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Abstract: Light detection and ranging (LiDAR) sampling or full-area coverage is deemed 

as favorable means to achieve timely and robust characterizations of forests. Recently, a 

3D segmentation approach was developed for extracting single trees from LiDAR data. 

However, key parameters for modules used in the strategy had to be empirically 

determined. This paper highlights a comprehensive study for the sensitivity analysis of 3D 

single tree detection from airborne LiDAR data. By varying key parameters, their 

influences on results are to be quantified. The aim of the study is to enlighten the optimal 

combination of parameter values towards new applications. For the experiment, a number 

of sample plots from two temperate forest sites in Europe were selected. LiDAR data with 

a point density of 25 pts/m
2
 over the first site in the Bavarian forest national park were 

captured with under both leaf-on and leaf-off conditions. Moreover, a Riegl scanner was 

used to acquire data over the Austrian Alps forest with four-fold point densities of 5 pts/m
2
, 

10 pts/m
2
, 15 pts/m

2
 and 20 pts/m

2
, respectively, under leaf-off conditions. The study 

results proved the robustness and efficiency of the 3D segmentation approach. Point 

densities larger than 10 pts/m
2
 did not seem to significantly contribute to the improvement 

in the performance of 3D tree detection. The performance of the approach can be further 

examined and improved by optimizing the parameter settings with respect to different data 

properties and forest structures. 
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1. Introduction 

Airborne laser scanning (ALS) or Light detection and ranging (LiDAR) has been widely used in 

mapping the Earth’s surface including urban and forested areas in 3D. Recent advances in LiDAR 

technology have demonstrated that new full waveform scanners can provide a higher spatial point 

density especially along the vertical dimension and additional information about the reflectional 

characteristics and vertical structure of trees [1–5]. As LiDAR instrument technology continues to 

improve and acquisition costs decrease, the wall-to-wall characterization of large forested areas will 

become more common. Therefore, LiDAR sampling or full-area coverage is deemed as favorable 

means to achieve timely and robust large-area characterizations of vertically and horizontal distributed 

forest structures. 

Two main strategies on the use of LiDAR data in forestry are reported: the area-based method 

(ABA) and the individual tree method (ITD). In the ABA, ALS point cloud data are aggregated at  

the inventory plot level by describing them based on the height distribution and canopy density  

metrics [6–8], such as echo ratio, height percentiles and canopy cover percentiles. These metrics can 

be imported into regression models as independent variables. In this way, the response is an 

aggregation of single tree measurements on sample plots and could be as in the case of mean tree 

height, stem volume, biomass or forest fuel parameters [9–13]. 

In the ITD approach, either the canopy height model (CHM) [14,15] or the ALS raw data point 

clouds [3,16,17] are used to be segmented into single tree objects. Properties at single tree level can 

subsequently be estimated using the tree segments, such as tree height, crown diameter, tree species, 

crown base height and stem volume. The ITD method is more intuitive than ABA since the derived 

parameters refer to the single tree, which is the smallest unit in forest management. Novel methods for 

ITD approach tackle conceptually the segmentation problem with a 3D approach instead of using only 

the CHM. In combination with full waveform data Reitberger et al. [16] successfully demonstrated 

that the overall detection rate of single trees could be significantly improved, especially in 

heterogeneous forest types. The improvement happened mostly to the lower forest layers with 20%. 

The fusion of 3D techniques with full waveform data pushed the single tree approach to a new level of 

completeness. Meanwhile, the estimation of tree shape parameters benefits from 3D tree segments. 

Moreover, the tree reflectional characteristics gain more insights into tree structure which  

are significant for tree species classification and growth condition identification. The physical 

reflectivity property of trees could even be enhanced and better described if echo amplitude of full 

waveform ALS data were normalized with respect to different incidence angles [18]. Therefore, 

unbiased species-specific models can be used to accurately determine forest biophysical parameters 

even at single tree level [3,19]. 

Recently, an international comparison study on ITD from ALS data [20] has indicated that the 

extraction method is the main factor impacting achieved accuracy rather than laser point density. So 
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far, there is lack of a comprehensive sensitivity analysis of detecting 3D individual trees in 

heterogeneous forest areas using LiDAR data. A fully automated method for tree detection is always 

desirable; a sensitivity analysis is performed to characterize and quantify the uncertainty sources of the 

algorithm and help optimize the selection of control parameters towards the best performance  

under different forest conditions. Therefore, a detailed understanding of the impact of the varying key 

control parameters on the performance of tree detection is required. In the former work of Reitberger  

et al. [16], the smoothing factor and segmentation threshold were already investigated in a preliminary 

configuration with a limited point density and value domain. In the past several years, a few authors 

have been dealing with similar topics. In [21,22], an uncertainty analysis is performed to estimate 

forest carbon stock and biomass from satellite imagery and LiDAR data. The dominate sources of 

uncertainty are the variation of input sample plot data and data saturation problems related to optical 

sensors. Monnet et al. [23] conducted a sensitivity analysis of a treetop detection algorithm in the 

French Alps by automated evaluation of detection performance for several parameter combinations. 

The optimization of parameters may depend on both the laser data, mainly point density, and on the 

forest structure and species. Palleja et al. [24] investigated the sensitivity of the tree volume estimates 

relative to different error sources in the spatial trajectory of a mobile terrestrial LiDAR and found out 

that the volume estimation was very sensitive to both errors in the determination of the distance from 

the LiDAR to the center of the trees and in the determination of the orientation angle of LiDAR.  

In [25], fuel model maps obtained based on QuickBird image and LiDAR-derived variables were used 

to perform a sensitivity analysis of fire behavior modeling. The study showed that the accuracy of fuel 

mapping could be improved by at least 13%. The objectives of this work are (i) to examine the 

influence of the uncertainty of control parameters on the performance of tree detection in mixed strand 

forests from airborne full-waveform LiDAR; (ii) to exploit the feasibility of optimizing parameter 

settings; and (iii) to perform a sensitivity analysis of 3D tree detection from airborne LiDAR data. 

The paper is divided into five sections. Section 2 focuses on the methodology of 3D segmentation 

of single trees and introduces the key control parameters that undergo the sensitivity analysis. Section 

3 presents the experimental results obtained from full-waveform LiDAR data of four-fold  

point densities in the Austrian floodplain forest. Finally, results are discussed and concluded in the last  

two sections. 

2. Methodology 

2.1. Single Tree Detection 

The hybrid approach for single tree detection presented in former work [16] consists of three steps: 

waveform decomposition, watershed transformation with stem detection and normalized cut 

segmentation within merged watershed segments. 

A single waveform is decomposed by fitting mixed Gaussian pulse models to the backscattered 

waveform which contains NR reflections. The vector   
                       is provided for each 

reflection i with the 3D coordinates of the echo. Additionally, the points Xi are given by the width Wi 

and the intensity Ii of the echo pulse [5]. The LiDAR data are corrected by referencing Wi and Ii to the 
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pulse width and the intensity of the emitted Gaussian pulse and by correcting the intensity with respect 

to the run length Si (distance between laser sensor and target) of the laser beam and a nominal distance. 

The coarse detection of single trees is achieved from the CHM using a watershed transformation. 

The CHM is derived by subdividing the Region of Interest (ROI) into a grid with having a cell spacing 

of cp and NC cells. Within each grid cell, the highest 3D point is selected and adapted with respect to 

the ground level   
      

. Based on bilinear interpolation, the ground level   
      

 is estimated from a 

given digital terrain model (DTM) with a grid size of 1 m and an absolute accuracy of 25 cm [11]. In 

the next step, all the highest 3D points   
           

               of all NC cells are robustly 

interpolated in a grid that has NX and NY grid lines and a grid size gw. For this purpose an algorithm 

―gridfit‖ [26] is adopted which smoothens the surface by maintaining the surface gradients as small as 

possible. The trade-off between interpolation and regularization is determined by the adjustable 

smoothing factor λ. Both steps are carried out simultaneously in a least squares adjustment. The 

watershed segments derived on this CHM act as candidate regions where single trees are contained. 

Within every watershed segments the 3D segmentation technique using normalized cuts [27] is used 

to detect point clouds associated with single trees (Figure 1). This segmentation uses the positions  

(xi, yi, zi) of the laser reflections and the pulse width Wi and the intensity Ii obtained from the waveform 

decomposition. Additionally, stem positions or local maxima derived from the watershed segmentation 

of CHM serve as prior knowledge. The normalized cut segmentation applied to the voxel structure of a 

watershed segment is based on a graph G describing the adjacent topology between each voxel  

(Figure 1). A pair of two disjoint Segments A and B of the graph is found by minimizing the  

cost function: 

           
         

           
   

         

           
 (1) 

with                      as the total sum of weights between the Segments A and B and 

                         as the sum of the weights of all edges ending in Segment A. The weights 

wij specify the similarity between the voxels and are a function of the LiDAR point distribution and 

various features, which are defined in Equation (2). The segmentation is realized by maximizing the 

similarity within the segment voxels and minimizing the similarity between Segments A and B. The 

graph G is recursively bi-partitioned until a stop criterion (given the normalized cut value NCutThres) is 

met; the spatial distribution of the LiDAR points mainly influences the weighting function. The 

features derived from the LiDAR points attributes of Wi and Ii also support the segmentation result. 
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Figure 1. (a) Subdivision of the region of interest (ROI) into a voxel structure [16];  

(b) Local maximum in canopy height model (CHM). 

  

(a) (b) 

One of the key factors is to set up the weighting matrix W with the similarity reflecting the 

likelihood that two voxels belong to one tree. The similarity measure between each pair of voxels is 

the multiplicative exponential model: 

        
                                                  

         

           
  (2) 

with         
   
  

   
 
 

,         
   
 

  
 
 

,         
          

  
 
 

,         
   
   

  
 
 

 that computes the 

similarities wij between two voxels i and j within a cylinder of radius rxy around the voxel i. The 

components X(I,j) and Z(i,j) weight quadratic horizontal and vertical Euclidian distances between 

voxels. They are weighted separately to take into account information about the typical tree shape. The 

component F(i,j) describes the quadratic Euclidian distance between two feature vectors (mean pulse 

intensity Imean and pulse width Wmean) derived from the data points (=reflections) in the voxels. The 

fraction G(I,j) models the dependency of two voxels i and j of the local maxima by the maximal 

horizontal distance    
   . Hence, it is modeled that voxels nearby belong most probably belong to  

one tree. 

2.2. Key Control Parameters for Sensitivity Analysis 

Several key control parameters for 3D tree extraction algorithm from airborne LiDAR data are 

selected here to perform the sensitivity analysis. 

2.2.1. Threshold for Normalized Cut Value NCutThres 

The minimization of NCut(A,B) is solved by the corresponding generalized eigenvalue problem  

             , where n × n weighting matrix W represents weights wij between all n nodes 

of the graph G. The minimum solution y1 corresponds to the second smallest eigenvalue. Since y1 is 
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real-valued and may only have two distinct indicator values (+1, −1) we need to binarize it by 

introducing a threshold into the histogram of y1. Using simply t value 0 or median (y1) leads to proper 

results. The results can be improved by testing several possible values with respect to the resulting 

value of NCut and choosing the value causing the smallest NCut value. Thus, the graph G is 

subdivided into two disjoint segments G1 and G2. After that, the abovementioned steps of solving the 

eigenvalue problem and binarization of y1 are to be performed iteratively on the sub-graphs G1 and G2 

until the value for NCut reaches or exceeds the threshold NCutThres. Figure 2 shows an illustrative 

example of recursive normalized cut for a five-tree case study. One can observe that the way in which 

the tree segmentation is performed is dependent on the selection of the threshold NCutThres. Therefore, 

the sensitivity of tree detection performance with respect to the variation of NCutThres value needs to be 

examined in detail. 

Figure 2. Recursive normalized cut for a five-tree example by progressively increasing the 

NCutThres value (green line) [28]. 

 
Number of subdivision 

2.2.2. Voxel Size sizeV  

To enable a 3D tree segmentation in LiDAR point clouds based on normalized cuts the ROI 

delineated by the watershed segmentation is subdivided into a voxel structure with a voxel spacing  

of       and        
      

 
     

  voxels (Figure 1a). Within each voxel of the size       we collect 

N reflections   
                            , where only voxels comprising at least one 

reflection are used in the segmentation. The voxel structure is represented as a region adjacency graph 

G = {V,E} with V as the voxels representing the nodes and E as the edges formed between every pair 

of nodes. The similarity between two nodes {i,j}∈V is described by the weights wij which are 

computed from features associated with the voxels. Basically, the similarity between voxels decreases 
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with increasing distance between two voxels and drops down to zero beyond the threshold rXY for the 

mutual distance in order to keep the graph G at a reasonable size for computation. 

2.2.3. Smoothing Factor λ for CHM Generation. 

The watershed transformation is performed at the first step to segment the CHM and delineate 2D 

crowns of dominator trees. The watershed segments and local maxima can be viewed as candidate 

areas and tree positions for 3D tree segmentation under the CHM. For this purpose the ―gridfit‖ 

method is adopted to generate CHM from point clouds, which smoothens the surface by keeping the 

surface gradients as small as possible. The balance between interpolation and regularization is 

determined by the adjustable smoothing factor λ. Both steps are carried out simultaneously in a least 

squares adjustment scheme. The result is a smoothed CHM having equally spaced posts to which the 

watershed segmentation is applied. Note that the factor λ controls both the smoothing and 

regularization in the case of ill posed situations. The local maxima of the watershed segments define 

possible tree positions. This segmentation procedure is mainly controlled by the parameter λ for the 

CHM construction, while the watershed algorithm itself does not include any parameters. 

Moreover, the parameter λ affects the normalized cut segmentation, since the weighting matrix W in 

Equation.(2) describing the similarity measures between each two voxels incorporated the term 

          Note that a certain smoothing of the CHM is necessary in order to avoid an oversegmentation 

with higher false alarms. On the other hand, neighboring trees often merge and thereby and form a tree 

group instead of single trees. Furthermore, the CHM should not be over-smoothed either, since the 

number of local maxima is directly related to the number of detected trees and fewer local maxima 

lead to a weaker evidence of the presence of single trees within the watershed segments. It is expected 

to see which kind of impact on the performance of 3D tree detection the smoothing factor could have. 

3. Experiment 

3.1. Material 

3.1.1. Test Site I 

One of the experiments was conducted in the Bavarian Forest National Park (49°3′19″ N,  

13°12′9″ E), which is located in South-Eastern Germany along the border to the Czech Republic 

(Figures 5 and 6). There are two major test sites of size between 591 ha and 954 ha in size containing 

sub alpine spruce forest, mixed mountain forest and alluvial spruce forest as the three major forest 

types. Furthermore, the trees are subdivided into three layers with respect to the top height htop of the 

plot, where htop is defined as the average height of the 100 highest trees per ha. The lower layer 

contains all trees below 50% of htop, the intermediate layer refers to all trees between 50% and 80% of 

htop, and finally, the upper layer contains the rest of the trees. Table 1 summarizes the characteristics of 

the individual sample plots in Test Site I. 
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Table 1. Characteristics of sample plots in Test Site I; N stands for the number of trees. 

Plot Size (ha) Age (a) Trees/ha Deciduous (%) 
N lower 

layer  

N interm. 

layer  

N upper 

layer  

21 0.20 160 500 66 37 14 48 

22 0.20 160 540 79 19 60 29 

55 0.15 240 830 5 77 21 20 

56 0.23 170 340 10 31 19 27 

57 0.10 100 450 0 0 4 41 

58 0.10 85 440 14 10 4 30 

59 0.10 40 2150 1 76 85 54 

 

 

60 0.10 110 380 100 8 22 27 

64 0.12 100 430 87 13 4 35 

65 0.12 100 810 96 53 26 35 

74 0.30 85 700 29 11 33 165 

81 0.30 70 610 100 29 59 96 

91 0.36 110 260 75 31 11 54 

92 0.25 110 170 100 13 3 27 

93 0.28 110 240 66 7 2 59 

94 0.29 110 250 97 15 4 54 

95 0.25 110 240 10 6 0 53 

96 0.30 110 200 86 30 3 26 

Full-waveform LiDAR data of several ALS campaigns are available for the test sites, which have 

been collected by Milan Flug GmbH with the Riegl LMS-Q560 system. Table 2 contains details about 

the point density, leaf-on and leaf-off conditions during the flights and the footprint size. The term 

point density refers to the nominal value influenced by the pulse repetition rate (PRF), flying altitude, 

flying speed and strip overlap. Naturally, the reference data have been updated for the individual flying 

dates. The calibration of the Riegl full waveform system was determined from special calibration 

flights performed over an airfield in order to make the pulse intensity consistent with respect to the 

varied flight altitude. Several tracks were flown at different flying heights (200 m and 400 m) along 

and across the airfield. The mean intensity Ii, corrected with respect to the emitted intensity I
e
, and the 

mean distance from the LiDAR to the target si were calculated in four homogeneous areas  

(122 m
2
–133 m

2
) for each track i. In order to reduce the impact of the scan angle we only used 

measurements whose scan angles were smaller than 10 degrees. The best coefficient k was estimated 

from all possible observation equations (3): 

     
       

  (3) 

which can be formulated for two tracks i and j flown at different heights. Table 2 also shows the results 

obtained for the two flights of leaf-off and on. However, no detailed information from the hardware 

supplier is available on that subject. The calibrated values for k were used in the following analysis. 
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Table 2. Configurations for airborne light detection and ranging (LiDAR) campaigns for 

Test Site I. 

Time of flight May 2006 May 2007 

Data set I II 

Foliage Leaf-off Leaf-on 

Scanner Riegl LMS-Q560 Riegl LMS-Q560 

Pts/m2 25 25 

Above ground level (AGL) (m) 400 400 

Beam divergence (mrad)  ≤0.5 ≤0.5 

Calibration parameter k 1.902 1.736 

3.1.2. Test Site II 

The second experiment was conducted in the Austrian floodplain forest, which is located in western 

Austria along the border to the Germany (47°58′19″ N, 12°55′9″ E). Seven sample plots with an area 

size between 200 m
2
 and 500 m

2
 were selected. The forest comprises alluvial forest, spruce 

monocropping, and deciduous mixed forest with partial pinewood. Practically all age classes are 

found. The plots comprise forest in the early and the late pole phase. Table 3 summarizes the 

characteristics of the individual sample plots in Test Site II. 

Table 3. Characteristics of sample plots in Test Site II; N stands for the number of trees. 

Plot Size (ha) Altitude (m) Trees/ha Deciduous (%) N lower layer N intern layer N upper layer  

1 0.05 441 448 0 0 0 12 

2 0.04 441 483 0 0 0 9 

3 0.05 441 417 100 0 2 11 

4 0.04 441 349 100 0 1 7 

5 0.05 441 490 0 0 0 13 

6 0.04 440 261 100 0 2 2 

7 0.04 440 202 100 0 1 4 

 

 
8 0.03 441 560 75 0 6 2 

9 0.05 441 453 0 0 0 14 

10 0.05 440 441 0 0 0 13 

11 0.04 440 272 100 0 0 5 

12 0.05 439 196 100 0 0 6 

13 0.05 439 487 0 0 0 14 

14 0.05 439 490 0 0 0 13 

15 0.06 439 679 0 0 0 23 

16 0.04 440 371 100 0 2 7 

17 0.05 439 698 0 0 0 18 

18 0.05 482 576 0 0 0 16 

19 0.05 483 633 12 0 0 6 

20 0.05 468 631 94 9 4 3 

21 0.05 464 405 90 4 2 3 

22 0.05 464 690 0 0 0 17 

23 0.04 448 330 0 0 0 5 

24 0.05 447 471 83 1 2 6 

25 0.05 456 692 0 0 0 19 

26 0.04 442 340 0 0 2 6 

27 0.04 442 411 0 0 1 7 

http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6VF4-4W9V7FR-1&_mathId=mml10&_pii=S0924271609000495&_issn=09242716&_acct=C000032440&_version=1&_userid=616514&md5=19091db387e6f6b85e0958c6f14010d5
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Full waveform data were collected by Forest Mapping Management GmbH in Salzburg with the 

Riegl LMS-Q680i in March 2011 after snowmelt but prior to foliation with a four-fold average point 

density of 5–20 points/m
2
 (Table 4). The laser pulse repetition rate was 240 kHz, the pulse width at 

half maximum reached 4 ns and the laser wavelength was 1550 nm. The flying altitude of 700 m 

resulted in a footprint size of ca.30 cm. 

Table 4. Configurations of the airborne LiDAR campaign in Test Site II. 

Time of flight March 2011 

Foliage Leaf-off 

Scanner Riegl LMS-Q680i 

Point density: Pts/m2 5, 10, 15, 20 

AGL (m) 700 

Beam divergence (mrad) <=0.5 

Scan angle 0°–22.5° 

Unfortunately, there were no special calibration flights performed in this data acquisition campaign 

to determine the calibration of the Riegl full waveform laser system. Therefore, for this test site the 

mean intensity Ii was calculated by the correction only with respect to the emitted intensity Ie, and the 

mean run length si for each track, simply assuming simply the coefficient k = 2 for all flights. 

3.2. Field Data and Evaluation 

3.2.1. Test Site I 

At the Test Site I, we selected 18 sample plots with an area size between 1000 m
2
 and 3600 m

2
 in 

two test sites E and C. Reference data for all trees with DBH larger than 7 cm were collected for  

688 Norway spruces (Picea abies), 812 European beeches (Fagus sylvatica), 70 fir trees (Abies alba), 

71 Sycamore maples (Acer pseudoplatanus), 21 Norway maples (Acer platanoides) and two lime trees 

(Tilia Europaea). Tree parameters like the DBH, total tree height, stem position and tree species were 

measured and determined by GPS, tachometry and the ―Vertex III‖ system. Naturally, the reference 

data were updated for the individual dates of the LiDAR data. A DTM with a grid size of 1 m and an 

absolute accuracy of 25 cm was available for the test sites [29]. Table 1 summarizes the characteristics 

of the individual sample plots. The descriptive statistics of the field trees are summarized in Table 5. 

Table 5. Statistical summary of field tree variables in Test Site I. 

Time of acquisition May 2006 May 2007 

 Tree height (m)  DBH (cm) Tree height (m) DBH (cm) 

Min 5.10 7 5.10 7 

Max 50.60 113 50.60 113 

Mean 25.42 31.90 25.29 31.70 

Standard deviation 10.70 17.90 10.68 17.60 
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3.2.2. Test Site II 

We applied the strategy to the sample plots acquired under leaf-off condition and validated the 

results using the method of single-tree based evaluation. Reference data for all trees with DBH larger 

than 15 cm were collected for 62 Norway spruces (Picea abies), one European beeches (Fagus 

sylvatica), 24 European ash (Fraxinus excelsior), 32 Black Alder (Alnus glutinosa), four Sycamore 

maples (Acer pseudoplatanus), and one lime trees (Tilia Europaea). Tree parameters including the 

DBH, total tree height, stem position and tree species were measured and determined by GPS, 

tachometry and the ―Vertex III hypsometer‖ system. Additionally, a DTM with a grid size of 1 m and 

an absolute accuracy of 25 cm was also available. The descriptive statistics of the field trees are 

summarized in Table 6. 

Table 6. Statistical summary of field tree variables in Test Site II. 

Time of acquisition March 2011 

 Tree height (m) DBH (cm) 

Min 1.0 2.0 

Max 44.0 50.0 

Mean 21.2 22.8 

Standard deviation 8.7 10.1 

3.2.3. Evaluation 

The tree detection evaluation is performed based on the single-tree level by finding matched tree 

segments in the reference. The tree detection results are evaluated by comparison with reference data 

using two criteria: (i) the distance from detected trees to reference should be smaller than 60% of the 

mean tree spacing of the plot; (ii) the height difference between detected and reference trees should be 

smaller than 15% of htop. If a reference tree is assigned to more than one detected tree, the tree with the 

minimum distance to the reference is selected. Detected trees that are linked to one reference tree are 

so-called ―true positives‖ and detected trees without any link to a tree position are treated as ―false 

positives‖. We used ―completeness and correctness‖ measures to characterize the performance of the 

individual tree detection, which are defined in Equations (4) and (5), respectively. 

             
                    
                    

 (4) 

            
                    
                    

 (5) 

4. Results and Discussion 

4.1. Results 

By applying the procedure for 3D single tree detection to the test plots in a batch procedure, the 

experimental results describing the impact of each selected control parameter on the performance of 
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tree detection are illustrated in Figures 3–11. Since the sensitivity analysis is performed based on 

varying one control parameter at each time, those parameters which did not vary during the sensitivity 

analysis should be assigned with constant values: NCutThre = 0.16, Vsize = 0.5, λ = 1.5. 

4.1.1. Test Site I 

Figures 3–5 show the results for the dataset of Test Site I acquired in 2006 under leaf-off condition, 

while Figures 6–8 show the results for Test Site I acquired in 2007 under leaf-on condition. 

Figure 3. Sensitivity analysis with respect to the parameter NCutThres for the dataset of Test 

Site I acquired under leaf-off condition; (a) Completeness; (b) Correctness; colored lines 

indicate the forest layers. 

  

(a) (b) 

Figure 4. Sensitivity analysis with respect to the parameter SizeV  for the dataset of Test Site I 

acquired under leaf-off condition; (a) Completeness; (b) Correctness; colored lines indicate 

the forest layers. 

  

(a) (b) 
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Figure 5. Sensitivity analysis with respect to the parameter λ for the dataset of Test Site I 

acquired under leaf-off condition; (a) Completeness; (b) Correctness; colored lines indicate 

the forest layers. 

  

(a) (b) 

Figure 6. Sensitivity analysis with respect to the parameter NCutThres for the dataset of Test 

Site I acquired under leaf-on condition; (a) Completeness; (b) Correctness; colored lines 

indicate the forest layers. 

  

(a) (b) 
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Figure 7. Sensitivity analysis with respect to the parameter SizeV  for the dataset of Test Site I 

acquired under leaf-on condition; (a) Completeness; (b) Correctness; colored lines indicate 

the forest layers. 

  

(a) (b) 

Figure 8. Sensitivity analysis with respect to the parameter λ for the dataset of Test Site I 

acquired under leaf-on condition, (a) Completeness; (b) Correctness; colored lines indicate 

the forest layers. 

  

(a) (b) 
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4.1.2. Test site II 

Figures 9–11 show the results for the dataset of Test Site II. 

Figure 9. Sensitivity analysis with respect to the parameter NCutThres for the dataset of Test 

Site II acquired under leaf-off condition; (a) Completeness; (b) Correctness; colored lines 

indicate different point densities. 

  

(a) (b) 

Figure 10. Sensitivity analysis with respect to the parameter SizeV  for the dataset of Test Site 

II acquired under leaf-off condition; (a) Completeness; (b) Correctness; colored lines 

indicate different point densities. 

  

(a) (b) 
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Figure 11. Sensitivity analysis with respect to the parameter λ for the dataset of Test Site II 

acquired under leaf-off condition; (a) Completeness; (b) Correctness; colored lines indicate 

different point densities. 

  

(a) (b) 

4.2. Discussion 

4.2.1. Test Site I vs. Test Site II 

The two test sites are characterized by different forest structures and stand properties, although they 

are located in the same geographical zone. Test Site I is characterized by a multi-story forest area with 

uneven-aged stands. Test Site II features a more homogenous forest area with a dominant upper layer 

and monocultural characteristics. By comparing the variation curves of the two data sites in  

Figures 3–11 in response to the control parameters shows that the trend of the uncertainty of the tree 

detection performance with respect to the different algorithm parameters seems to remain stable. It 

verifies the important expectation that the proposed 3D segmentation method can deal with forest areas 

of different structural properties in a robust manner. The quantitative results for tree detection certainly 

become degraded if test areas have more challenging forest structures such as high stem density, mixed 

stand and multi-layered trees. Consequently, one can generally observe that the detection rate in Test 

Site II is about 20% higher than that in Test Site I, while the test site I features a 10% larger false 

positive rate. Moreover, according to Figures 5, 8, and 11 the smoothing factor λ is likely to have more 

distinct effects on the correctness of the tree detection results for Test Site I. The false alarm rate in 

Test Site I was reduced by at least 15% whereas that in Test Site II was reduced only slightly. This 

suggests that it is beneficial to smooth the CHM of multi-layered forest areas prior to 3D segmentation 

in order to eliminate redundant local maxima contributed by many small trees, since the completeness 

of tree detection for both test sites remained stable when the smoothing factor λ increased from one  

to four. 
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4.2.2. Foliage Condition 

Since LiDAR datasets were only acquired under leaf-on condition at Test Site II, the sensitivity 

analysis with respect to the influence of the foliage condition is limited to Test site I. Figures 3–8 show 

the sensitivity analysis results of Test Site I under two foliage conditions—leaf-on and leaf-off, 

respectively. Generally, the impact of the varied control parameters on the tree detection performance 

is not significantly biased towards the foliage condition as observed in figures for the different 

parameters. For completeness, overall results for tree detection neither differ much in the absolute 

value nor in the trend of the curve changing with an increasing parameter. Neither can one find any 

distinct difference among the forest height layers between leaf-on and off foliage conditions. Only 

trees within the upper height layer are relatively more affected, which indicates a slight improvement 

concerning the detection rate in the case of leaf-off conditions. It matched the assumption that tall trees 

in the overstory should be better detected in the leaf-off case due to the weaker saturation effect of tree 

crowns (as top foliage of the tree crown reflects most of the signal back in the leaf-on case) and better 

reflection of inner tree structure caused by higher canopy transmittance against laser pulse. 

Nevertheless, the dependency relationship of the performance indices on the parameters is still 

maintained constant, no matter which forest height layer is considered. When one takes a look at the 

performance aspect concerning the correctness, a lower forest height layer seems to be the component 

of most concern. The leaf-on case decreased the correctness of tree detection in the lower forest layer 

by ca. 10%, while sensitivity curves of the control parameters tended to become steadier at all the 

forest height layers. Especially for the voxel size parameter the correctness of tree detection in the 

lower height layer did not result in on any significant improvement as in the leaf-off case for voxel 

sizes larger than 1.2 m. Incomplete sampling of small trees in the lower layer under  

leaf-on condition leads to the information loss in the voxel unit which was even more extensive. 

Additionally, it is comprehensible to see that trees in the lower height layer are not sensible to the 

variation of the smoothing factor applied to CHM, since most of the trees in that layer are not 

represented in the CHM, which are of course not affected by the smoothing operation. 

4.2.3. Point Density 

The experimental results of the sensitivity analysis for both Test Site I and Test Site II with  

four-fold point density demonstrate that the threshold NCutThres plays a more significant role in the 

determination of overall performance of 3D tree detection from airborne LiDAR point clouds. The 

optimal value for NCutThres should be selected between 0.16 and 0.23 in order to achieve the trade-off 

between the completeness and correctness. Moreover, all other control parameters except NCutThres are 

much less sensitive with regard to the correctness and completeness for point densities larger than  

5 pts/m
2
. 

Larger NCutThres values lead to more tree segments with a higher completeness but lower 

correctness (over-segmentation), since the NCutThres value defines the threshold for evaluating the 

dissimilarity measure between sub-graphs. Lower point density datasets including one-fold (5 pts/m
2
) 

or two-fold (10 pts/m
2
) datasets even produce a descending completeness when NCutThres is larger  

than 0.4. Such low point density datasets reach their over-segmentation limit and will produce no more 
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segments on the basis of bipartition cuts. However, the performances of 3D tree segmentation for the 

data sets of four different point densities are almost identical if a NCutThres value smaller than 0.25 is 

selected. The performance curves resulting from varying the smoothing factor λ indicate it to have 

only negligible significance regardless of the point density of the LiDAR data. Only the correctness 

appears to slightly increase. In response, the evolution of performance curves with respect to λ  

(Figure 11) looks like a stochastic fluctuation around a constant value. The results from the variation of 

the voxel size       show that there is a slightly consistent impact of       on the performance of the 

3D tree detection leading to a degraded completeness when       increases, since the progress of 

correctness curves follows a fluctuant distribution around the same value. Datasets with lower point 

density under 10 pts/m
2
 are especially sensible to the large voxel size whereby the completeness 

decreases dramatically if       exceeds 0.6 m. 

An interesting finding is that a higher point density (>10 pts/m
2
) cannot necessarily guarantee better 

performance or stable results for tree detection given the varied voxel size. Moreover, if the voxel size 

increases to more than 0.8 m an under-segmentation happens to the one/two-fold point density 

datasets. This could be due to the fact that the large voxel size reduces the dimension of the adjacency 

graph and small trees are unified into one graph node. Generally, the point density of LiDAR data 

seems to not play as significant a role as expected. In this case, it is difficult to state that the 

performance of the tree detection algorithm really benefits from high point density, at least for those 

datasets with a point density larger than 10 pts/m
2
. High point density (>10 pts/m

2
) seems not to 

contribute to any significant improvement to the tree detection results. A similar saturation effect in 

point density for tree detection from LiDAR data was also observed and reported in the study [20], in 

which the point density increased from two points to eight points per m
2
 and had a marginal 

improvement in crown delineation accuracy. 

The study performed in [30] confirmed that the accuracy of predicted metrics at the plot level such 

as tree height DBH and basal area was also invariant to changes in pulse density at moderate to high 

densities no matter what kind of prediction models were used. Coverage metric including canopy cover 

and tree density are more sensitive to changes in point density but still not significant. They suggest 

that low-density LiDAR data may be capable of estimating typical forest structure metrics reliably in 

some situations. This study enlightens the user to achieve the trade-off between data acquisition cost 

and accuracy of tree detection in forest inventory products where time expenses for flight and  

post-processing can be simultaneously minimized at no extra cost of data quality. The study indicates 

that the point density may not be the major factor, which should be pursued in the data preparation for 

LiDAR forestry remote sensing. It may be a result of the fact that the vertical resolving ability of 

LiDAR towards forestry tasks is more relevant to the penetrability of laser pulses against tree crown 

rather than the point spacing. 

5. Conclusions 

It is necessary to characterize and even quantify the influence of uncertainty associated with various 

control parameters for single tree detection based on 3D segmentation of LiDAR point clouds, since 

the performance of the forest characterization based on ITD strategy is directly related to the accuracy 

of tree detection results. The parameter settings of the tree detection method needs to be examined and 
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optimized towards different data acquisition conditions and forest stand properties, such as point 

density, flight altitude, forest type and tree growth phase. The experimental results of this work show 

that the threshold for normalized cut value NCutThres is the most important and influential control 

parameter in the entire 3D segmentation algorithm. NCutThres is also the most sensible parameter to the 

performance of tree detection and needs to be carefully adjusted. According to the sensitivity analysis 

performed here, the developed strategy for tree detection remains steady with respect to dealing with 

various forest structures, even though multi-layered mixed forest stands may show degraded results 

due to the existence of an understory. Additionally, foliage condition is more likely to have a distinct 

impact on the correctness of tree detection in forest understory, especially with regard to the selection 

of the voxel size. In particular, this means that it is feasible to enlarge       to alleviate the 

oversegmentation effect for understory trees in leaf-on case. Finally, high point density of LiDAR data 

leads to high data acquisition cost and time expenses (especially for the waveform LiDAR extra time 

expenses for waveform decomposition are needed), but not performance improvement in proportion. 

The value of 10 pts/m
2
 seems to be a good trade-off between the cost and the quality of results. 

Future work could be focused on the simultaneous optimization of multiple control parameters  

and the extension to the sensitivity analysis for tree species classification and forest parameter 

estimation. Furthermore, the sensitivity analysis on LiDAR data will enable us to identify the most 

influential structural parameters of forests for tree detection results, such as stem density and tree 

height distribution. 
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