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Abstract: Several methods to conduct single-tree inventories using airborne laser scanning 

(ALS) have been proposed, and even terrestrial laser scanning (TLS) has recently emerged 

as a possible tool for the collection of forest inventory data. In the present study, a novel 

methodological framework for a combined use of ALS and TLS in an inventory was tested 

and compared to a method without the use of TLS. Single-tree Norway spruce crown 

biomass was predicted using an ALS-model with training data obtained by TLS. ALS and 

TLS data were collected for sets of sample trees, including 68 trees with both ALS and 

TLS data. In total, 29 destructively sampled trees were used to fit a TLS crown biomass 

model, which then was used to predict crown biomass in a separate set of 68 trees.  

This dataset was subsequently used to fit an ALS crown biomass model. When validating 

the model, using a separate dataset with accurately measured crown biomass obtained  

through destructive sampling, the mean error was 32% of the observed mean biomass. 

Corresponding crown biomass predictions derived with ALS-predicted diameters and the 

use of conventional and existing allometric models resulted in a mean error of 35%. Thus, 

in the present study, a slight improvement, in terms of prediction accuracy, was found 

when using training data with ground reference values obtained by TLS.  

OPEN ACCESS 



Forests 2014, 5 385 

 

 

Keywords: airborne laser scanning; terrestrial laser scanning; forest inventory;  

crown biomass 

 

1. Introduction 

Forest inventories are essential for the sustainable management of forest resources. An increasing 

number of forest inventories are based on data collected with airborne laser scanning (ALS) [1].  

While commercial and operational ALS-based forest inventories most frequently are conducted 

according to the so-called area-based approach, as described by Næsset [2], methods targeting single 

trees have also been proposed [3–6]. The latter methods usually require ALS data with higher 

resolution, but intend to give information on a single-tree level, contrary to the area-based information 

provided by the former. Although not as widely used as the area-based method at present, the use of 

single-tree forest inventories might increase in the future. This will depend on the ongoing 

technological and methodological research and development, the need for single-tree data and future 

costs for data acquisition. The potential of estimating single-tree characteristics by ALS has been 

investigated in several studies, including stem volume [4,7], stem diameter [8], crown base height [9], 

leaf area index [10] and biomass [8,11,12].  

The same laser ranging principles as in the airborne scanning systems have also been applied in 

scanning from fixed positions on the ground, commonly known as terrestrial laser scanning (TLS). The 

use of TLS in forestry has not become operational to the same degree as the use of ALS, but several 

applications, such as the estimation of tree position and diameter at breast height (DBH), have been 

investigated [13–17]. There are also studies presenting procedures to estimate, e.g., total above-ground 

biomass from TLS data [17,18]. Hauglin et al. [19] and Kankare et al. [20] have described methods to 

estimate crown biomass using TLS.  

ALS-based forest inventories are typically carried out with ground reference data obtained from 

manual field measurements of, e.g., DBH and tree height, on selected sample trees collected in sample 

plot surveys. This reference data is then used together with the ALS data to build predictive models. 

Depending on the ongoing technological and methodological research and development, TLS might 

become a tool for the collection of ground reference data in ALS-based inventories, possibly replacing 

manual registrations. The use of TLS can even enable objective and detailed registrations of features 

that are practically unobtainable through conventional field measurements, such as the spatial 

distribution of biological matter or properties related to the detailed structure of the trees. 

In the last ten years, there has been an increased interest in the use of logging residues for bioenergy 

purposes, i.e., biomass otherwise left in the forest during the logging [21]. When logging residues 

become a commercial product from the forest, the potential amount should be quantified as part of the 

forest inventory, to improve planning and management.  

Estimation of forest biomass using ALS usually requires the use of model training data obtained 

through field measurements and the use of allometric models, typically linking the field measured 

DBH and tree height with a given biophysical property [8,21–23]. For Norway spruce (Picea abies 

(L.) Karst.)—the tree species considered in the present study—the crown biomass can vary 
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considerably in relation to DBH and tree height, and predictions of Norway spruce crown biomass 

from allometric models has larger errors than corresponding predictions of, e.g., stem volume [24,25]. 

Hauglin et al. [19] showed that Norway spruce crown biomass estimates can be derived from TLS data 

with a higher accuracy than by conventional field measurements and existing allometric models, making 

the estimation of crown biomass a suitable test case for replacing manual field registrations with TLS.  

We propose in the present study a procedure for ALS-based estimation of single-tree crown 

biomass using training data with ground reference values obtained through TLS. An independently 

developed TLS-based model was used to obtain the ground reference data, and automated single-tree 

segmentation was used in the assignment of ALS data to individual trees.  

To test our proposed procedure with TLS as the ground reference data in an ALS-based inventory, 

we estimated single-tree crown biomass of Norway spruce and evaluated the proposed procedure with 

an independent dataset consisting of trees with accurately measured crown biomass obtained with 

destructive sampling. The prediction accuracies were compared to the accuracies of crown biomass 

predictions obtained with ALS-predicted DBH and the use of an existing allometric model, i.e., 

predictions obtained without the use of TLS data.  

The aim of the present study was to assess the use of TLS in the process of fitting predictive models 

in an ALS single-tree forest inventory, by predicting crown biomass following each of the two 

approaches outlined above, and compare the predictions in an independent validation dataset.  

2. Materials and Methods  

2.1. Study Area  

The study area is located in Aurskog-Høland municipality (59°50' N 11°30' E, 120–390 m above 

sea level) in the south-eastern part of Norway (Figure 1, left). The total area of Aurskog-Høland is 960 

km
2
 with 670 km

2
 of productive forest. The forest type is boreal with Norway spruce and Scots pine  

(Pinus sylvestris L.) as the dominant tree species. The topography varies from relatively flat to gentle 

slopes and hills.  

Figure 1. Location of the study area (left) and the locations of the field and remote sensing 

data within the study area (right). TLS, terrestrial laser scanning; ALS, airborne  

laser scanning. 
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2.2. Forest Inventory: Stratification 

An operational forest inventory was carried out in the study area, including a stratification of the 

productive forest. This stratification was utilized in collection of the field data used in the present 

study. The stratification was based on digital aerial photographs acquired in June, 2005, with a Vexcel 

UltraCam D camera. Through digital stereo photogrammetry, forest characteristics were interpreted 

manually by photo-interpretation of every stand, including stand borders, dominant tree species, site 

productivity and age class (see further details in Næsset et al. [26]). The existing inventory was used as 

auxiliary information in the interpretation process. 

2.3. Field Data 

Single-tree data from two field campaigns in the study area were used in the present study: one 

dataset with single-tree measurements on 40 sample plots and another with single-tree measurements 

obtained with destructive sampling on five sample locations. The 40 sample plot locations are marked 

by filled circles in Figure 1 and described in Subsection 2.3.1. The five destructive sampling locations 

are marked with hollow circles in Figure 1 and described further in Section 2.3.2. The data from the 

five locations with destructive sampling were in the present study split in two, resulting in the three 

datasets used in the analysis (Table 1). 

Table 1. Characteristics of the three datasets used in the present study; diameter at breast 

height (DBH) and field measured dry weight crown biomass (BR). 

 DBH (cm) BR (kg) n 

 min max mean min max mean  

TLS model training dataset 9.7 39.8 22.2 8.9 152.3 60.7 29 

ALS model training dataset 7.1 37.7 19.6 - - - 68 

Validation dataset 16.6 40.3 25.4 28.6 163.2 75.7 17 

2.3.1. Sample Plot Data 

The sample plot field registrations were carried out in the fall, 2007, and winter, 2007–2008, on  

40 circular plots of size 1000 m
2
 and 500 m

2
, laid out in the mature productive forest of the study area 

(Figure 1, right). Single-tree data used in the present study were from a subset of 11 plots. The sample 

plots were initially used in other studies, and some constraints were posed regarding the location of the 

plots (see Maltamo et al. [27] for details). Within each of these plots, all trees with DBH ≥5 cm were 

callipered, and tree coordinates relative to the plot center were registered using a total station. The plot 

center coordinates were determined by differential Global Navigation Satellite System (dGNSS), using 

dual-frequency receivers observing the pseudo-range and carrier phase of the Global Positioning 

System (GPS) and the Global Navigation Satellite System (GLONASS). Based on the accuracy 

reported by the post-processing software and accuracies reported for comparable conditions in 

previous studies, the positional accuracy is expected to be in the range of 0.01–0.8 m [28–30].  

The observed number of trees on the 40 sample plots were used to guide the segmentation 

algorithm in which the ALS data were allocated to single-tree segments (Section 2.5.1), and a subset of 
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the individual Norway spruce trees within 11 of the 40 plots (68 trees) were used in the present study 

(see Section 2.4.1). The selection of the 68 trees was determined by the result of the segmentation 

procedure (to be described in detail in Section 2.5.1) and field measured tree positions: only trees with 

one single field measured tree position within a segment were used.  

2.3.2. Destructive Sampling Data 

Field data with accurately measured crown biomass were collected in June, 2009. A total of  

49 spruce trees were selected from five locations in the study. The five locations were chosen from 

potential sites in the intersections of the east-west-oriented strips of ALS data and forest roads, 

covering a range from poor to good site productivity in mature forest (Figure 1, right). Within each 

location, sample trees of Norway spruce were selected in a consecutive fashion. Further details  

about the selection procedure are given in Hauglin et al. [11]. The 49 trees were felled, and the raw 

weight of all the branches (including needles and dead branches) of each tree was obtained by weighing 

the tree before and after the branches were cut off. The weighing was done with a mobile lift mounted on a 

truck. A Teraoka Seiko OCS-XZL digital scale with a load capacity of 3000 kg and an accuracy of 1 kg 

was used. Samples of entire branches were selected among the living branches of each tree and dried,  

in order to determine the dry weight. The drying was done at 103 ± 1 °C until constant mass and a wet 

to dry weight ratio was calculated for each sampled branch. For each tree, a wet to dry weight ratio 

was then calculated as the weighted mean of the ratios obtained from the samples, with the diameters 

of the branches used as weights. Finally, the total dry weight biomass of the branches for each tree 

(denoted as BR) was calculated as the wet weight of the branches multiplied with the calculated  

tree-specific wet-to-dry weight ratio. Further details about the determination of the dry weight are 

given in Hauglin et al. [11].  

The coordinates of each tree in this dataset were obtained in a two-step procedure: (1) the location 

of each tree relative to two local reference points was accurately measured with a total station; and  

(2) the coordinates of the two reference points were obtained by dGNSS, using the same procedure as 

described for the sample plot dataset (Subsection 2.3.1). 

In the present study, this dataset with accurately measured crown biomass was split into two: the 

first three locations (containing 29 trees) were selected and used as training data for a TLS crown 

biomass model (TLS model training dataset). The remaining two locations (with 20 trees) were used 

for validation (validation dataset). Not all trees present at the locations were destructively sampled, and 

three of the initial 20 sampled trees were discarded from the validation dataset, since their assigned 

crown segments also contained other trees (see Section 2.5.1). 

Characteristics of the trees in the data material used in the present study are summarized in Table 1. 

2.4. Laser Scanner Data 

2.4.1. ALS Data 

ALS data were collected along five strips oriented in the east-west direction and located 9 km apart 

(Figure 1, right). The ALS dataset was collected in June, 2006, with an Optech ALTM 3100 sensor on 

a fixed-wing aircraft. The average flying altitude was 800 meters above ground. The pulse repetition 



Forests 2014, 5 389 

 

 

frequency was 100 kHz, the scan frequency 70 Hz and the scan angle ±5 degrees from nadir. This gave 

an average point density on the ground of 7–8 m
−2

. Up to four echoes were recorded for each pulse. 

The geo-referenced planimetric coordinates and the ellipsoidal height values were determined by the 

vendor for all echoes. The ALS data are further described in Breidenbach et al. [31].  

The classification of echoes into ground and vegetation echoes was carried out by iteratively fitting 

a triangular irregular network (TIN) from below, as described by Axelsson [32]. Points were in an 

iterative fashion added to the ground if they were within given threshold values. Echoes classified as 

ground were used to construct a TIN surface. The height above ground was calculated for all echoes by 

subtracting the respective TIN heights from the ellipsoidal heights.  

2.4.2. TLS Data 

TLS data were obtained for 11 of the 40 sample plots (Section 2.3.1) and at three of the five 

locations with destructively sampled trees (Section 2.3.2 and Table 1). The TLS data were acquired 

during the summer of 2009. TLS data from multiple scans of 97 trees were used in the present study, 

and all scans were acquired with a levelled Leica HDS6000 phase-shift scanner. The scanning was 

done with a horizontal and vertical angle increment of the laser measurements of 0.036 degrees. This 

corresponds to a point spacing of 15.9 mm at a 25-m distance from the scanner. The scanner had a 

beam diameter when leaving the instrument of 3 mm and a beam divergence of 0.11 mrad, resulting in 

an 8-mm footprint at 25 m. The scanner had a maximum measurement range of 79 m. A full  

360 × 310 degrees scan (the scanners maximum field-of-view) was performed from each scanner 

position, i.e., both hemispheres, excluding the ground directly beneath the scanner. The Leica Cyclone 

software (version 6.0) was used to register the individual scans, with 3.5 mm as the average mean 

absolute error reported by the software.  

The scan positions were chosen so that each sample tree was scanned from at least two positions, 

with the distance to the sample trees being in the range of 1–15 m. Furthermore, the scanner position 

was chosen so that the top of each of the sample trees preferably was visible in at least one scan 

(Figure 2, left). For the scanning of the sample plots, five scans were performed at each plot: one scan 

from the plot center and one scan from positions towards each of the cardinal directions from the 

center position (Figure 2, right). Scan targets were used in order to register (merge) the scans correctly. 

The scanner positions were locally referenced by measuring distance and bearing to two known 

auxiliary points using a total station. The auxiliary points were geo-referenced by the differential 

Global Navigation Satellite System and were purposely placed in areas with large gaps in the canopy 

or in nearby open-sky areas, such as clear-cuttings. Satellite data were logged for >30 min, and the 

distance to the base station was within the range of 20–45 km for all the auxiliary points. Based on the 

results found by Andersen et al. [29], we expect the true error of these positions to be well below  

0.5 m; in most cases, much lower. The co-registration of the TLS and ALS data were thus implicitly 

performed through the accurate geo-referencing of the two remote sensing datasets. 
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Figure 2. Example of scanner locations at the sample plots (left) and on locations with 

destructive sampled trees (right). 

 

2.5. Calculations and Analysis 

Single-tree crown biomass was predicted from ALS data using two approaches (outlined in  

Figure 3) and the results compared. In the first approach, a TLS-crown biomass model, trained with a 

separate dataset, was used to predict ground reference values for a set of scanned trees, which were 

subsequently used as training data in predictive ALS-crown biomass models (Figure 3, right). This 

approach was compared to ALS-based predictions without the use of TLS data, that is, the ALS model 

training data were obtained by conventional field measurements of DBH. The predictions of crown 

biomass followed in this case the procedure proposed by Popescu [8], in which DBH is the property 

that is modelled with the ALS-based predictive models. To get crown biomass estimates, one then has 

to use the predicted DBH with an existing allometric model. An alternative here could have been to 

use the existing allometric biomass model already at the stage of preparing the training data for the 

ALS models and let the crown biomass be the property predicted directly by the ALS-based model. 

This was not done in the present study, because results from the study by Popescu indicated that the 

former approach yields a higher accuracy [8]. 
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Figure 3. Outline of the two approaches that were compared in the present study: the 

approach with the use of TLS data (A) and the approach without the use of TLS data (B). 

In the former approach, crown biomass modelled from TLS data was used as the ground 

reference values in the subsequent ALS modelling process. The two methods were 

validated using one set of destructively sampled trees. 
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2.5.1. Single-Tree Segmentation 

The ALS data were in the present study delineated into single-tree segments using a fully automated 

segmentation algorithm [6]. A marker-based watershed algorithm was used to delineate single-tree 

segments from a canopy height model. An adaptive approach was used, utilizing a priori area-based 

stem number predictions to guide the delineation. Data from the sample plots (Section 2.3.1) were used 

as training data in the prediction of stem numbers. The segmentation was carried out in a rasterized 

representation of the ALS data, but the crown segments used in the subsequent analysis were constructed 

as a convex hull in the horizontal plane of the ALS echoes within each raster segment (depicted in 

Figure 4). The reader is referred to Ene et al. [6] for further details about the segmentation algorithm. 

Figure 4. Single-tree segments for some of the sample trees; field measured tree positions 

of destructively sampled trees (dots) and other trees (stars). Tree #4 was linked to the 

segment with the nearest centroid (see Section 2.5.1). The segment containing Tree #7 was 

excluded from the validation dataset, since it also encompassed a tree without field 

measured crown biomass. 

 

Automatic delineation of tree crowns will usually result in some erroneous segments [33]. These 

can be caused by commission errors (segments of non-existing trees) or omission errors. Commission 

errors are typically caused by delineating large tree crowns into multiple segments, whereas trees 

omitted in the segmentation procedure are typically small or suppressed. Combining multiple adjacent 

crowns into one single segment will also lead to one or more trees being omitted. In the present study, 

the ALS-derived segments were handled according to the following rules: 

 Field measured trees were linked to ALS-derived crown segments if the field measured stem 

positions were inside the segment.  

 Since the procedure allows for overlapping segments, a field tree with a position inside more 

than one segment would be connected to the segment with the shortest distance from its 

centroid to the field tree position.  

 ALS model training data: only trees with one single field measured tree position within a 

segment were used.  
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 Validation data: If more than one field measured tree was inside a segment the sum of the 

crown biomass for all the field trees positioned inside, the segment was used as the reference 

crown biomass.  

 Validation data: Segments encompassing trees that were not destructively sampled were excluded 

from the validation dataset, since the reference biomass was not known for the whole segment. 

Some of the rules are illustrated in Figure 4. In the present validation data material, no segments 

contained more than one destructively sampled tree, whereas three destructively sampled trees were 

within segments encompassing other trees, and these segments were therefore excluded from the 

validation dataset.  

2.5.2. ALS-Derived Variables 

For each single-tree segment, the crown base height was estimated from the height of the ALS 

echoes, and echoes above the crown base height were denoted as crown echoes. The method described 

by Solberg et al. [5] was used; the crown base height was set at the height decile with the largest 

distance downwards to the next decile. The minimum crown base height was set at 0.85 m  

above ground.  

In order to use the ALS data for the prediction of crown biomass, variables were computed from the 

laser echoes allocated to each individual tree-crown (i.e., the crown echoes). Hauglin et al. [11] found 

that a crown volume was a good predictor for crown biomass, and in the present study, a crown 

volume derived from the crown echoes by means of a radial basis function was used (denoted CRvol). 

In order to preserve the internal spatial relationship between the crown echoes, the ellipsoidal heights 

were used when calculating the crown volume. This crown volume was computed using a procedure to 

construct a closed surface from scattered data points: The crown echoes were first divided into 

horizontal layers, and the outermost echoes were identified in each layer. An interpolated surface was 

constructed from these ―surface‖ points, and the crown volume was then computed as the volume 

inside this surface. The surface constructed with radial-basis functions is related to a three-dimensional 

convex hull, but is more flexible and allows for non-convex shapes. The reader is referred to  

Hauglin et al. [11] for a detailed description of the computation of this crown volume and  

Carr et al. [34] for a more general description of surface reconstruction with radial basis functions.  

Popescu [8] successfully estimated DBH from ALS data, with tree height and crown diameter as 

predictor variables in a linear regression model. In the present study, a similar model was used, with 

the maximum above-ground height for the echoes within a tree segment (Hmax) representing the tree 

height and the crown diameter calculated as the mean of the two sides of an axis-aligned minimum 

bounding box of the crown echoes within each tree segment (denoted CRdiam). Note that in  

Popescu [8], the crown diameter was calculated in a slightly different way. 

2.5.3. TLS-Derived Variables 

Features were extracted from the TLS data and used to create variables included in a subsequent 

regression analysis. Hauglin et al. [19] found a strong relationship between TLS-derived crown 

measurements and crown biomass. In the present study, a similar set of TLS features were derived 



Forests 2014, 5 394 

 

 

from manual measurements of individual tree crowns in the unified TLS data. The manual 

measurements were carried out using a 3D point cloud viewer with an additional two-dimensional plot of a 

horizontal and a vertical slice of the data (Figure 5). The horizontal and vertical slices were of 1 m and  

0.6 m thickness, respectively. The rgl package(version 0.93) in the programming language, R [35], was 

used to build the point cloud viewer. The crown projection onto the horizontal plane was measured as a 

polygon area and the crown width as the horizontal distance from one side of the crown to the other. 

Both measurements were performed at heights corresponding to 10, 20, 40, 60 and 80 percent of the 

crown length. The crown length was calculated as the vertical distance from the crown base height and 

the highest recorded TLS laser echo attributed to the given tree. The crown base height was manually 

determined by visually inspecting the TLS data, and we defined it to correspond to the lowermost part of 

the lowermost living branch of the tree. An image from the manual measurements in the TLS data is 

given in Figure 5. The variables computed from the crown measurements are described and listed in 

Table 2.  

Figure 5. From the manual measurements in the TLS data: overview (left), crown area 

(middle) and crown width (right). The gradient colors are derived from the height of the 

laser echoes, and are added for visualization purposes. 

 

Table 2. Description of the variables derived from crown measurements in the TLS data. 

Variable Description 

CRlength 
Crown length. Vertical distance from the crown base height to the highest laser 

echo assigned to the tree. 

CRA10,..,80 
Crown projection area. Area of the crown projection measured at heights 

corresponding to 10, 20, 40, 60 and 80 percent of the crown length. 

CRAsum 

Crown projection area sum. The sum of the area of the crown projection 

measurements at heights corresponding to 10, 20, 40, 60 and 80 percent of the 

crown length. 

CRW10,..,80 

Crown width. The crown width measured at heights corresponding to 10, 20, 40, 60 

and 80 percent of the crown length. 

CRWsum 
Crown width sum. The sum of the crown width measurements at heights 

corresponding to 10, 20, 40, 60 and 80 percent of the crown length. 
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2.5.4. Crown Biomass Predicted Using TLS to Obtain the Reference Values 

In order to get the ground reference crown biomass for the ALS training data, a TLS-based model 

was used. Following the approach described in Hauglin et al. [19], dry weight crown biomass was 

predicted using a random forest regression model with the TLS-derived predictor variables described 

in Table 2. The TLS training data, comprising 29 destructively sampled trees (Section 2.3.2 and  

Table 1), were used to fit this TLS biomass model. A random forest model was chosen, because it was 

found to be a suitable model for a similar modelling task by Hauglin et al. [19]. The implementation of 

the random forest algorithm in the randomForest package of the statistical software, R, was used, and 

further details about this model in the present study can be found in Hauglin et al. [19]. For a general 

discussion of the principles and use of the random forest algorithm, the reader is referred to  

Breiman [36] or Hastie et al. [37]. The relative importance of the TLS-derived variables was obtained 

by inspecting the out-of-bag performance of the random forest model for each variable. Unscaled 

permutation importance was used. 

A linear regression model with the ALS-derived crown volume as the predictor variable and the  

TLS-modelled crown biomass as the response variable was fitted to the ALS training data and used to 

predict crown biomass in the validation dataset: 

                 (1) 

where β0 and β1 are parameters to be estimated and ε is an error term, assumed to be normally 

distributed with mean zero and constant variance. 

This approach is labeled ―A‖ in Figure 3. 

2.5.5. Crown Biomass Predicted Using an Existing Allometric Model 

The method proposed in the previous section was compared to an approach using ALS-predicted 

DBH and an existing allometric biomass model. In this approach, we first modelled DBH with  

ALS-derived features, and then, this ALS-predicted DBH was used with an existing allometric model 

to derive crown biomass (Figure 3, right). ALS-derived height and crown diameter were first used to 

model DBH with a linear model: 

                          (2) 

where β0, β1 and β2 are parameters to be estimated and ε is a normally distributed error term. A  

species-specific allometric crown biomass model by Marklund [25] was then used to derive crown 

biomass for the trees in the validation dataset using the ALS-derived DBH: 

                    
   

       (3) 

The method described in this section corresponds, with some divergence related to the calculation of 

the crown diameter, to the method described by Popescu [8], as explained in Section 2.5.2.  

This approach is labeled ―B‖ in Figure 3. 
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2.5.6. Final Validation 

The two ALS-based approaches (Section 2.5.4 and 2.5.5) were used to predict crown biomass for 

the 17 trees in the separate validation dataset. The predictions were then compared to accurate field 

measurements obtained by destructive sampling and statistics computed to assess the  

prediction accuracy. 

The coefficient of determination (R
2
) of the models was inspected for an indication of the model fit. 

The R
2
 values were computed for all the models as: 

                                     (4) 

where ρ is the Pearson’s correlation.  

The accuracy of the predictions was assessed by computing the root mean square error (RMSE) of 

the predicted values. In the present study, RMSE and bias was calculated in percent of the mean 

observed value, i.e., 

      
    

    
 
   

 

    
(5) 

where n is the number of trees and     is the predicted crown biomass, and: 

      
    

    
 
   

 

    
(6) 

The significance of the difference between the observed and the predicted values and the difference 

between the errors from the two approaches were assessed with paired t-tests. 

3. Results  

Estimation of single-tree crown biomass from ALS data was carried out following two approaches, 

one with the use of TLS-data in the modelling process and one without the use of TLS-data. The 

results from the two different approaches were compared using accurately measured reference values 

obtained with destructive sampling. In the first approach, a random forest regression model linking 

crown biomass to TLS derived variables (Tables 2 and 3) was fit to the TLS training dataset, 

consisting of 29 trees. The R
2
 for this model was 0.80, and the out-of-bag prediction errors 

corresponded to an RMSE of 34.0%. The relative importance of the variables in this TLS model is 

given in Table 3, and it shows that the cumulative crown area and width are the two variables with the 

largest contribution.  

The TLS model was then used to predict ground reference crown biomass in the ALS model 

training dataset (Figure 3, right). 

The ALS model training dataset was the next step used to fit a linear model with an ALS-derived 

crown volume as the explanatory variable and crown biomass as the response variable. The R
2
 value 

for this model was 0.50 (Table 4). A leave-one-out cross-validation of this model gave an RMSE of 

43.1%, and predictions for the validation dataset with this approach, i.e., using the TLS data, resulted 

in an RMSE of 32.4% (Table 4 and Figure 6).  
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Table 3. Ranking of the TLS-derived variables. The importance score based on the  

―out-of-bag‖ predictions in the random forest model; here, given relative to the lowest 

ranked variable, which was given the value of one. 

Variable Relative score 

CRAsum 89 

CRWsum 69 

CRA10 53 

CRA40 52 

CRA20 45 

CRW40 16 

CRlength 12 

CRW60 10 

CRW10 7 

CRA60 6 

CRW20 5 

CRW80 2 

CRA80 1 

Table 4. Model and validation statistics for the ALS crown biomass model with the use of 

TLS when obtaining the training data (A) and crown biomass predictions obtained with 

ALS-predicted DBH and the use of an existing allometric model (B). R
2
 from the  

model-fitting (n = 68); root mean square error (RMSE)% and bias% from the validation  

(n = 17).  

  Model fit Validation 

 Predictor variables R
2
 RMSE% bias%

 

A CRvol 0.50 32.4 10.2 ns 

B Hmax + CRdiam a — b 35.1 −4.3 ns 

Significance levels: ns, not significant (p > 0.05); a DBH is modelled from the ALS data, and then, an existing 

allometric model is used to get the crown biomass [25]; b R2 from the fitting of the ALS–DBH model was 

0.84 (n = 68). 

In the second approach, the same ALS model training dataset was used, this time to model DBH 

using the ALS-derived tree height and crown diameter as explanatory variables. The R
2
 for this model 

was 0.84, and a leave-one-out cross-validation gave an RMSE of 15.5%. Using this ALS-DBH model, 

DBH was predicted for the 17 trees in the validation dataset and crown biomass calculated by applying 

an existing allometric model to the estimated DBH for each individual tree (see Section 2.5.5 for 

details of this approach). The validation of the latter approach resulted in an RMSE of 35.1%. 

Validation of both approaches was carried out using the same validation dataset consisting of 17 trees, 

with accurately measured reference values obtained with destructive sampling (Figure 6). 

No significant bias was observed for either of the two approaches in the present study (Table 4 and 

Figure 6).  
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The difference between the errors from the two approaches was assessed with a one-sided paired  

t-test, resulting in a p-value of 0.08. Thus, the method with the use of TLS was not found to be 

significantly better in the present study (at α = 0.05).  

Actual parameter-values for the fitted linear regression models are given in Table 5.  

Figure 6. Predicted (   ) versus ground reference crown biomass (BR) in the validation of 

the two approaches for the prediction of crown biomass.  

 

Table 5. Parameter values for the fitted linear regression models (described in Section 2.5.4). 

Model β0 β1 β2 

                 9.59208 0.73589 - 

                          −3.90421 2.83414 0.93242 

4. Discussion 

In the present study, two approaches for the prediction of single-tree crown biomass from ALS data 

were compared: one with training data based on ground reference values obtained with TLS and one 

method without the use of TLS. The prediction accuracy was assessed using a dataset with crown 

biomass accurately obtained through the use of destructive sampling. The results show that good 

single-tree crown biomass estimates of Norway spruce can be obtained from ALS models using 

training data with ground reference values derived with TLS. The observed differences in terms of 

prediction accuracy between the two approaches were, however, small, which means that the use of 

TLS to obtain the ground reference values did not substantially improve the final predictions in this 
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study. A slight improvement was observed (Table 4), but the difference between the two approaches 

was not found to be statistically significant.  

Lindberg et al. [38] modelled single-tree stem volume from ALS data using an approach in which 

TLS-derived DBH was used with an allometric model to produce single-tree ground reference volume. 

The approach taken by Lindberg et al. [38] can be viewed as a combination of the two methods tested 

in the present study, since both TLS data and an allometric model were used. In contrast to the present 

study, Lindberg et al. used TLS data from only one scan position per plot. The TLS-based approach 

was by Lindberg et al. compared to an approach based on manual measurements of DBH, i.e., an 

approach without the use of TLS. The RMSE from a validation of the two approaches found by 

Lindberg et al. were 34.6% and 34.5% for the approach with and without the use of TLS, respectively. 

The results were thus relatively similar to the results obtained for crown biomass estimation in the 

present study. 

Kankare et al. [20] estimated single crown biomass from multiple-scan TLS data and used variable 

selection to build predictive models from a range of geometrically and statistically TLS-derived 

features. Field reference biomass was measured trough destructive sampling, and Norway spruce was 

one of two species considered. The RMSE for Norway spruce crown biomass in that study was 

38.13%, which is slightly higher than the corresponding error observed in the present study. In another 

study, Kankare et al. investigated the estimation of Norway spruce crown biomass from ALS  

data [12]. The ground reference biomass was obtained through destructive sampling, and the RMSE 

for Norway spruce crown biomass was 77.5%, which is higher than the error obtained in the  

present study.  

Popescu [8] estimated single-tree total aboveground biomass of pine trees using a two-step 

procedure with ALS-predicted DBH and existing allometric models, corresponding to the one used in 

the present study (Section 2.5.5). Popescu reported an RMSE of 33%. Accuracies obtained in the 

present study are in line with this and, as such, validate the results found by Popescu [8]. 

Both approaches in the present study consisted of two steps of modelling, illustrated in Figure 3. 

Both of these steps will have errors associated with them, adding up to the total error observed in the 

validation. The errors obtained from each individual model can give some indications on their relative 

contribution to the total error. The so-called out-of-bag prediction errors for the TLS biomass model, 

that is, the first step of the approach labelled ―A‖ in Figure 3, corresponded to an RMSE of 34.0%. A 

cross-validation of the ALS crown biomass model—the next step in approach ―A‖—gave an RMSE of 

43.1%. Based on this and the errors found by Hauglin et al. [11,19], it seems like both of the modelling 

steps in this approach contribute more or less equally to the total error. In the other approach, labelled 

―B‖ in Figure 3, it is likely that the errors from the allometric crown biomass model constitutes a larger 

part of the total errors. The mean percentage error associated with allometric crown biomass used in 

the present study is reported to be 40.2% [25], whereas the RMSE from the cross-validation of the 

ALS-DBH model was 15.5%. This is in line with findings in other studies in which DBH has been 

found to be well described by ALS features [4].The derivation of TLS features in the present study 

included several manual and semi-manual operations, such as, for example, setting the crown base 

height and measuring the crown width. These manual operations were conducted in such a way that 

they, in principle, could have been done automatically, solely using the TLS data. The methodology 

and specific algorithms to automatically perform these tasks are, to our knowledge, not readily 
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available, and expected errors and accuracy of such an automated approach could be further 

investigated. The TLS model in the present study was trained using data derived through destructive 

sampling. In an operational inventory, high costs will prohibit the collection of such data. Using 

existing TLS models might be a viable solution, and since the crown properties are measured  

directly, the model might be less sensitive to regional or local stand-level allometric differences. The 

transferability of TLS models between regions, possibly with data from different instruments, could 

thus be subject to further research. In the present study, only Norway spruce trees were considered, and 

since crown shape and structure can differ, the performance of the proposed methods when applied to 

other tree species could also be investigated further.  

Further development and optimization of the TLS-crown biomass model itself, such as considering 

other variables or reducing the number of variables, could improve the overall performance of the 

TLS-based approach.  

There were three seasons of growth between the acquisition of ALS and TLS data. This might have 

affected the performance of the models, but we assume, however, these effects to be small.  

The number of trees on sample plots from the study area was used as auxiliary information in the 

segmentation process. Single-tree segmentation can be carried out without the use of this auxiliary 

data, if it is not available. This was, however, not done in the present study, and thus, the effect on the 

accuracy of the predicted crown biomass with such a segmentation was not assessed. 

In the data material used for validation, no segment contained more than one destructively sampled 

tree. The effect of predicting crown biomass for segments consisting of more than one tree was 

therefore not assessed, although such segments are likely to occur in an ALS-based single-tree 

inventory [33]. With the approach described in Section 2.5.5, the ALS model must, in such multi-tree 

segments, predict large DBH values to produce accurate crown biomass estimates. If not, crown 

biomass will be underestimated for these segments. The ALS-derived crown volume of a multi-tree 

segment might, to a larger extent, maintain the same relationship to the actual crown biomass as in 

single-tree segments than the ALS-predicted DBH. If this is the case, then the presence of multi-tree 

segments would increase the difference between the two approaches discussed in the present paper. 

More research is, however, needed to clarify this. 

5. Conclusions 

To conclude, we have shown that good predictions of single-tree crown biomass of Norway  

spruce can be derived from ALS data, using TLS to obtain the ground reference values. However, 

when compared to the approach without the use of TLS, the prediction accuracy was only slightly 

better. Thus, the use of TLS in this context should be considered in the light of the more extensive field 

work and data processing needed, but one should also take into account other possible benefits from 

using TLS. 
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