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Abstract: Research activities combining lidar and radar remote sensing have increased in 
recent years. The main focus in combining lidar-radar forest remote sensing has been on the 
retrieval of the aboveground biomass (AGB), which is a primary variable related to carbon 
cycle in land ecosystems, and has therefore been identified as an essential climate variable. 
In this review, we summarize the studies combining lidar and radar in estimating forest AGB. 
We discuss the complementary use of lidar and radar according to the relevance of the added 
value. The most promising prospects for combining lidar and radar data are in the use of 
lidar-derived ground elevations for improving large-area biomass estimates from radar,  
and in upscaling of lidar-based AGB data across large areas covered by spaceborne  
radar missions. 
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1. Introduction 

1.1. Background 

One of the key research topics in environmental and biospheric research is the cyclic flow of carbon 
on both local and global scales. As forests are one of the major carbon sinks in the global ecosystem, the 
aboveground biomass (AGB) is a primary variable related to the amount of carbon flowing in the cycle. 
Therefore, more accurate AGB estimations are needed to understand the carbon cycle in forest 
ecosystems [1–3]. Spatially explicit measurement of global biomass also supports the Reduction of 
Emissions due to Deforestation and Forest Degradation (REDD) mechanism and the international effort 
to reduce anthropogenic greenhouse gas emissions [4–7]. 

The main challenges in mapping AGB and its spatial distribution are the scarcity of field data and the 
limited resolution of remote measurements [8]. There is a gap between global and regional sampling of 
canopy height, which is a challenge for detailed AGB modelling. Extensive research is still needed for 
upscaling accurate local canopy height information across large-areas. The current allometric biomass 
equations are based on representative sampling, i.e., laborious field measurements, which are destructive 
and hard to obtain. Therefore it is difficult to acquire a representative sample, particularly for large areas. 
New and improved methods are called for, to fill this gap between regional and global information  
(cf. [5]). 

1.2. Lidar Remote Sensing 

Airborne Laser Scanning (ALS) comprises a light detection and ranging (lidar) instrument mounted 
on an airplane platform. ALS is an active remote sensing system based on monochromatic, pulsed lasers, 
Global Positioning System (GPS), and an Inertial Measurement Unit (IMU). Lidar instruments use the 
time-of-flight measurement principle to measure the distance to an object. With the known position of 
the sensor and the precise orientation of these range measurements between the sensor and a reflecting 
object, the three-dimensional position of an object is defined. 

The instruments used for ALS-based forest AGB inventory purposes typically emit very short  
(3–10 ns), narrow beam width (0.15–2.0 mrad), infrared (0.80–1.55 μm) laser pulses at near-nadir 
incidence angles (<30°) with high pulse repetition frequencies (50–200 kHz). When operated at flying 
altitudes of around 500–3000 m, ALS sensors generate a dense sample pattern (0.5–20 pulses/m2) with 
a small footprint (<1 m) on the ground. 

When a laser pulse hits the forest canopy, it can produce one or more returns. In the simplest case, a 
laser pulse scatters directly from the top of the dense forest canopy or from the ground, resulting in a 
single return. Since the forest canopy is not a solid surface and there are gaps in the canopy cover, the 
situation becomes more complex when a laser pulse passes through the top of the canopy and interacts 
with different parts of the canopy, such as the trunk, branches, and leaves, before reaching the ground. 
This series of events may result in multiple returns being recorded for a single laser pulse. Some systems 
record the full waveform of the reflected laser pulse as well [9–11]. The first returns are mainly assumed 
to come from the top of the canopy and the last returns mainly from the ground, which is important for 
extracting the terrain surface. 
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The trunks, branches, and leaves in dense vegetation tend to cause multiple scattering or absorption of 
the emitted laser energy so that fewer backscattered returns are reflected directly from the ground [12]. 
This effect increases when the canopy closure, canopy depth, and structure complexity increase because 
the laser pulse is greatly obscured by the canopy. In practice, the laser system specification and 
configurations also play an important role in how the laser pulse interacts with the forest. 

ALS is currently a well-established operational method for the collection of high-resolution digital 
elevation models (DEM) [13–17]. ALS and the data interpretation algorithms have been developed and 
applied in environmental studies for more than two decades, while the number of applications has 
increased. Reviews on using ALS in forest inventory and AGB mapping have been provided  
in [7,18–21]. Spaceborne lidar have been used in the broad-scale inventory of boreal [22–24] and  
tropical [25] forest structures, and to provide vertical profiles of the canopy foliage [26]. An important 
spaceborne lidar is the Geoscience Laser Altimetry System (GLAS) on board NASA’s ICESat (Ice, 
Cloud, and land Elevation Satellite), which provides individual footprints at a separation distance of  
165 m. GLAS has produced data for a large number of studies in recent years (e.g., [22,25–27]). 

1.3. Synthetic Aperture Radar 

Synthetic Aperture Radar (SAR) is an imaging radar operating at the microwave region of the 
electromagnetic spectrum. The main benefit of SAR is its ability to acquire data through clouds. 
Therefore it is a valuable instrument for earth observation from satellites. SAR imaging has been 
available in remote sensing since 1951 [28], and its applications cover a wide range in mapping and 
monitoring of natural resources. SAR data are available internationally from a large number of satellites 
with different frequency bands, polarizations, and variable imaging geometries [29]. Spaceborne SAR 
systems are pulse-based radars: a pulse of microwave radiation is transmitted and echoes returning from 
the target area are received. In principle, SAR signal data processed as a 2D image contains the following 
information per resolution cell: (1) intensity of the backscattered signal; (2) phase of the received 
radiation, which is relative to the range between the SAR antenna; and (3) the range from the antenna to 
the resolution cell. The main advantage of spaceborne SAR compared to optical imagery and ALS is the 
temporal frequency of imaging (see also [30–32]). Another current advantage of SAR over lidar is the 
global coverage provided by spaceborne instruments. 

One of the main characteristics of a SAR system is the frequency band it operates on. The operating 
frequency of the radar is inversely proportional to the size of the microwave wavelength, and there are five 
common wavelengths available for scientific research. These are: X- (~3 cm), C- (~6 cm),  
S- (~15 cm), L- (~24 cm), and P-band (~69 cm) systems. A P-band (~69 cm) SAR imaging system called 
Biomass is also planned by the European Space Agency, foreseen to be launched by 2020. Excluding the 
effects of forest structure and other environmental conditions, different wavelengths have different 
penetration depths, such that the X-band echoes would predominantly come from tree leaves in a  
forest area, while the L- and P-band systems will reach further below, potentially reflecting back from  
the ground. 

Forest 3D information can also be obtained using SAR. Phase information is used in InSAR data 
(interferometric synthetic aperture radar) to extract coherence maps and 3D information [33,34]. 
However, in forests, changes in the target area (e.g., those caused by wind) cause temporal decorrelation 
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between the images and reduce the quality of the interferogram. In 2000, the Shuttle radar topography 
mission (SRTM) [35] provided simultaneous InSAR data that was mainly used for global elevation 
modelling. Currently, simultaneous InSAR data are available from the TanDEM-X system [36]. 
Polarimetric Interferometric SAR (PolInSAR) is an extension of SAR interferometry, which is sensitive 
to shape, orientation, and dielectric properties of the scattering target, and can be used to create detailed 
information of the forest structure [37]. In addition to TanDEM-X, airborne sensors such as DBSAR, 
UAVSAR, and E-SAR have generated imagery for PolInSAR analysis over forested areas [38]. In the 
past few years, radargrammetry has gained increasing interest, thanks to the high spatial resolution 
(down to 1 m) and the high geolocation accuracy of modern SAR satellite systems [39,40]. Measurement 
accuracies below 10 cm have been obtained once the effect of known error sources has been removed. 
Radargrammetry is analogous to photogrammetric stereoscopic measurement: it is an alternative way to 
extract 3D data from SAR images besides InSAR processing [41]. 

1.4. This Review 

An extensive review on the status and future of lidar, SAR, and other remote sensing methods  
for forest AGB can be found in [32]. Interferometric (InSAR) vegetation measurements are reviewed  
in [42]. 

Lidar-radar synergy is a topic of increasing interest and activity. Lidar-SAR integration approaches  
and using lidar data for improved interpretation of SAR data have been previously reviewed in [43].  
In this review, we summarize the combined use of lidar and SAR in forest AGB detection and discuss 
different aspects on the combined use of lidar and radar. In the reviewed research, the AGB or AGB related 
parameters are predicted typically at the resolution varying from 100–1300 m2 (cf. [44]). The results are 
validated at the prediction resolution or at the stand level varying from 0.5–15 ha. The validation resolution 
should be taken into account when comparing results between the studies (see Section 3). 

The paper is organized as follows: we begin with an overview of lidar and radar in the remote sensing 
of forest AGB (Section 2). Joint lidar-radar studies in retrieving AGB and related forest parameters have 
been reviewed in Section 3, and the added value of the combined approach is discussed in Section 4, 
followed by a conclusion in Section 5. 

2. Overview of Lidar and Radar in Forest Remote Sensing 

2.1. Retrieval of AGB Using Area-Based Approach 

Remote sensing can be utilized for obtaining forest-related information at several levels. It can be 
carried out for purposes related to single trees, sample plots of varying size and shape, forest 
compartments or stands, and larger forested areas. Traditionally, remote sensing has been utilized in both 
stand-wise field inventories (SWFI) and sampling-based plot inventories to aid or enable map 
production. Most recently, lidar technology also enables measurements at the tree level.  

Both lidar and radar signals are sensitive to the vertical structure of vegetation and other parameters that 
are crucial for monitoring forest ecosystems [45]. Lidar and radar instruments have been used extensively 
in the detection of AGB, canopy structure, and height (see Figures 1 and 2 for an example). The most 
used method to estimate AGB using lidar or SAR is the area-based approach (ABA), in which lidar or 
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SAR data is used in deriving predictors that are then used as independent variables in models developed 
using co-located field plot measurements. The prediction resolution usually varies between 100–900 m2. 
Several techniques have been used to build predictive area-based AGB models, including parametric 
multiple linear regression and non-parametric nearest neighbor estimation techniques.  

 

Figure 1. Aboveground biomass (AGB) estimation with lidar using area based approach in 
Evo, southern Finland. 

 

Figure 2. The airborne laser scanning (ALS)-based digital terrain model (DTM) of the Evo 
area (cf. Figure 1) was subtracted from a digital surface model (DSM) derived from  
Tandem-X interferometric synthetic aperture radar (SAR) pair (29 June 2013) to get an 
InSAR canopy height model (CHM) (www.dlr.de). 
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2.2. Predictors (ALS, Profiling Lidar, Radar) 

Airborne laser scanning produces a georeferenced point cloud, from which it is possible to calculate 
Digital Terrain Models (DTM), Digital Surface Models (DSM) corresponding to tree tops (Figure 3), 
and 3D models of an object (e.g., Canopy Height Model CHM, normalized DSM), which are the main 
products of laser-assisted forest measurements [46]. The resolution of the above mentioned products is 
usually between 0.5 m and 2 m. However, in ABA, the metrics derived from the normalized point cloud 
(i.e., point height are heights above the ground level) are mainly used as predictors, because they describe 
the whole structural variation in the canopy [46]. 

 

Figure 3. Examples of lidar DTM (left) and DSM (right). 

Spaceborne lidars (such as ICESat GLAS) can provide accurate vegetation metrics (such as canopy 
height) from extensive areas [47,48]. However, the large footprint size (65 m for GLAS in [47]) of the 
spaceborne lidar affects the accuracy of results. Comparison of ICESat GLAS and ALS DTM accuracy 
is provided in [47], where an underestimation of about 2 m was found for GLAS. Especially, the accuracy 
of tree height estimates from GLAS decreased with increasing mean slope. Large errors were observed 
for spaceborne lidar by [24]: the errors began to approach 50% of ground reference AGB only above  
70 Mg/ha, i.e., characterizing differences in AGB was found to be difficult with current spaceborne 
sensors below 80 Mg/ha with less than 50%–100% error. 

SAR produces a complex valued image of the target. A pixel of a SAR image contains information 
on radar backscattering intensity, phase of the backscattered signal, and range measurement based on 
the time of flight information of the radar pulse. The relation of SAR intensity to forest AGB has been 
comprehensively discussed in [49]. There is a correlation between intensity and biomass, which strongly 
depends on the radar frequency. However, the main challenge is saturation, i.e., higher AGB volumes 
than the saturation level cannot be observed from the intensity data. 

Interferometric coherence is obtained by calculating the cross-correlation coefficient between  
two complex SAR images using a moving window [33]. Relationship between the interferometric 
coherence and forest height was reported in [50]. It is necessary that the conditions do not change 
significantly between the image acquisitions, as in the case with simultaneous bistatic measurements 
provided by SRTM (Shuttle Radar Topography Mission) and TanDEM-X missions. Frozen winter 
conditions have been found suitable in boreal forests [51]. 

Height information is available from SAR imagery using radargrammetry or interferometry. In SAR 
interferometry, the phase difference of two complex SAR images (interferogram) is calculated.  
The phase differences can be converted to height differences to form a DSM [33,34]. For high quality 
DSMs, good coherence between the images is needed. Radargrammetry is based on stereoscopic 
measurement of SAR intensity images [52]. A suitable intersection angle between the images and similar 
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conditions in both images are needed. In interferometry, the DSM height measured depends on the radar 
wavelength. If a DTM (or dual-wavelength SAR data) is available, heights above ground can be derived 
and used as predictors in AGB estimation. 

2.3. ABA (Area-Based Approach) Estimation of AGB Using ALS and SAR 

Area-based approach using ALS-derived predictors produces reliable estimates of AGB at the plot or 
stand level (e.g., [18,53–55]). ABA with lidar data have been used to estimate AGB at the detailed 
resolutions (~300 m2). Canopy-based quantile estimators were applied in [56] to the estimation of AGB 
in an uneven-aged, hardwood forest. The results provided initial support for using lidar in AGB 
estimation with the coefficient of determinations being greater than 0.80. In [57], ALS was found capable 
of predicting biomass also in young forest stands (0.5 ha) with an RMSE of 20%–30% of the mean 
ground value. AGB models using small-footprint discrete and full-waveform airborne lidar metrics 
performed well across the different subtropical forest types [58]. In boreal forest conditions, the  
RMSE-% of ABA have varied from 17.5% to 32% with ALS data [55,59–61]. 

In most radar (SAR) applications, forest parameters are retrieved from the amplitude information  
in SAR backscatter (e.g., [62] and references therein), SAR interferometry, such as the SRTM [45],  
TanDEM-X [63], interferometric coherence [64], and polarimetric SAR interferometry (PolInSAR) in 
L- and P-band [37,65]. Using SAR intensity data, good results for forest AGB estimation have been 
obtained using a C-band sensor (~5.6 cm) [30]. Due to saturation, forest AGB estimation using X-band 
(~3 cm) radar intensity (stand level RMSE 56%) has not been as accurate as that obtained with lidar data 
(RMSE 36%) [31]. The saturation with L-band radar systems is around 100–250 Mg/ha, depending on 
the forest characteristics. The P-band radar systems should be able to measure biomass values well above 
300 Mg·ha [66–68]. In [31], an RMSE accuracy of 56% was achieved at a resolution of 200 m2 using 
TerraSAR-X intensity data. In [64], the relative RMSE of volume retrieval from single coherence images 
varied between 15% and 108% (stand level), while an RSME of 34% was achieved in multitemporal 
combination plot-level. 

Forest parameter retrieval (including AGB) from SAR data has been previously reviewed in 
numerous papers: a summary of different approaches (based on backscatter, coherence, and phase) to 
using SAR in forest parameter estimation is provided in [62]. A review of forest biomass detection with 
InSAR is provided in [1,32], which provide an extensive review on the status and future of SAR for 
forest AGB, and InSAR vegetation measurements are reviewed in [42]. There is also a summary of  
lidar-SAR integration approaches in [43]. 

3. Combining Lidar and Radar 

The combined lidar-radar activities in the detection of forest AGB are summarized in Table 1.  
In some studies, clear improvement resulted from combined use of lidar and SAR, whereas in others, 
little or no improvement from data fusion was observed. However, these studies also acknowledged the 
potential of using lidar as a sampling tool for regional-scale AGB estimation [42]. 
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Table 1. Summary of studies of combined use of lidar and synthetic aperture radar (SAR) in biomass estimation. Abbreviations: above-ground 
biomass (AGB), digital terrain model (DTM), digital surface model (DSM), root mean square error (RMSE), airborne laser scanning (ALS). 

Activity Application SAR Description Results Accuracy References 

Combined 
lidar/SAR data: 
joint use of SAR  

and lidar in  
biomass models. 

SAR data combined 
with lidar 

DTM/DSM 

AGB in tropical forests L-band polarimetric SAR imagery 100 m resolution AGB map ±25% uncertainty [25] 
AGB & canopy height in 

temperate forests 
ALOS PALSAR polarimetry / 
interferometry (C- & L-band) 

Adding SAR variables improves the 
lidar-based AGB estimation 

RMSE is down to 7.1%–11.7% [69] 

AGB in temperate forests 
BioSAR cross-sections  

(80–120 MHz) 
Tree height from lidar data improves 

the AGB estimation 
R2 = 0.80, RMSE = 21.3 t/ha (profiling) and 

R2 = 0.76, RMSE = 24.2 t/ha (scanning) 
[2] 

Forest height prediction 
with statistical fusion 

C-band SRTM InSAR scattering 
phase center 

Stand heights with tree  
height from LVIS 

R2 = 0.71, RMSE = 4.4 m (13% error) [45] 

Stereo radargrammetry & 
image pairs in boreal forests 

TanDEM-X DSM [70], Terra-SAR-X 
image pairs in 1m resolution [59] 

More accurate large-area  
AGB using lidar DTM 

RMSE = 57 m3/ha (plot level) and 25 m3/ha 
(stand level) [70]. RMSE = 41.3 t/ha [59] 

[59,70] 

Data fusion: limited 
or no improve-ment 

from lidar/radar  
data fusion. 

Forest inventory in the 
boreal forest zone 

TerraSAR-X  
images 

No improvement  
compared to lidar alone 

30% error level resembling  
manual inventories 

[31] 

Stand level AGB + canopy 
height (US pine forests) 

X- and P- band SAR cross-sections 
Insignificant improvement  

compared to lidar alone 

RMSE: 33.9 t/ha with lidar to 32.7 t/ha 
combined [42], 26.0 t/ha to 24.9 t/ha  

(with lidar canopy height) [71] 
[42,71] 

Stand level AGB in Sierra 
Nevada mixed forest 

X-band inter-ferometric phase  
center & 10 m reso-lution lidar DEM 

Lidar is the best sensor, addition of 
SAR → marginal or no improvement 

RMSE = 75.3Mg/ha with lidar alone and 
with lidar + InSAR, related to  

field-measured biomass 
[72] 

Upscaling: using 
lidar and field  

data as reference 

Norway spruce &  
pine AGB 

X-band InSAR 
ALS DEM improved  

the AGB accuracy 
RMSE = 24 t/ha (spruce), 17t/ha (pine) [1] 

Northern hard-wood forests L-band polarimetric SAR imagery 
20 m resolution ex-tended  

to large areas 
AGB with RMSE down to 203.9 Mg /ha [6] 

AGB mapping in boreal 
hard-wood forests 

L-band polarimetric SAR imagery & 
passive optical image combinations 

Accurate large-area AGB maps, lidar 
combined with SAR & optical images 

Reduced errors 12%–38% (11–28 Mg/ha)  
from those where lidar is used with SAR  

or optical alone 
[73] 

AGB mapping in boreal 
hard-wood forests 

C-band polarimetric SAR imagery 
Accurate large-area AGB  
maps with LVIS & SAR 

AGB within 10% of the reference (lidar) 
biomass map (RMSE 31.33 Mg/ha) 

[74] 

AGB in tropical forests X- and L-band SAR backscatter Accurate large-area AGB maps R2 = 0.53, RMSE = 79 t/ha [4] 
Plot-level bio-mass in (sub) 
tropical man-grove forests 

C-band SRTM interferometry  
(90 m resolution) & ICES at GLAS 

Extending lidar-based height/structure 
data, estimation of biomass loss 

SRTM canopy height bias (−1.3 m) and 
estimation error (RMS = 1.9 m) 

[75] 
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3.1. AGB Estimation from Combined Lidar and SAR Data 

Accurate canopy height information from lidar data has been found to improve the AGB estimation 
in [2,69]. Models from fused data have been found useful for forest stand height characterization [45]. 
From the canopy height maps, AGB and carbon pools can be estimated using allometric  
equations [22,45,54,55,62,76]. Therefore, canopy height is an important parameter in AGB estimations 
if AGB is not directly predicted. The stem volume, also called the growing stock volume, is also an 
important AGB predictor (e.g., [30]). In boreal forest, ~80% of the AGB is located in tree stems [55] 
and most often the stem volume can be converted to AGB using biomass expansion factors [77]. 

Many of the lidar-based AGB inventories have been focused on the northern forests dominated by 
spruce and pine [1,32,71]. Additional research for lidar-radar integration is important, especially in 
tropical and temperate forests, because of the vast amount of biomass in them: up to 40% of the terrestrial 
carbon is contained in tropical forests (see [4] and references therein). Lidar-radar data fusion has been 
applied to produce high-resolution AGB maps for large areas in tropical forests [25], where the 
information from dual-polarization SAR data was used along with a lidar DEM to classify the vegetation 
into biomass units with distinct biophysical parameters. This enabled the spatial extrapolation of the 
radar data. Not only the assessment of the current biomass status is needed: change detection methods 
are also called for, because of deforestation and forest damages [32,78]. 

Both lidar and radar are able to produce reasonable and consistent depictions of canopy height and 
AGB, but lidar has been found to have the highest precision and lower errors [32,79]. Little or  
no (statistically significant) improvement in AGB mapping was obtained by inclusion of SAR  
in [42,71,72], particularly if the increased cost was considered (see also [80]). The results were similar 
for both scanning and profiling lidar [42,72]. One reason for this was suggested to be in the structure of 
an industrial plantation forest: the AGB is highly correlated with height, and the performance of lidar in 
height detection is superior to radar methods [42]. No added value was found in [31] for mixed tree 
species in plot level forest variable estimation, where the combined feature set was just marginally better 
than ALS alone. However, the potential of SAR images is in the better temporal resolution, so they could 
be combined with ALS for updating forest inventories. It has also been suggested that the future SAR 
systems may be more effective in producing the AGB for hardwood than for coniferous forests [42]. 

3.2. Using Lidar DEM with Radar-Derived DSM 

One of the main aspects on combining lidar and radar in the estimation of forest inventory attributes 
is using lidar-derived DTM or DEM in conjunction with radar-derived DSM (e.g., [63,79]). Although 
this approach has resulted in improved AGB estimates, it is only applicable in the areas where a  
lidar-derived DTM is available. The combined use of lidar DTM with radar has proven useful in 
radargrammetry, which was recently applied for acquiring forest canopy height from stereo SAR 
imagery [59,70,81]. TerraSAR-X spotlight mode SAR stereo radargrammetry was able to derive 
favorable estimates for mean height and stem volume in Finland’s boreal forest zone [59], where the 
boreal forest AGB and stem volume prediction accuracy was evaluated. Point-height metrics from  
ALS and TerraSAR-X stereo radargrammetry were used as predictors. MSEs of 29.9% and 30.2%  
were obtained for AGB and stem volume, respectively, when using radargrammetry-derived metrics. 
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This was an improvement from previous studies and the accuracy was close to the estimation  
accuracy values from ALS only (21.9% and 24.8%). In [70], interferometric X-band SAR heights (from 
Tandem-X) were tested in the estimation of spruce stem volume and AGB. RMSE values  
of 43%–44% at the plot level and 19%–20% at the stand level were obtained using a nonlinear,  
mixed model. 

In addition to combining DEM’s with SAR data, ALS DEM’s have also been found useful in 
improving the accuracy of results obtained with SAR (e.g., [1,63,79]). 

3.3. Upscaling 

One of the advantages of SAR is the wider spatial coverage compared to lidar: even though lidar data 
are more detailed, lidar does not usually cover as wide areas. Large-area AGB mapping with SAR using 
lidar sampling to improve the accuracy has been successfully carried out in [1,4,6,73–75]. The objective 
was to provide accurate large-area biomass information from SAR, while the accuracy could be 
improved with lidar and statistical methods. In most upscaling studies, lidar data is first calibrated with 
in situ reference data, after which the correlation between SAR signals and lidar-derived AGB is 
investigated [1,4,6,74]. Correlation between AGB and PALSAR signatures was studied in [74] using a 
reference biomass map of the region derived from LVIS lidar data. In this study, the stepwise regression 
was used for finding the best SAR variables and regression models for AGB estimation. The AGB was 
found to be within 10% of the reference biomass map (from LVIS lidar data) with an RMSE of  
31.33 Mg/ha. Considering the superior performance of lidar in numerous studies [31,32,59,72], the study 
shows the upscaling prospect with lidar sampling and spatial modelling methods to be a promising one. 
The wall-to-wall extension of 20 m resolution also demonstrated the high potential of lidar sampling for 
large-area AGB mapping [6]. 

Accurate data from large areas are needed for important climate-change related issues, such as 
understanding the global carbon budget, assessing biodiversity, or monitoring protected areas [73,82]. 
These issues are pronounced in tropical forests, for which upscaling produces information on AGB and 
canopy height and their spatial variation [4,75,80]. Synergy between future spaceborne lidar and radar 
missions would help improve the coverage and sampling of current methods (e.g., [73]). The potential 
for extending lidar-based canopy height profiles with SAR was pointed out in a study combining GLAS 
with SRTM [75,83]. 

4. Discussion 

4.1. The Main Assets and Drawbacks of Lidar and SAR Methods 

Both lidar and radar have their advantages and drawbacks, which have been pointed out in many 
studies reviewed in Section 3. The combined lidar-SAR activities aim at compensating the drawbacks 
in AGB detection with additional input from the other method. 

Lidar is capable of providing accurate structure information, such as the vertical structure and leaf 
distribution in the canopy. The reliability of lidar in producing canopy height and density has been noted 
in many studies [6,43,45,79] and this leads to accurate biomass estimation. The accuracy of lidar 
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measurements is often higher and there are fewer systematic errors with respect to field measurement 
than in the experiments based on radar interferometry (e.g., [79]). 

The downside of ALS is the high cost of airborne data acquisition [1,2,84], especially as AGB 
mapping in regional scales is needed to improve global models [6,45]. This reported the total cost of full 
lidar acquisition at an area of 25 km2 to be $25,000 CAD in 2013. Also, the lack of temporal consistency 
limits the availability of continuous monitoring [70]. Uncertainty in deriving the AGB from lidar 
waveforms was discussed in [74], in which error sources, such as mismatch between locations of field 
and lidar measurements, are identified. 

The strengths of radar for global and continuous coverage complement those of lidar [73,74].  
The main problems are saturation, limited accuracy, and spatial resolution, which prevent the detailed 
measurement in individual tree or stand level [1,6,70] or cause errors in derived canopy heights used in 
the AGB predictions [63]. The capability of data acquisition through clouds is also a potential advantage 
of radar sensors [42]. 

4.2. Added Value from Combining Lidar and Radar 

The most recent studies of combined lidar and SAR observations indicate the potential of improving 
and upscaling SAR data with lidar. According to the summary presented in Section 3, we find the most 
promising aspects of combining lidar and SAR to be: 

(1) Using lidar DEM/DSM: lidar-based ground elevation for canopy height retrieval from SAR 
imagery (as in radargrammetry), or improving SAR-based AGB maps using canopy heights 
from lidar DSM (see Table 1 for examples). 

(2) Upscaling: extending accurate height/structure data from lidar with statistical methods to 
provide large-area biomass information using SAR. 

Lidar-derived accurate measurements of ground surface elevation, canopy height, and vertical 
structure can help improve the wall-to-wall SAR measurements of AGB. A high-quality DTM from ALS 
was used along with interferometric X-band SAR in [1], resulting in an AGB estimation with a higher 
accuracy as compared to using alternative DTM’s from topographic maps. Lidar-derived elevation data 
is also required to normalize heights from interferometry or radargrammetry to heights above the ground: 
a DTM from ALS can be used as a reference to derive a Canopy Height Model (CHM) or an InSAR 
height model. In [70], a 10 m × 10 m CHM was derived from TanDEM-X image pairs. The volume and 
AGB were then determined statistically from InSAR height data. The 3D SAR data with DTM as input 
were shown to be a promising tool for accurate AGB monitoring. 

Spatially explicit biomass and vegetation height estimates would be possible to obtain for large areas 
by upscaling lidar transects across continuous areas. This requires improving the accuracy of large-area 
SAR data with lidar (which is first calibrated with field data) and statistical methods [1,6,23,45]. The 
first results have shown a good correlation between lidar-SAR AGB maps and lidar-field data [74]. The 
main challenges in upscaling are related to finding a relationship between SAR backscatter coefficient 
and lidar-derived AGB [4]. In some cases this may be due to the complexity of plots [85], but the field 
sampling has to be extensive enough to cover a range of forest structures [74]. The field sampling is used 
in many applications to calibrate the lidar-derived AGB (e.g., [1,6]). For the wall-to-wall extension of 
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AGB maps with SAR, the lidar sampling has to be statistically and geometrically representative to 
characterize the structure and variation of the stands [6]. It is also important that both data are collected 
at the same time to avoid the effect of changes, such as growth and mortality [1,74]. 

There were studies that found little or no added value from lidar-SAR data fusion (Table 1). Many of 
these studies were carried out at stand level, whereas added value from combined lidar and SAR was 
mostly found in large-area applications, where the broad coverage of SAR was an asset. Whether this is 
a question of scale, needs further study, but it seems that little added value from SAR was achieved in 
such cases where lidar was enough to cover the entire study area, such as in [42], where airborne SAR 
and lidar data from the same area were combined. However, the potential of combining the accuracy of 
lidar and the broader coverage of SAR in large-area AGB estimations was acknowledged even when no 
improvement was evident at the stand level [42,71]. 

5. Summary and Future Prospects 

5.1. Conclusions 

Accurate biomass information is crucial for the study of carbon in the global ecosystem, sustainable 
forest management (cf. [21]), and mapping forest damages and degradation [82,86,87]. This will  
be achieved with combined lidar-radar remote sensing, which has gained more international interest 
quite recently. 

In this paper we have provided a summary of combined lidar-SAR methods for forest AGB detection. 
From the studies carried out thus far, it seems that the main advantage of combining lidar and SAR may 
be in large-area applications, particularly, improving SAR-based AGB estimation with lidar DEMs or 
upscaling accurate lidar metrics to large areas with SAR data. Thus the state-of-the-art development in 
joint lidar-radar studies shows the potential for continuous global biomass mapping with improved 
accuracy. Global, spatially detailed, and accurate DTM enables for different aspects on regional scale 
remote sensing, such as radargrammetry, photogrammetry, etc. More research on combined SAR data 
and lidar sampling is needed for upscaling accurate biomass data into global level. This requires 
extensive field and lidar studies to improve statistics, and establish a link between lidar sampling and 
SAR data, thus filling the gap between regional and global scale biomass information. This is particularly 
important in the areas where less data are available, such as tropical forests. 

5.2. Future Prospects 

The main focus of this paper is on the applications and results from joint lidar-radar studies. There is 
still a need for a further study of technology readiness level to survey the needs of end-users. While there 
are still quite a few challenges, there are some important new technologies and aspects, which will 
reshape the future efforts for regional biomass detection: 

• Spaceborne lidar will be able to provide large-area validation for SAR. More space lidar 
missions can be expected in the near future, such as the ICESAT-2 [26] and NASA’s GEDI 
to be launched in 2018 (see http://science.nasa.gov/missions/gedi/). 

• One of the major data sources in the future is satellite remote sensing (cf. [70]), and the spatial 
resolution of the future is improving. The upcoming ESA BIOMASS (SAR) mission will 
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provide biomass data at a spatial scale of 100–200 m from intensity data, combined with forest 
height from polarimetry [5]. The results from TanDEM-X bistatic InSAR are good [63]. 
Therefore, a new bistatic InSAR mission (e.g., for ESA Sentinel-1A and 1B) would be relevant 
for biomass estimation. 

• Structural modelling from terrestrial laser scanning is a growing field of study, and it will 
provide a robust alternative for laborious field sampling, especially as the improved 
instrumentation and modeling also account for the branch structure [88–90]. TLS methods 
could then replace manual field inventories in validating the lidar-based ground reference in 
improving the accuracy of the large-area AGB with SAR (e.g., in [1]). 
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