity and authenticity of the results.

5. Conclusions

Based on the results of this study, the following conclusions can be drawn:

(1) It is technically feasible to estimate the main stand factors, such as the volume, biomass,
carbon storage per hectare, mean diameter at breast height, average tree height, mean
dominant tree height, number of trees, and basal area per hectare, using the error–
in–variable simultaneous equations method based on airborne LiDAR and ground
survey sample plot data.

(2) The MPE values of the eight main forest stand factor prediction models for spruce–fir
forests in Northeast China were all less than 5%, with the exception of that of the
number of trees. The MPSE values reflecting the accuracy of the models for a single
unit of population were below 25%, indicating that the accuracy of the established
models can meet the requirements of the Technical regulations for inventory for forest
management planning and design and can be promoted and applied in practice.

(3) To increase the accuracy of the estimates of the main stand factors, especially the
dominant height and tree number per hectare, it is necessary to improve the goodness–
of–fit of each model in the simultaneous equations in future studies. One approach
is to combine LiDAR data with other remote sensing data to enhance the potential
of applications.
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