
Forests 2014, 5, 1999-2015; doi:10.3390/f5081999 
 

forests 
ISSN 1999-4907 

www.mdpi.com/journal/forests 

Article 

Large Area Mapping of Boreal Growing Stock Volume on an 
Annual and Multi-Temporal Level Using PALSAR L-Band 
Backscatter Mosaics 

Sebastian Wilhelm 1,*, Christian Hüttich 2, Mikhail Korets 3 and Christiane Schmullius 2 

1 Earth Observation Services (EOS) Jena GmbH, Jena 07743, Germany 
2 Department of Earth Observation, Friedrich-Schiller-University, Jena 07743, Germany;  

E-Mails: christian.hüttich@uni-jena.de (C.H.); c.schmullius@uni-jena.de (C.S.) 
3 V.N. Sukachev Institute of Forest, Siberian Branch of the Russian Academy of Sciences,  

Krasnoyarsk 660036, Russia; E-Mail: mik@ksc.krasn.ru 

* Author to whom correspondence should be addressed; E-Mail: wilhelm@eos-jena.com;  

Tel.: +49-3641-9-48979; Fax: +49-3641-9-48882. 

Received: 26 March 2014; in revised form: 23 July 2014 / Accepted: 8 August 2014 /  

Published: 20 August 2014  

 

Abstract: The forests of the Russian Taiga can be described as an enormous biomass and 

carbon reservoir. Therefore, they are of utmost importance for the global carbon cycle. 

Large-area forest inventories in these mostly remote regions are associated with logistical 

problems and high financial efforts. Remotely-sensed data from satellite platforms may 

have the capability to provide such huge amounts of information. This study presents an 

application-oriented approach to derive aboveground growing stock volume (GSV) maps 

using the annual large-area L-band backscatter mosaics provided by the Japan Aerospace 

Exploration Agency (JAXA). Furthermore, a multi-temporal map has been created to 

improve GSV estimation accuracy. Based on information from Russian forest inventory 

data, the maps were generated using the machine learning algorithm, RandomForest. The 

results showed the high potential of this method for an operational, large-scale and  

high-resolution biomass estimation over boreal forests. An RMSE from 55.2 to 63.3 m3/ha 

could be obtained for the annual maps. Using the multi-temporal approach, the error could 

be slightly reduced to 54.4 m3/ha. 

Keywords: biomass; growing stock volume; forest; RandomForest; SAR; PALSAR;  

L-band; multi-temporal 
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1. Introduction 

Estimating large-scale forest biomass is a crucial issue for understanding global carbon cycling, as 

well as for monitoring global and regional changes in vegetation due to climate change effects or 

changes in land use and, therefore, also for local forest inventories [1]. The Russian land surface with 

its large forested areas, as well as peat and wetlands contains an enormous biomass reservoir. As 49% 

of Russia is covered with forest, its overall growing stock volume (GSV) plays an important role for 

Russia’s carbon balance and, thus, for the global carbon cycle [2]. 

Due to the large-scale dimensions of the Russian Taiga, it is still very expensive in terms of costs 

and time to establish an area-covering monitoring system for the Siberian forest. Satellite imagery, 

especially radar data, can assist in achieving this task. These data provide a frequent observation method 

for monitoring GSV decrease caused by logging, clear cutting or forest fires and also for detecting forest 

regrowth from afforestation or forest succession processes, e.g., after fires or clear cuts [3,4]. 

In past and recent research, synthetic aperture radar (SAR) has been proven to be capable of 

estimating GSV over boreal and temperate forests [5–8]. Past investigations showed that the wavelength 

of L-band backscatter data (approximate 20 cm) is highly suitable for estimating GSV and changes in 

GSV over boreal forests. The attenuation of the forest canopy in L-band is less than for the shorter  

C- and X-bands. Thus, saturation takes place at a higher biomass level [9,10]. Though the retrieval of 

GSV from a single C-band measurement is generally poor, a multi-temporal combination of several 

GSV estimates can lead to adequate results [11]. 

Basically, the backscatter signal of short wavelengths, like X- and C-band, is mainly determined by 

scattering processes in the upper layers of the trees, such as small branches and upper leafs. For longer 

wavelengths, like L- and P-band, the scattering processes are also affected by the major components of 

trees, such as trunks and larger branches. P-band with its wavelength of approximately 100 cm shows 

the best capabilities for measuring GSV [12]. Since space-borne P-band data are not available at present 

or in the near future, L-band data are of high importance in the estimation of forest GSV, as is 

documented in several publications. Using JERS-1 L-band backscatter, Santoro et al. [13] obtained a 

relative RMSE of 25% when mapping a boreal forest test site in Sweden. An investigation of  

sub-tropical forest vegetation in southern China using polarimetric ALOS PALSAR data led to an 

RMSE of 28.58 t/ha with r2 = 0.9 [14]. Based on the significant correlation between biomass  

and the L-band backscatter signal, several regression models have been published. Using empirical or 

semi-empirical linear regression models, correlation coefficients from 0.66 to 0.78 between measured 

and estimated GSV could be obtained [15–17]. 

As can be seen in several publications, there is a significant correlation between the aboveground 

biomass of woody covered areas and the backscatter signal of L-band SAR data. In general, the 

backscatter signal gains when aboveground biomass increases. This relationship may therefore be 

suitable for estimation and classification of GSV over forested areas [9,13,18,19]. 

This paper gives a combination of a methodological approach and a possible future application 

method for deriving GSV over large areas from operational annual backscatter mosaic products as 

provided by the Japan Aerospace Exploration Agency (JAXA). The aim of this investigation was to 

analyze how capable these mosaics are for large-scale, high-resolution mapping of boreal forests. 
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2. Data 

2.1. SAR Data 

The Japan Aerospace Exploration Agency (JAXA) launched the Advanced Land Observing 

Satellite (ALOS) on the 24 January 2006. It was placed in a polar and sun synchronous orbit  

at an altitude of approximately 700 km with a recurrence cycle of 46 days. Besides the Panchromatic  

Remote-sensing Instrument for Stereo Mapping (PRISM) and the Advanced Visible and Near-Infrared 

Radiometer Type 2 (AVNIR-2), it carried the Phased Array L-band Synthetic Aperture Radar 

(PALSAR), which recorded the imagery used in this study. Until its demise in April 2011, PALSAR 

operated in different modes: Fine Beam Single (FBS), Fine Beam Dual (FBD), Polarimetric (PLR), 

and ScanSAR. This study was carried out by using mosaics recorded in FBD mode, HH and  

HV polarization, where a single swath has a width of 70 km [20]. 

JAXA provides annual mosaics of these L-band SAR backscatter data delivered by the PALSAR 

sensor on ALOS at 25-m spatial resolution. These mosaics were provided through JAXA’s Kyoto and 

Carbon Science initiative [21]. The mosaic algorithm is described in detail by Shimada and  

Ohtaki [22]. It includes SAR long strip processing, ortho-rectification, backscatter correction for slope 

effects and neighboring strip suppression. Since space-borne imagery has the benefit of observing the 

same location with the same spatial resolution in a repetitive way, these mosaics are highly suitable for 

monitoring the annual changes of the Earth’s surface on a regional or even on a global scale. An 

advantage of these operational backscatter products is that they need no further processing. This 

imagery can be used directly for any further processing or mapping without having expert knowledge 

in synthetic aperture radar (SAR) raw data processing and geocoding. To facilitate layer stack 

applications, the images come also co-registered to each other. 

For this study, four dual-pol scenes (HH, HV) have been used for four years from 2007 to 2010. 

The study area is located in the Russian Taiga in central Siberia. Vegetation in that region is dominated 

by coniferous forest. Radar imagery covers an area of about 569,000 km2 that reaches from 92° E  

to 105° E and from 53° N to 60° N, approximately 870 km in longitude and 780 km in latitude, 

between Krasnoyarsk and Irkutsk (Figure 1). 

2.2. Forest Inventory Data 

The data used as training data were available as stand-wise polygon shapefiles from the forest 

inventory (FI), each containing several forest parameters, such as tree-height, stem volume, relative 

stocking and tree-species combination. A stand is the major FI unit in the boreal forests in Russia and 

is delineated by the homogeneity of forested areas. In some cases, a stand’s boundaries can be set by 

aggregating several smaller areas with different forest properties, particularly tree species and stem 

volume. As the forest stand boundaries in Russia are set in a subjective way by human interpretation, 

often based on aerial photos, the delineations of the stands themselves can be seen as possible  

sources of error. Legally, the error in stem volume accuracy of Russian forest inventory should be 

between 12% and 20%. A detailed description of the Russian boreal FI is given in Santoro et al. [7]. 

The geo-location of the five FI sites used for training can be seen in Figure 1. Each of them consists  

of 814 to 2046 forest stands. The area covered by a single stand reaches from 1.85 up to 485.15 ha. 
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Stem volume is the major parameter for this investigation. It is recorded in steps of 5 up to 50 m3/ha 

and in steps of 10 for greater values, and it mainly reaches from 0 to 470 m3/ha with 520 m3/ha as an 

absolute peak value with an average 165 m3/ha among all stands. Besides less frequent aspen, larch 

and spruce, the dominant tree species in the test area are birch, pine and fir, as well as Siberian pine (or 

Pinus sibirica). Data used for validation cover different areas than the training data (Figure 1; see 

Section 4.3 for details). 

Figure 1. Location of the training and validation sites within the area covered by the 

mosaics. Upper left corner: Study area covered by the mosaics in a global context. 

 

3. Methods 

3.1. Random Forest Classifier 

Within this study, we used the RandomForest (RF) classifier, which is a machine learning algorithm. 

It was originally implemented for classifying large statistical datasets. This property enables the RF 

classifier to deal with satellite data covering large areas [23]. Besides the common way of explaining a 

given variable as a function of one or more predictors (e.g., regression models), several other algorithms 

have been developed during recent decades. These machine learning methods have a large application 

field from the prediction to classification of large arrays of data [24–26]. For this investigation, GSV  

maps were derived by using a supervised random forest regression approach. RandomForest is a  

non-parametric machine learning algorithm. It uses random sampling and attribute selection to derive 
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the classification or, as in this study, regression of diverse multidimensional datasets. In general, 

RandomForest works by using an ensemble of many decision trees. This multiple tree-based 

regressions vote for the most likely class based on equally-weighted majority voting. Therefore, one 

third of the training dataset is excluded randomly for training each individual tree. This selection is the 

so-called out-of-bag (OOB) bootstrap sample, which is randomly permuted among the input features 

for each tree. Based on the other 2/3 of the input training data, the trees are grown, each to its 

maximum depth, by using the impurity Gini index [27], which is the result of the antagonism of the 

randomly permuted samples and features. These non-parametric regression tree methods have proven 

their capabilities in a wide range of ecological modeling studies [28–31], as well as in land cover 

mapping projects using optical remote sensing data [32,33]. In the case of SAR, some GSV 

estimations and height modeling has been performed [26,34,35]. 

RandomForest is available as an open source package for the statistic programming software, R [36], 

which has been used for processing the data for this investigation. 

3.2. GSV Modeling 

Reference polygons were reduced in size by applying a 50-m buffer on each polygon. This is done 

to avoid mixed pixel information at clear cut edges or natural forest boundaries. The buffering also 

helps minimize possible location mismatches between the FI and the SAR data. Furthermore, buffering 

can lead to small fragments of polygons. Depending on noise or topographic effects, respectively, it may 

be possible that very small areas in the training data are not representative according to the relationship 

between stem volume and backscatter. Therefore, polygons that cover an area less than 10 pixels 

(approximately 6000 square meters) after buffering were excluded from the training data set. The five 

forest inventory shapefiles (Figure 1) have been combined to one single training shapefile containing 

all polygons (5021 in total). In order to reduce the influences of outdated FI or errors in SAR data (e.g., 

geometric and/or radiometric calibration errors or soil moisture and other weather effects), a threshold 

of two standard deviations was applied on the training data. Models have been generated on individual 

annual mosaics from 2007 to 2010 and on a four-year multi-temporal basis for all datasets available 

within this period. The number of trees was set to 500 for each single model run, which is usually the 

default value. The information for total stem volume on the forest stand level noted in the forest 

inventory polygons has been used for training the models. The training polygons were rasterized 

(transformed into pixels) based on the SAR data containing the information of stem volume in m3/ha. 

All valid pixels with stem volume information within the rasterized training data were extracted. Due 

to the enormous amount of valid pixels, a random sample of 5% of these pixels has been taken for 

training the models, which is still a large number of 56,174 samples. A higher number of samples 

would have led to a tremendous processing time or caused allocation errors while generating the 

models. The models were derived by using a raster stack of a dual-pol imagery for each year and a 

raster stack of all 8 images (4 HV, 4 HH) for the multi-temporal approach as predictors. Applying the 

models on each corresponding raster stack, GSV maps were generated. As the prediction of the 

regression tree model on the SAR data led to float values, the output maps have been rounded to 

integer values for reasons of better operability. 
  



Forests 2014, 5 2004 

 

4. Results 

4.1. Random Forest Performance 

Applying an RF regression and proving its performance for dealing with the high resolution and 

large area covering SAR data was a crucial issue during this investigation. Though the processing in R 

seems to be quite slow (especially when predicting the models on the SAR mosaics), RF in combination 

with the raster R-package gives a labor-saving approach for estimating GSV from large imagery. Note, 

that one single SAR mosaic can be almost 4 GB in size. As regression trees are grown automatically 

based on the features of the input data, there is no need to set training areas, and it is also not necessary 

to figure out the parameters of regression functions manually. This makes RF flexible and time-saving 

when dealing with large datasets. On the other hand, RF works as a black box classifier. Thus, it is 

difficult to retrace the origin of the decision tree structures, as well as to verify and adjust the random 

samples taken by RF by hand. Possible errors in the SAR data or the training data are also taken into 

account. Nevertheless, a large number of trees grown should reduce the overall error while the model 

is trained. As shown in Figure 2, a number of 200 to 300 trees seem to be adequate to reduce the error 

to its minimum. A larger number of trees would be more time consuming without a significant further 

reduction of the mean square error (MSE). While the regression trees were grown, the multi-temporal 

model led to the highest percent value of variance explained (% of variance explained, Table 1), which 

is defined as 1 − (MSE/variance(FI data)). 

Figure 2. Relationship between the number of trees grown and the reduction of the MSE 

during model generation in the case of the multi-temporal RF model. 

 

Table 1. Variance explained by the model. 

Year 2007 2008 2009 2010 Multi-Temporal 

Variance explained 29.83% 32.33% 29.92% 30.14% 46.63% 

In addition to the main issue of this investigation, RF models have been generated using smaller 

subsets of the SAR imagery. For that purpose, the SAR data sets have been clipped to the smallest 

three of the five training datasets (Figure 1), and models have been generated for a different number of 

layers of these SAR data subsets. This was done to verify how RF performs under the condition of a 

varying depth of SAR imagery. One dataset consists of a dual-pol SAR scene. It was found that an 
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increasing number of datasets also increases the percent variance explained (% of variance explained). 

However, the increase of the variance explained is dependent on the number of datasets used, which 

seems to saturate when a larger number of SAR imagery is processed. Using two instead of one SAR 

datasets, the variance explained is increased between 9.29% and 13.13%, whereas an addition of one 

more datasets led to a further increase of approximately 3.3%, and using a fourth dataset increased the 

model accuracies further by only 1.92% to 2.73% (Figure 3). 

Figure 3. The percentage of variance explained for three smaller subsets of SAR data 

under the consideration of an increasing number of datasets. Each dataset consisted of one 

dual-pol scene. Each color represents one test site. 

 

4.2. Mapping Results 

Based on operational large-scale annual PALSAR mosaics, four annual and one multi-temporal 

GSV maps were derived with a spatial resolution of 25 m. Each of them contains RF regression  

results of GSV expressed in m3/ha. Figure 4 gives an overview and a zoomed-in detailed view of the 

multi-temporal map. As can be seen in detail, forest structures are well identifiable, e.g., dense forest, 

sparse forest, clear-cuts or non-vegetated river beds and creeks. The range of the derived GSV for each 

map is shown in Table 2. It should be noted that these maximum values are absolute peaks within the 

generated maps. Figure 5 shows a comparison between the 2007 GSV map and the multi-temporal 

map. It can be seen that the multi-temporal map shows a less noisy structure than the one-year map 

(derived by only one dual-pol scene). Furthermore, the distinction of dense forest, sparse forest,  

non-forested areas and clear cuts is clearer in the multi-temporal mapping result. This is caused by the 

fact that the noise effects are reduced when applying RF on a higher amount of variables; in this case, 

multi-temporal recorded pixels. 

Examining the results by a simple visual interpretation, the annual maps of 2007, 2008 and 2009 

showed no significant difference in detail. In comparison to the other three annual maps, the  

mapping result of the annual 2010 dataset showed an obviously strongly underestimated GSV in the 

southwestern area of the mosaic. This effect may be caused by radiometric calibration errors when the 

mosaics were generated (Figure 6, see the Discussion for details). 
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Figure 4. Growing stock volume (GSV) mapping result of the multi-temporal approach 

highlighting a subset of a heterogeneous forested area, including dense forest, sparse forest 

and clear cuts (clearly identifiable by their unnatural geometric shape). 

 

Table 2. Range of the derived GSV. 

Year 2007 2008 2009 2010 Multi-Temporal 

Range 0–412 0–401 0–408 0–421 0–409 

Figure 5. Detailed comparison of the mapping results for the 2007 map (a) and the  

multi-temporal result (b). 

 
(a) (b) 
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Figure 6. Detailed examples of the annual maps (southwestern area). (a) 2007; (b) 2008;  

(c) 2009; (d) 2010. 

 

Using the variable importance of RF, HV polarization could be identified as more important for the 

classification results than HH for all cases. Variable importance is a concept of RF, which estimates 

the importance of a variable (in this case, either HV or HH backscatter values). In general, this is done 

by permuting the out-of-bag data for that variable while the others are left unchanged. RF then 

calculates how much the error increases (see Section 3.1). The fact that HV usually shows a stronger 

correlation to forest biomass than HH has been proven in several former investigations, e.g., [37,38]. 

4.3. Validation 

The generated GSV maps have been validated by the Sukachev Institute of Forest, Siberian Branch 

of the Russian Academy Of Sciences (SB RAS) located in Krasnoyarsk, Russia, Siberia. SAR-derived 

GSV estimates were compared to elementary forest inventory polygons (FIP), which contain 

information about land cover type, stand species composition, density, age, height, tree diameter and 

GSV per species in m3/ha. The total GSV for all species in the FIP has been used for validating the 

SAR-based GSV. Statistical parameters (mean and standard deviation) were calculated for each FIP 

based on the SAR-GSV pixel values after the polygons have been rasterized. The comparison statistics 

were evaluated for four annual maps and the multi-temporal GSV map using per species and total 

averaging. The local validation sites were grouped into three areas (Figure 2, Table 3). 
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Table 3. Validation test sites. 

Site number Site Name (FMA Name) Area, ha FIP Number Region 

1 Kazachinskoe and Bolshemurtinskoe 903,573 47,962 Krasnoyarsk kray
2 Abanskoe and Dolgomostovskoe 698,479 41,241 Krasnoyarsk kray
3 Padunskoe 366,696 22,318 Irkutsk oblast 

Total for all test sites 1,968,748 111,521 

The overall statistics of the validation are gathered in Table 4. While the results of the first  

three maps are consistent in comparison to each other, the map of 2010 shows weaker results. In 

comparison to the other maps, the 2010 map contains a stronger underestimation of the GSV. The 

greatest underestimated GSV (Emin) of this map dropped to −285.8 m3/ha, which is 20.9 less than in 

the worst case of the other images. Furthermore, the mean difference between FIP and SAR pixel 

values (ME) shows the weakest result in the 2010 map (−14.6 m3/ha). The accuracy of the generated 

GSV maps was measured by the root mean square error (RMSE). In the case of the maps for the years 

2007, 2008 and 2009, an RMSE between 55.2 and 57.9 m3/ha could be obtained, while the result of 

2010 showed a higher error of 63.3 m3/ha. The multi-temporal approach, where we used the datasets of 

all four years, led to a lower RMSE of 54.4 m3/ha. 

Table 4. Validation results, overall statistics of SAR and forest inventory (FI)-based GSV  

comparison (m3/ha). 

Label Characteristics 2007 2008 2009 2010 Multi-Temporal

Emin ∆ GSVmin −259.1 −249.6 −264.9 −285.8 −247.9 
Emax ∆ GSVmax 202.5 216.5 217.6 208 221.2 
ME Mean ∆ GSV (SAR-FI) −1.3 1.4 6.3 −14.6 3.7 
SD ∆ GSV SD 55.3 55.2 57.6 61.6 54.3 

RMSE Root Mean Square Error 55.3 55.2 57.9 63.3 54.4 

Figure 7 shows a comparison of the spatial distribution of the GSV differences between SAR-derived 

GSV and FI data for the annual mapping results of one validation test site. Though the first three 

images differ slightly from each other, they basically show a certain similarity with regions of GSV 

overestimation in the northeastern part of Kazachinskoe and in some areas of Bolshemurtinskoe, which 

are strongly dominated by fir and birch. In dense aspen- and birch-dominated forest stands,  

the GSV is often underestimated, as can be seen in the eastern part of Bolshemurtinskoe. Nevertheless, 

most areas show smaller GSV differences between −40 and +40 m3/ha, displayed in light-blue,  

light-green and yellow colors. For the 2010 mapping result, an area in the western part of 

Bolshemurtinskoe shows a strong GSV underestimation, which leads to an increase of the overall RMSE, 

as mentioned above. This effect is caused by radiometric calibration errors in this part of the 

backscatter mosaic, leading to lower dB values in this region (see the Discussion for details). 

The species-dependent statistics show that areas where Siberian pine is the dominant species have 

the weakest accuracy, with an RMSE of 74.4 m3/ha. In these regions, the GSV is often also strongly 

underestimated. The best result could be obtained over larch-dominated areas showing an RMSE  

of 45.3 m3/ha (Table 5). 
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Figure 7. GSV difference between SAR-derived and FI GSV for the validation sites, 

Kazachinskoe and Bolshemurtinskoe. (a) 2007; (b) 2008; (c) 2009; (d) 2010. 

(a) 2007 (b) 2008 

(c) 2009 (d) 2010 

Table 5. Validation results, species-dependent statistics of the SAR and FI-based GSV 

comparison (m3/ha) for the multi-temporal approach. 

Dominant tree species Emin Emax ME SD RMSE

Aspen −184.3 210.7 −5.9 56.3 56.6 
Birch −170.0 186.7 21.1 46.5 51.1 

Fir −270.0 221.2 29.2 72.0 72.1 
Larch −171.1 131.2 −3.4 45.2 45.3 
Pine −247.9 193.6 −16.9 58.0 60.4 

Siberian Pine −310.0 209.0 −39.1 63.3 74.4 
Spruce −260.0 219.5 9.9 51.4 52.4 
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5. Discussion 

Considering the fact that this method represents a comparatively user-friendly and time-saving 

black box classifier for estimating GSV, the results of this study are basically of good quality when 

compared to other investigation results [13,39–41]. These studies used high-resolution L-band 

backscatter for GSV estimation over boreal and temperate forests, as well. They led to similar or even 

worse results, showing root mean square errors in GSV estimation between 36 and 102 m3/ha. 

When GSV is estimated by using radar backscatter data, one main issue and well known problem is 

that saturation takes place at a certain point when the GSV increases. For L-band data over boreal and 

temperate forests, saturation levels of approximately 140 to 300 m3/ha can be expected [12,16,40]. Hence, 

the deviation between estimated and validation GSV becomes larger over areas covered by dense forests. 

This fact leads to an underestimation of the GSV over such regions and, thus, influences the overall error. 

As can be seen in Figure 7, there are areas in the eastern part of Bolshemurtinskoe that show a strongly 

underestimated GSV. Here, the ground truth GSV reaches from 300 up to at least 400 m3/ha, which leads 

to the abovementioned underestimation caused by signal saturation. Carreiras et al. [26] showed that in 

regions with a generally lower biomass, higher accuracies could be obtained using L-band backscatter, as 

saturation did not take place during their investigation in African savannas. 

The quality and accuracy of the mapping results may also be affected by different moisture 

conditions at different image acquisition times. As the mosaics are created by individual images or 

strips, weather effects can lead to different moisture conditions within one mosaic in both, vegetation 

water content and soil moisture. This is likely to have an influence on the backscatter behavior of the  

surface [19,42,43]. Seasonal dynamics according to frozen/unfrozen conditions could also affect the 

characteristics of SAR data [44]. However, the mosaics consist of data recorded in summer from May 

to September. An influence of these dynamics is therefore not impossible, but unlikely. In the first 

instance, different weather and moisture conditions may be responsible for the weak mapping results in 

the western part of Bolshemurtinskoe based on the 2010 dataset. Radiometric calibration errors in this 

region could lead to lower dB values in comparison to the remaining parts of these mosaics. This can 

cause the strong GSV underestimation determined in that area. The 2010 data was also included in the 

multi-temporal approach, which showed slightly better results than any other annual GSV map. 

However, depending on the weak quality of some regions in the 2010 mosaic, it has to be expected that 

the 2010 dataset worsens the validation result of the multi-temporal map. However, excluding the 2010 

dataset from the creation of a multi-temporal RF model, no significant improvement could be obtained. 

Besides seasonal dynamics and moisture conditions, other factors can affect the SAR-based GSV 

estimation. For small GSV values, an uneven forest floor would increase the backscatter signal and 

lead to an overestimated GSV. Further influences can be the forest structure, the vegetation type or 

other biophysical parameters [13,45]. Considering tree species during this investigation, Siberian pine, 

pine and fir showed higher RMSE than other tree types, which reduces the overall accuracy. 

6. Conclusions and Outlook 

For this study, large-scale PALSAR backscatter mosaics with a spatial resolution of 25 m have been 

examined for their capabilities of mapping GSV over boreal forest in Siberia. This was done for 
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getting information about the potential of these annual mosaics to derive GSV operationally for  

forest and biomass monitoring. Another goal of this investigation was to increase the accuracy of the 

GSV estimation by using a multi-temporal approach. Based on FI data and using the backscatter 

mosaics as predictors, we used a machine learning algorithm, which is implemented in the R package 

RF, to predict the GSV for the whole area covered by the mosaics. 

This study can be seen as an approach to derive GSV estimations over boreal forests in an operational 

way for large areas focusing on regional and (for possible future investigations) on global scale biomass 

estimates and biomass monitoring systems, since the mosaics are available annually. For processing 

the data, the RF package in combination with the Raster package for the statistical programming 

language, R, has been used. Though the raster processing in R, in comparison to commercial products, 

seems to be quite slow, the classification/regression results show good quality in comparison to other 

studies, as mentioned above. Furthermore, the performance of the open source software, R, was more 

than sufficient for the purposes of this study, especially considering that R comes free of charge. 

Applying the automated classification method provided by RF on large raster datasets, the results are 

consistent for each model run and, thus, comparable to each other, which is a fundamental requirement 

for monitoring changes in vegetation and land cover during possible future investigations (e.g., fires, 

clear cuts, regrowth, forest successions). 

In addition, RF can easily be used for deriving multi-temporal GSV estimations, which probably 

show an increased accuracy. 

The potential of large area-covering PALSAR dual-pol backscatter mosaics has also been verified 

by De Grandi et al. [46]. They presented a number of potential applications for a mosaic covering the 

whole African continent, highlighting the mapping of mangroves, plantations, secondary forest and the 

boundary between savannas and forest, as well as detecting changes in vegetation cover. Based on this 

potential of the mosaics, possible future investigations should consider further biophysical parameters 

besides GSV for mapping and monitoring boreal forest, e.g., forest structure, tree species, tree height. 

It should be noted that a further possibility to improve forest-related work based on SAR data can 

be seen in interferometry, which refers to the measurements of the difference in phase observed when a 

target is measured at different times or from slightly different locations [47]. In that way, interferometric 

coherence can be derived, which is also sensitive to forest biomass and other biophysical parameters, 

as has been demonstrated in several publications [1,3,7,48,49]. 

A new generation of SAR satellite (ALOS-2) is expected to be launched in 2014 and will continue 

the L-band SAR observations of ALOS PALSAR. Data of ALOS-2 will come with a higher spatial 

resolution in single, dual and full polarimetry [50]. This will make them highly suitable for forest 

investigations and for continuing past work based on ALOS PALSAR data. 
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