
Forests 2014, 5, 1910-1930; doi:10.3390/f5081910 
 

forests
ISSN 1999-4907 

www.mdpi.com/journal/forests 
Article 

Correlating the Horizontal and Vertical Distribution  
of LiDAR Point Clouds with Components of Biomass  
in a Picea crassifolia Forest 

Wang Li 1,2, Zheng Niu 1, Shuai Gao 1,*, Ni Huang 1 and Hanyue Chen 3  

1 The State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital 
Earth, CAS Olympic S&T Park No. 20 Da Tun Road P.O. Box 9718, China;  
E-Mails: lwwhdz@sina.com (W.L.); niuzheng@radi.ac.cn (Z.N.); huangn@irsa.ac.cn (N.H.) 

2 University of Chinese Academy of Sciences, Beijing 100039, China 
3 Fujian Agriculture and Forestry University, Fuzhou 350002, China;  

E-Mail: chenhanyue.420@163.com 

* Author to whom correspondence should be addressed; E-Mail: gaoshuai@radi.ac.cn;  
Tel./Fax: +8610-6488-9215.  

Received: 18 December 2013; in revised form: 24 May 2014 / Accepted: 24 July 2014 /  
Published: 5 August 2014  
 

Abstract: Light detection and ranging (LiDAR) has been widely used to estimate forest 
biomass. In this study, we aim to further explore this capability by correlating horizontal 
and vertical distribution of LiDAR data with components of biomass in a Picea crassifolia 
forest. Airborne small footprint full-waveform data were decomposed to acquire higher 
density point clouds. We calculated LiDAR metrics at the tree level and subplot level and 
correlated them to biomass components, including branch biomass (BB), leaf biomass (LB) 
and above-ground biomass (AGB), respectively. A new metric (Horizcv) describing the 
horizontal distribution of point clouds was proposed. This metric was found to be highly 
correlated with canopy biomass (BB and LB) at the tree level and subplot level. 
Correlation between AGB and Horizcv at the subplot level is much lower than that at tree 
level. AGB for subplot is highly correlated with the mean height metric (Hmean), canopy 
cover index (CCI) and the product of them. On the other hand, the relationship between the 
vertical distribution of LiDAR point and biomass was explored by developing two types of 
vertical profiles, including LiDAR distribution profiles and a biomass profile. Good 
relationships were found between these two types of vertical profiles and assessed by 
Pearson’s correlation coefficient (R) and the area of overlap index (AOI). These good 
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correlations possess potential in predicting the vertical distribution of canopy biomass. 
Overall, it is concluded that not only the vertical, but also the horizontal distribution of 
LiDAR points should be taken into account in estimating components of biomass by 
LiDAR. 
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1. Introduction 

Biomass is commonly used as an important parameter for the assessment of forest productivity and 
carbon sequestration rates [1]. It is generally estimated based on ground measurement [2], which is 
time-consuming and sometimes inefficient. Using remotely sensed data has become a preferable way 
to estimate the amount and spatial distribution of forest biomass [3]. Biomass shows significant 
correlation with the structure of forest, such as diameter at breast height (DBH) and tree height. Light 
detection and ranging (LiDAR), as an active remote sensing technology, exhibits immense potential in 
detecting the vertical and horizontal structure of forests. Therefore, LiDAR data has been widely used 
in the estimation of different types of forest biomass at various sites. The types of forest biomass cover 
tropical rainforest [4–6], deciduous and conifer forest in temperate area [3,7,8], and so on [9,10]. 
Height metrics, such as mean of height (Hmean), mode of height (Hmode) and percentile height, are the 
most commonly used LiDAR metrics to estimate biomass, because height metrics can be directly 
measured by LiDAR and can give insights into the vertical structure of individual trees and forest 
stands. Numerous allometric equations have been developed for different forest types in various areas 
when using LiDAR metrics to estimate biomass. However, most of the published literature has 
emphasized the effects of the vertical structure of forest stand on forest biomass. The horizontal 
structure of forest was described by the canopy cover index (CCI) or penetration index calculated 
using the simple ratio of canopy return or ground return [4,5,7–9]. Ni-Meister [11] indicated that the 
gap fraction combined with height metrics, which is closely related to the woody volume, can improve 
the aboveground biomass estimation at large scales by using large-footprint waveform LiDAR. The 
woody volume approximately equals the product of basal area and top 10% tree height [11]. Both the 
gap fraction and the woody volume take the vertical (tree height) and horizontal (basal area) 
distribution of canopy components into account.  

For most studies, biomass was estimated at scales no smaller than plot sizes (approximately  
0.01 hectare). Fewer studies estimated the biomass of individual trees [1,2,12,13]. However, 
calculating individual tree biomass is the first step for calculating biomass at larger scales in most 
studies. In these studies, height and crown diameter were identified from an interpolated raster surface 
(canopy height model, CHM) by some individual tree identification algorithms before biomass 
estimation. Not all of the trees could be identified, because some returns from the inner canopy under 
the raster surface were missing [14,15]. However, with the success of individual tree identification, it 
was possible to achieve a high resolution and to precisely map the biomass distribution, which can be 
used as a reference dataset instead of laborious ground measurements [13].  
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On the other hand, precisely estimated components of forest biomass improve the calculation  
of carbon storage. Branch biomass (BB) and leaf biomass (LB) are of vital importance to the  
estimation of canopy fuel load and monitoring of forest fire behavior. They are commonly used in the 
calculation of canopy fuel parameters, such as canopy base height, canopy bulk density and canopy 
fuel weight [16,17]. Good correlations were found between species-specific biomass components and 
LiDAR metrics [18]. Compared with aboveground biomass, canopy biomass, including BB and LB, 
mostly is distributed within the tree crown. Usually, the horizontal distribution range of the tree crown 
is comparable to or even wider than its crown depth. Therefore, LiDAR metrics that can reflect the 
horizontal distribution of the canopy possibly can give an indication on the canopy biomass. For 
instance, the canopy cover index (CCI) calculated using the simple ratio of canopy return has been 
found to be sensitive to the degree of canopy openness and shows good correlation with aboveground 
biomass at the plot level [4,5]. However, the relationship between CCI and canopy biomass has not 
been explored. To the best of our knowledge, the number of LiDAR metrics, which can give insight 
into the horizontal structure of the canopy, is quite limited among all of the traditional metrics. In 
addition, the horizontal distribution of the LiDAR point cloud has not been widely investigated. For 
instance, when tree heights reach a certain height, the canopy increases the speed of growth in the 
horizontal direction. This leads to the increment of canopy biomass (BB and LB). Different trees with 
similar vertical structures may have different horizontal structures. In this case, the variation of the 
horizontal distribution of LiDAR point clouds could be sensitive to the difference or variation of 
canopy biomass. We expected that when taking the horizontal characterization into account, the 
biomass estimating models could be improved by using LiDAR metrics. Therefore, investigation is 
needed to further explore the links between the distribution (both vertical and horizontal) of the 
LiDAR point cloud and biomass components. 

In this paper, we explored the relationship between the distribution variation of LiDAR point cloud 
and biomass at the tree level and subplot level. Vertical and horizontal variations of the point 
distribution were investigated to assess their correlations with biomass of different canopy 
components. New LiDAR metrics were developed and used to estimate biomass components. The 
results were compared with those estimated using commonly selected metrics alone, which can be 
considered to deliver good supplementary information to previous studies in this study area [19,20]. 

2. Experimental Section  

2.1. Study Sites 

The study area is a water conservation forest site located in Qilian Mountain Dayekou, Zhangye 
City, Gansu Province, China (Figure 1). It is a study area chosen by an airborne, satellite-borne and 
ground-based remote sensing experiment, Watershed Allied Telemetry Experimental Research 
(WATER) [21]. It covers three vegetative climate zones and significantly affects soil/water 
conservation and biodiversity protection. The area is the main body of the ecosystem in the Qilian 
Mountains, and the Hexi Corridor Oasis and is located at an elevation of 2500 m to 3800 m above sea 
level. The center coordinates of the area are 100°15’E and 38°32’N. The main species in the study area 
is P. crassifolia, occupying about 95% of the whole forestland over the test site [3]. 
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Figure 1. Airborne ortho charged coupled device (CCD) image for the study area and the 
field plots. 

 

2.2. LiDAR Data  

Small footprint full-waveform LiDAR data were acquired for the Dayekou study area on  
June 23, 2008. The LiteMapper-5600 airborne laser scanning system was used and configured to emit 
laser pulses of 3.5 ns at 50 kHz in the near-infrared band (wavelength = 1550 nm) with a beam 
divergence fixed with 0.5 mrad. The average footprint diameter was 38 cm. Geographical coordinates 
(easting, northing and elevation) were recorded by a dual-frequency differential Global Positioning 
System with an inertial measurement unit. The horizontal and vertical accuracy of the instrument was 
0.1 m and 0.3 m, respectively. Repetitive flights were carried out over the sample study area with a 
nominal height above ground of 700–800 m [22], leading to a pulse density of approximately  
3.43 pts/m2. For each pulse, the transmitted pulse and the returned pulse were recorded in the 
full-waveform data. Point clouds were generated from the full-waveform data by the commercial 
software provided by the vendor. All of the points were geo-referenced to a projection system of 
universal transverse Mercator (UTM) Zone 47N/WGS-84. In order to increase the point density in this 
study, we produced another set of point clouds from the original waveform data by waveform 
decomposing. This is described in Section 2.5. The point cloud with the relatively lower point density 
described above was not used in this study. 
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2.3. Field Measurement 

During the flight campaign, field measurements were conducted on two field plots distributing over 
the study area (Figure 1). The field plots were denoted as super-plot and line-plot. The super-plot  
was a 100 m × 100 m area with a slope of less than 20 degrees. It was divided into 16 subplots 
measuring 25 m × 25 m. The line-plot was a sample line consisting of 19 subplots measuring  
20 m × 20 m distributed along the direction of flight. The distance between the subplots in the line-plot 
was 50 m. The total number of subplots was 35. The center location of each subplot was positioned 
using a differential global positioning system (DGPS) station. The DGPS mobile station was placed 
within the open space of the standing forest to ensure the positioning accuracy. The individual trees 
were located by the survey total stations with equipment model of TOPCON GTS-602 and TOPCON 
GPT-7002 (Figure 2). Tree height (H) and first branch height (FBH) were measured using a laser 
hypsometer; diameter at breast height (DBH) was measured with a tape measure, and crown size (R) in 
two orthotropic directions for each individual tree was measured using a ribbon tape. High correlations 
were found between the ground-measured features, as shown in Table 1 and Figure 3. 

Figure 2. The spatial distribution of the field-measured individual trees in the super-plot 
with 16 subplots. 
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Table 1. Regression models of different ground-measured features. 

Dependent  
Variables (y) 

Equation R2 
Root Mean  

Squared Error (RMSE) (m) 
Height y = 0.5171 × DBH + 2.1268 0.83 1.24 

Crown Size 
y = 7.3496 × ln(DBH) − 8.581 0.87 1.18 
y = 0.2014 × Height + 1.3742 0.61 0.77 
y = 0.1264 × DBH + 1.4894 0.74 0.71 

Note: R2 = coefficient of determination. 

Figure 3. Scatter plots for the field-measured attributes (a–d). Height is the tree height; 
DBH is the diameter at breast height; ln(DBH) is the log transformation of DBH; R2 is the 
coefficient of determination. 

  
(a) (b) 

  
(c) (d) 

2.4. Biomass Calculation 

The biomass of different forest components was calculated based on their DBH and height 
according to the empirical relative growth equations [23] as follows: 

stock biomass = 0.0478 × ((DBH)2 × H)0.8665 (1)  

branch biomass = 0.0061 × ((DBH)2 × H)0.8905 (2)  

leaf biomass = 0.2650 × ((DBH)2 × H)0.4701 (3)  

fruit biomass = 0.0342 × ((DBH)2 × H)0.5779 (4)  
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The aboveground biomass (AGB) of each individual tree was calculated as the sum of biomass of 
all of the above components (stock, branch, leaf and fruit). Subplot biomass is calculated as the sum of 
ABG of each individual tree in each subplot.  

2.5. Processing of LiDAR Data 

In order to acquire a higher point density, we used a waveform decomposition approach [24] to 
decompose the original waveform data into another point cloud dataset. This decomposition approach 
has been successfully applied to another LiDAR dataset collected in the urban area of Zhangye City 
around the same point in time during which the WATER experiment was conducted. It approximates 
the LiDAR waveform as a Gaussian mixture model. A stepwise strategy was used to implement 
waveform decomposition by defining the maximum iteration number and error expectations before 
decomposition [24]. The final point density was increased to 6.22 pts/m2 from 3.43 pts/m2. In the next 
step, ground points were filtered from the decomposed point clouds to generate a digital elevation 
model (DEM) at 0.5 m resolution. Heights of non-ground points were normalized by calculating the 
difference between the non-ground point heights and the corresponding interpolated DEM cell heights 
beneath the points. A digital surface model (DSM) at 0.5 m resolution was generated from the high 
density point clouds. The maximum height value of the points within each pixel was selected as the 
value of the interpolated DSM raster cell. Then, a canopy height model (CHM) was derived as the 
difference between the DEM and DSM.  

2.6. Individual Tree Identification 

The CHM was smoothed by a 3 m × 3 m Gaussian filter before being used to identify the individual 
trees. The search radius (3 m) was chosen based on the mean of all of the measured tree crown sizes. 
Then, the watershed algorithm [25] was applied to the smoothed CHM. The watershed algorithm 
firstly inverts the CHM to a raster converting peaks into depressions. Then, the canopy basins are 
delineated on the depression raster by watershed segmentation. Finally, the delineated basins raster is 
converted to segments. A height break (1.5 m) was set to extract the tree crown segments from the 
obtained segments. Then the crown segments were transferred into polygonally shaped files in 
Arcgis9.3. The highest pixel value obtained by zonal statistics within each canopy polygon was 
assigned as the tree height and its location as the tree location. This automatic delineation greatly 
helped to extract the individual trees, but manual intervention was still needed to remove some 
mistakes. Errors of omission and commission were unavoidable in individual tree delineation. It can 
clearly be seen that there are several field-measured trees clustering within one segment or that no 
field-measured trees are located in a particular segment. The center geographic location of each 
segment and its height were matched to the field measured trees accompanied by some visual 
interpretation. Before matching, visual interpretation and corrections were conducted on the segments 
containing more than one field-measured tree. Specifically, if the field-measured trees in the segment 
were too close to separate visually, the segment enclosing them was not selected in order to assure the 
quality of the crown segment. The difficulty in separating this kind of trees was caused either by tree 
clustering or the understory trees being sheltered by the tall trees. In the remaining cases, the 
field-measured trees were separated by splitting the segment manually according to the texture of 
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CHM and the ortho CCD image. On the other hand, segments containing no field-measured trees were 
not selected. Finally, only the segments with heights and locations closest to the field-measured trees 
were selected as the final matched crown segments. The quality of tree delineation directly affects the 
accuracy of LiDAR metrics at tree level in this study. Differences in the locations and heights were 
limited to certain confidence intervals. Only the final matched crown segments were selected to clip 
the point clouds to calculate LiDAR metrics at tree level. 

2.7. LiDAR Metrics Calculation 

The decomposed point clouds within each extracted crown shape files were clipped from the 
original points. Each point contained attributes, including the geographic coordinates (X/Y), the 
normalized height (H), returned pulse amplitude, width, standard deviation and returns. The mean 
height of each individual tree point cloud was calculated using the conventional LiDAR height metrics. 
The coefficient of height variation (Hcv) is a commonly used LiDAR metric and is used to describe the 
height variation in the Z-axis [10]. The coefficient of variation (CV) is defined as the ratio of the 
standard deviation to the mean. The height Z is normalized by subtracting the DEM from DSM. Based 
on this, we expected to develop a similar, but slightly differing coefficient of variation in the X/Y-axis 
to describe the horizontal distribution of LiDAR points. Before calculating the new metric, the X/Y 
coordinates of the point clouds within each tree crown segment were normalized. The original X/Y 
coordinates were transformed to x/y as follows: 

 (5) 

 (6) 

Then, the coefficient of variation for / , /  was calculated: 

  (7) 

  (8) 

where  and  are the standard deviations for  and , respectively. Finally, the metric 

Horizcv was defined as: 

 (9) 

The normalized x/y coordinates can be seen as the projections of the point clouds in the horizontal 
plane. They can describe the relative spatial locations of the point clouds within the crown segment in 
the horizontal plane. The coefficient of x/y variation can reflect how the point cloud distributions vary 
in the x/y direction. They actually are independent of the absolute locations. Theoretically, this works 
for tree point clouds (points within the tree crown segment) with coordinates characterized by different 
coordinate systems. For example, there are two LiDAR point clouds collected from two trees with the 
exact same structure and biomass located at different geographic positions. The interactions between 
the LiDAR pulse and the trees are assumed to be the same, and the only difference is the shift in x/y 
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coordinates. There should be a transformation between the coordinates in the x/y plane. For example, 
we shift the x/y coordinates using the following formulas: 

_

_

shift i i

shift i i

x x a b
y y a b

= × +

= × +
 (10) 

where xshift_i and yshift_i are the shifted coordinates, a and b are the shifting coefficients. The normalized 
coordinate x/y are the same as those before coordinate shifting, because the normalization process has 
removed the effect of the absolute locations.  

Horizcv for each subplot was calculated by summing all of the Horizcv of the individual trees within 
the subplot. All of the first-returned echoes within each subplot were selected to obtain the canopy 
cover index (CCI). CCI was calculated by dividing the number of canopy first-returned echoes  
(H > 1.5 m) by the total number of first-returned echoes. The mean of the point cloud heights (Hmean) 
was also calculated, since biomass is closely related to tree height. 

2.8. Vertical Biomass Profile Derivation 

To assess how well the vertical distribution of point clouds correlated with the vertical distribution 
of biomass, three vertical profiles were calculated: canopy point density profile (CPD), canopy intensity 
profile (CIP) and canopy biomass density profile (CBP). The first two profiles are LiDAR-derived, and 
the third one is derived from ground-measured data. Trees in each subplot were sectioned into a series 
of small height bins (0.5 m). The number/intensity of LiDAR points in each height bin was summed to 
obtain CPD/CIP. The canopy biomass profiles (CBP) were derived during the derivation process of 
canopy bulk density (CBD). CBD is a measurement indicating the distribution of canopy biomass or 
fuel load. It is the dry weight of available canopy fuel per unit canopy volume [17], and it is a bulk 
property of the stand, not an individual tree. Canopy bulk density is derived following the steps [17]: 
(1) calculating the leaf and branch biomass for each tree in the subplot; (2) dividing that biomass 
equally into a 0.5 m bin from the base of the tree crown to the top of tree; (3) calculating the biomass 
contributed by each tree in the subplot for each 0.5 m bin (a vertical profile of biomass is created after 
this step, which we refer to as CBP); and (4) using a running mean to get the maximum value in the 
vertical profile (CBP), whereby the maximum value is selected as CBD. During the quantification of 
CBP, it is assumed that canopy biomass is distributed uniformly in the vertical direction within the tree 
crown [17]. Based on this, the vertical biomass distribution within the subplot or stand is 
approximately calculated by summing the canopy biomass contributed by each tree in each vertical 
bin. However, we have to admit that it is just an approximate way to describe the vertical distribution 
of biomass at the plot level or stand level rather than at the individual tree level. In fact, it is very hard 
or even unfeasible to directly measure the vertical distribution of tree biomass in the field. 

Since height differences occur between LiDAR-derived heights and ground-measured heights, there 
should be height gaps between the CPD/CIP and CBP. Therefore, we limited the pairs for comparison 
to a height difference to 2 m in order to prevent potential errors. Different types of profiles possess 
different magnitudes and units. Before comparing and correlating different pairs of vertical profiles,  
all of the profiles were normalized by dividing the value for each vertical bin by the sum of those for 
all of the bins.  
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In order to correlate the LiDAR-derived profiles with the ground-measured profiles, we chose 
Pearson’s correlation coefficient (R) and the area of overlap index (AOI) to assess the correlation. 
Pearson’s correlation coefficient indicates how well two profiles match. The area of overlap index is 
defined as the fraction of area shared by two profiles, and it has been successfully used to compare the 
waveforms and profile data [5]. 

3. Results and Discussion 

3.1. Individual Tree Identification  

Ground-measured tree X/Y locations and their heights were compared to those delineated by the 
watershed segmentation method, as shown in Figure 4. Trees were matched if the difference between 
the coordinates and the difference between the tree heights were within certain confidence intervals, 
accompanied by visual interpretations. Errors of omission and commission for individual trees 
occurred as in the other studies [14,26,27]. These errors are highly related to the spatial distribution of 
the trees. Omission error is likely to occur when the heights of some trees are below the dominant 
canopy nearby [27]. Another important reason for errors of commission is that the only forest species, 
P. crassifolia, in this study is likely to cluster. In this study, we finally obtained 561 matched trees out 
of 1468 (38.22%) field-measured trees in the super-plot, as shown in Table 2. This ratio (38.22%) was 
higher than the 15.75% (117/743) obtained in [13] and lower than the 48% (84/175) obtained in [26]. 
The statistics of different extracted tree features are shown in Table 3. 

Figure 4. Canopy height model overlaid with tree crown segments derived from watershed 
segmentation: (a) near the super-plot (within yellow boundary); (b) within the super-plot 
together with measured tree tops. 

 
(a) (b) 
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Table 2. Statistics of watershed segmentation results for the 16 subplots in a super-plot. 

Subplot 
Total  

Segments 
Matched Segments Mismatched Segments 

Field  
Measured 

Percentage  
(%) 

1 53 38 15 98 38.78 
2 63 46 17 114 40.35 
3 29 22 7 77 28.57 
4 54 39 15 80 48.75 
5 50 38 12 70 54.29 
6 31 24 7 91 26.37 
7 68 55 13 120 45.83 
8 92 75 17 156 48.08 
9 27 20 7 87 22.99 

10 28 20 8 100 20.00 
11 55 43 12 111 38.74 
12 49 39 10 94 41.49 
13 38 27 11 62 43.55 
14 45 33 12 94 35.11 
15 37 28 9 77 36.36 
16 18 14 4 37 37.84 

Total 737 561 176 1,468 38.22 

Table 3. Statistics of light detection and ranging (LiDAR) extracted tree features matched 
to those from the ground measured trees. 

Statistics\Error X (m) Y (m) H (m) D (m) 
Mean (abs) 0.28 0.30 1.02 0.46 

SD (abs) 0.38 0.41 1.19 0.53 
Number of Trees 561 (38.22%) 

Note: X = error of X-coordinate; Y = error of Y-coordinate; H = error of tree height; D = horizontal distance 
between LiDAR extracted tree and ground-measured tree; Mean = mean of errors; SD = standard deviation of 
errors; abs = absolute value. 

3.2. Correlating Horizontal Variation of Point Clouds with Biomass 

Linear regression models were developed to indicate the correlation between the group of LiDAR 
metrics and the forest components of biomass. The regression models were evaluated using the 
coefficient of determination (R2), root mean squared error (RMSE) and relative root mean squared  
error (rRMSE).  
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where ip  is the observed value and ip
∧

 is the predicted value. The value of RMSE is related to the 

magnitude of the observed variables. Therefore, we also selected rRMSE, a relative value, to compare 
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the performance of different regression models [18]. A lower rRMSE value often indicates a better 
regression performance. We first explored the relationships between the conventional height metrics 
and branch biomass (BB), leaf biomass (LB) and aboveground biomass (AGB) at the individual tree 
level, respectively. Results (Figure 5a–c) show that biomass for each component of individual trees 
initially increases with the increasing mean point heights (Hmean) and is saturated when Hmean continues 
increasing. This means that when the tree height is comparably low, tree height contributes greatly to 
the amount of biomass. Whereas when tree heights reach a certain height, the canopy increases the 
speed of growth in the horizontal direction, which also increases the canopy biomass (branch and leaf). 
Therefore, the horizontal distribution of branches and leaves directly affects the amount of canopy 
biomass. High correlations were found between the new metric (Horizcv) and the biomass components 
with high R2 and low RMSE and rRMSE, as shown in Figure 5 and Table 4. Horizcv and AGB for the 
tree show a good relationship with R2 equal to 0.72, but a higher rRMSE (0.53) than that of BB (0.36) 
and LB (0.40). Specifically, a higher value of Horizcv means more dispersion of the LiDAR points in 
the horizontal XY plane. Since branches and leaves rarely grow in only one direction, a greater 
dispersion probably reflects a wider horizontal distance between the branch and leaf growth and a 
larger weight of canopy components. Combined metrics were developed by combining the horizontal 
metrics (CCI and Horizcv) with the vertical metric (Hmean). Both CCI and Horizcv can give an insight 
into the horizontal distribution of point clouds. Correlations were improved when using the combined 
metrics (Hmean*CCI and Horizcv*CCI) compared to when using the single metric alone, as shown in 
Table 4 and Figure 6a–f. The RMSEs and rRMSEs also decreased. Although improvements for the 
combined metric Horizcv*CCI is smaller than that of Hmean*CCI, the regression models for Horizcv*CCI 
obtained higher R2 and lower RMSEs and rRMSEs. This is due to the high correlation between Horizcv 
and the biomass components. However, no significant improvements were obtained when combining 
Hmean, Horizcv and CCI, as shown in Table 4.  

Table 4. Regression models developed from biomass components and LiDAR metrics at 
the tree level. 

Tree Metrics Regression Equations R2 RMSE rRMSE 

BB 

Hmean y = 0.0054e0.6842x 0.45 9.78 0.97 
CCI y = 45.674x − 5.7033 0.53 8.02 0.81 

Hmean*CCI y = 4.114x − 4.3411 0.59 7.47 0.76 
Horizcv y = 69.523x − 0.3626 0.73 6.11 0.36 

Hmean*Horizcv y = 6.1408x + 0.3972 0.73 6.07 0.59 
Hmean*Horizcv*CCI y = 0.9624x + 3.7116 0.68 6.64 0.67 

LB 

Hmean y = 0.2487e0.3612x 0.45 5.94 0.54 
CCI y = 31.734x + 0.242 0.52 5.26 0.48 

Hmean*CCI y = 2.8721x + 1.1408 0.60 4.82 0.49 
Horizcv y = 43.369x + 4.5629 0.67 4.39 0.40 

Hmean*Horizcv y = 3.8244x + 5.0467 0.67 4.36 0.38 
Hmean*Horizcv*CCI y = 0.6429x + 6.9487 0.63 5.14 0.52 
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Table 4. Cont. 

Tree Metrics Regression Equations R2 RMSE rRMSE 

AGB 

Hmean y = 0.3638e0.5356x 0.45 98.43 0.82 
CCI y = 472.47x − 42.536 0.54 81.81 0.69 

Hmean*CCI y = 42.693x − 28.919 0.61 75.65 0.64 
Horizcv y = 711.61x + 13.855 0.72 63.43 0.53 

Hmean*Horizcv y = 62.835x + 21.663 0.72 62.86 0.50 
Hmean*Horizcv*CCI y = 9.689x + 56.558 0.65 71.07 0.59 

Note: x = independent variable (LiDAR metrics); y = dependent variable (biomass); BB = branch biomass; 
LB = leaf biomass; AGB = aboveground biomass; CCI = canopy cover index; R2 = coefficient of 
determination; RMSE = root mean squared error; rRMSE = relative root mean squared error. 

Figure 5. Scatter plots for biomass components (branch biomass (BB) (a, d, g), leaf 
biomass (LB) (b, e, h) and aboveground biomass (AGB) (c, f, i)) and LiDAR metrics 
(mean height (Hmean) canopy cover index (CCI) and horizontal distribution of point clouds 
(Horizcv)) at the individual tree level. 

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 
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In this study, the accuracy of LiDAR metrics calculated at the tree level highly depends on the 
quality of individual tree delineation. We only selected the crown segments with a high delineation 
quality to clip the point cloud to calculate the metrics at tree level in order to reduce the influence from 
error of tree delineation. Therefore, the LiDAR metrics at tree level were based on the degree of 
quality of the (selected) crown delineation. Based on this, an irregular delineated crown segment 
indicated an irregular canopy shape. Vegetation hits from different parts of the crown segment were 
dispersed, leading to a relatively high coefficient of variation. The more regular the canopy shape, the 
lower the coefficient of variation for the point cloud within the crown segment. 

Figure 6. Scatter plots for biomass components (BB (a, d, g), LB (b, e, h) and AGB  
(c, f, i)) and the combined LiDAR metrics (Hmean*CCI, Hmean*Horizcv and 
Hmean*Horizcv*CCI) at the individual tree level. 

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

  



Forests 2014, 5 1924 
 

By summing the biomass of different forest components for each individual tree, three types of 
biomass (BB, LB and AGB) were calculated at the subplot level. Their relationship with LiDAR 
metrics was explored as shown in Table 5. Results indicate that the mean height (Hmean) shows good 
correlation with the three types of biomass, especially with AGB (R2 = 0.65). The canopy cover index 
(CCI) shows a good relationship with AGB (R2 = 0.60). When considering the product of Hmean and 
CCI as one metric, R2 for the regression model developed from this combined metric and AGB 
improved (R2 = 0.71), and RMSE and rRMSE decreased. This improvement was a consequence of 
taking both horizontal and vertical effects of the forest structure on AGB into account, which, in the 
end, agreed with Ni-Meister’s study [11].  

Table 5. Regression models developed from biomass components and LiDAR metrics at 
the subplot level. 

Subplot Metrics Regression Equations R2 RMSE rRMSE 

BB 

Hmean y = 101.71x − 426.78 0.49 178.86 0.31 
CCI y = 1,188.4x − 411.79 0.35 202.00 0.35 

Hmean*CCI y = 74.479x − 44.884 0.48 179.27 0.32 
Horizcv y = 76.639x +7.0569 0.75 126.17 0.22 

Hmean*Horizcv y = 6.4054x + 95.374 0.84 99.76 0.18 
Hmean*Horizcv*CCI y = 6.4395x + 160.2 0.83 103.42 0.18 

LB 

Hmean y = 70.079x − 62.366 0.42 227.66 0.37 
CCI y = 1,034.2x − 229.79 0.25 223.4 0.36 

Hmean*CCI y = 56.211x + 160.45 0.26 221.39 0.36 
Horizcv y = 84.016x + 7.792 0.84 101.92 0.16 

Hmean*Horizcv y = 6.4469x + 147.11 0.8 114.54 0.18 
Hmean*Horizcv*CCI y = 6.4181x + 216.37 0.78 122.02 0.2 

AGB 

Hmean y = 523.44x − 1,120.8 0.65 665.19 0.17 
CCI y = 6,984.2x − 1,760.1 0.6 709.83 0.18 

Hmean*CCI y = 404.22x + 672.21 0.71 597.16 0.15 
Horizcv y = 238.08x + 2,257.8 0.36 894.31 0.22 

Hmean*Horizcv y = 22.58x + 2,334 0.52 772.42 0.19 
Hmean*Horizcv*CCI y = 24.377x + 2,456.1 0.59 712.3 0.18 

The accumulated Horizcv for the subplot still showed significant correlation with the branch 
biomass and leaf biomass, while not obviously with AGB. The combined metric Hmean*Horizcv even 
improved the performance of the BB prediction model with R2 increasing from 0.75 to 0.84, RMSE 
decreasing from 126.17 to 99.76 and rRMSE decreasing from 0.22 to 0.18. This indicates that the 
horizontal distribution of branches and leaves still greatly affects the canopy biomass (BB, LB) at the 
subplot level. The poor correlation between Horizcv and AGB at the subplot level might be due to the 
following: (1) individual trees were divided into several groups according to the area of extent of each 
subplot (Horizcv for each plot is calculated as the sum of those area extents of the trees within the 
subplot); (2) the total biomass of the whole tree (AGB) not only benefited from the contribution of the 
canopy components (branches and leaves), but also from that of other tree components, such as stock, 
root and fruit; and (3) a vital important structure attribute has been out of discussion when we have 
assessed the effects from the horizontal and vertical structure variations on biomass: the diameter at 
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breast height (DBH). According to the relative growth equation, DBH greatly contributes to the 
estimation of AGB. However, up to now, airborne LiDAR still cannot directly measure the size of 
DBH. Finally, for the calculation of Horizcv, either at the tree level or subplot level, the influence of the 
LiDAR data should be considered, for instance the influence of the LiDAR flight properties, i.e., 
overlapping strips, different flying heights, scan pattern, scan angles, etc.  

3.3. Correlating Vertical Distribution of Point Clouds with Biomass  

Table 6 shows the correlation between two groups of vertical profiles for each subplot in the study 
area. The Pearson’s correlation coefficient (R) values for the correlation between CBP and CPD ranged 
between 0.39 and 0.93 (mean = 0.71, SD = 0.15), and 28 pairs of 35 had values ≥0.6. For pairs of CBP 
and CID, R varied from 0.19 to 0.92 (mean = 0.62, SD = 0.19), and 21 pairs of 35 obtain  
values ≥0.6. On the other hand, AOI values for pairs of CBP and CPD varied from 0.50 to 0.84  
(mean = 0.64, SD = 0.08), and 21 pairs of 35 had values ≥0.6. CIP played a weaker role than CPD: 
only 17 of 35 CBP/CIP pairs had values above 0.6 (mean = 0.61, SD = 0.09). The results of the 
correlations indicate that CBP representing the vertical distribution of biomass is highly correlated 
with the vertical distribution of LiDAR points. It is likely that both CPD and CIP contain the 
information of tree height. For the two LiDAR-derived profiles, CPD performs better than CIP. CPDs 
and CIPs for all of the subplots show very similar curve shapes. The profiles for Subplot S7 are shown 
in Figure 7. The similarity in the curve shapes for all of the subplots is mainly attributed to the similar 
forest structure in this study area. According to the previous studies [28], the Picea crassifolia forest in 
this study area consists primarily of half-mature and mature stands, and the complexity of the canopy 
vertical distribution and the differentiation grade of canopy height were low. In order to increase the 
usefulness of the outcome, the approaches should be tested in different forest conditions in the future. 
The distances between the peaks of CPD (CIP) and CBP for different subplots differ. The height at 
which these two pairs of profiles start to overlap relates to the stem density and the canopy structure of 
the Picea crassifolia in the subplot. Specifically, the higher the stem density, the more LiDAR pulses 
are reflected by the canopy and the more precisely the CPD represents the distribution of the canopy 
components. In addition, when branches and leaves within the canopy clump at a certain height, the 
peak of accumulated biomass for all of the height bins and the peak of the LiDAR point density are 
very likely to overlap around this height. Calculating the vertical biomass profiles is one of the steps to 
calculate the canopy fuel parameter, canopy bulk density (CBD). It is assumed that the canopy biomass 
is distributed uniformly in the vertical direction within the tree crown [17]. Based on this, the vertical 
biomass distribution within the subplot or stand is approximately calculated by summing the canopy 
biomass contributed by each tree in each vertical bin. However, we have to admit that it is just an 
approximate way to describe the vertical distribution of biomass at the plot level or stand level, rather 
than at the individual tree level. According to [17], in fact, canopy fuels have never been measured 
directly. However, we believe that the potential of predicting CBD, especially when using the vertical 
detecting capacity of LiDAR, deserves to be tested. 
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Table 6. Correlation between different pairs of vertical profiles. 

Plot 
Pearson’s Correlation Coefficient (R) Area of Overlap Index (AOI) 
CBP/CPD CBP/CIP CBP/CPD CBP/CIP 

S1 0.67 0.65 0.59 0.59 
S2 0.87 0.86 0.69 0.67 
S3 0.86 0.84 0.66 0.64 
S4 0.82 0.81 0.58 0.58 
S5 0.79 0.58 0.66 0.61 
S6 0.8 0.78 0.57 0.54 
S7 0.91 0.92 0.77 0.77 
S8 0.8 0.74 0.62 0.58 
S9 0.72 0.7 0.68 0.68 
S10 0.83 0.71 0.79 0.77 
S11 0.67 0.66 0.55 0.54 
S12 0.69 0.66 0.57 0.55 
S13 0.78 0.73 0.6 0.58 
S14 0.62 0.56 0.6 0.57 
S15 0.39 0.19 0.59 0.54 
L1 0.77 0.74 0.62 0.6 
L2 0.4 0.31 0.56 0.53 
L3 0.75 0.64 0.72 0.69 
L4 0.76 0.7 0.59 0.56 
L5 0.79 0.58 0.76 0.7 
L6 0.46 0.33 0.56 0.47 
L7 0.84 0.82 0.67 0.66 
L8 0.93 0.91 0.75 0.74 
L9 0.74 0.55 0.62 0.56 
L10 0.88 0.81 0.75 0.71 
L11 0.45 0.27 0.66 0.61 
L12 0.73 0.68 0.56 0.54 
L13 0.49 0.38 0.5 0.45 
L14 0.4 0.32 0.54 0.51 
L15 0.56 0.44 0.58 0.53 
L16 0.71 0.38 0.84 0.77 
L17 0.86 0.81 0.77 0.75 
L18 0.66 0.6 0.65 0.62 
L19 0.73 0.61 0.65 0.62 
L20 0.71 0.6 0.71 0.66 
Mean 0.71 0.62 0.64 0.61 
SD 0.15 0.19 0.08 0.09 

Note: S = subplot in super-plot; L=subplot in line-plot; CPD = canopy point density profile; CBP = canopy 
biomass profile; CIP = canopy intensity profile; Mean = mean of R2 or AOI for all of the plots; SD = standard 
deviation; numbers in bold represent the maximum or minimum values. 
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Figure 7. Vertical profiles for Subplot S7. CBP = canopy biomass profile; CPD = canopy 
point density profile; CIP = canopy intensity profile; normalized crown amplitude means 
the normalized values for CBP, CBD and CIP. 

 

4. Conclusions 

This paper tried to explore the correlation between the distribution of LiDAR point clouds and the 
biomass of different forest components. A new metric (Horizcv) describing the horizontal variation of 
LiDAR points was proposed and proven to be highly correlated with the canopy branch biomass and 
leaf biomass at both the individual tree and the subplot levels. Aboveground biomass (AGB) at the 
subplot level was more strongly correlated with the conventional LiDAR metrics (Hmean, CCI). The 
correlation was improved by combining these two metrics (Hmean*CCI) into one in order to predict the 
biomass components. On the other hand, CPDs and CIPs can be good curves to represent the vertical 
distribution of LiDAR points. Good relationships between the LiDAR-derived profiles (CPD, CIP) and 
the ground-measured-derived biomass profile (CBP) were found. These good correlations can be used 
to predict the vertical distribution of the canopy biomass. If this prediction can be put into practice, a 
new and promising way to obtain canopy bulk density (CBD) will be available, which is of critical 
significance for forest fire management. Above all, this study demonstrates that when we estimate 
forest biomass by using LiDAR metrics, not only the vertical, but also the horizontal distribution of 
LiDAR points should be taken into account. 
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